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Abstract. Given any graph G, the (adjacency) spread of G is the maximum ab-
solute difference between any two eigenvalues of the adjacency matrix of G. In this
paper, we resolve a pair of 20-year-old conjectures of Gregory, Hershkowitz, and Kirk-
land regarding the spread of graphs. The first states that for all positive integers n,
the n-vertex graph G that maximizes spread is the join of a clique and an independent
set, with b2n/3c and dn/3e vertices, respectively. Using techniques from the theory
of graph limits and numerical analysis, we prove this claim for all n sufficiently large.
As an intermediate step, we prove an analogous result for a family of operators in the
Hilbert space over L 2[0, 1]. The second conjecture claims that for any fixed e ≤ n2/4,
if G maximizes spread over all n-vertex graphs with e edges, then G is bipartite. We
prove an asymptotic version of this conjecture. Furthermore, we exhibit an infinite
family of counterexamples, which shows that our asymptotic solution is tight up to
lower order error terms.

1. Introduction

The spread s(M) of an arbitrary n × n complex matrix M is the diameter of its
spectrum; that is,

s(M) := max
i,j
|λi − λj|,

where the maximum is taken over all pairs of eigenvalues of M . This quantity has been
well studied in general (see [11, 16, 22, 33] for details and additional references). Most
notably, Johnson, Kumar, and Wolkowitz produced the lower bound

s(M) ≥
∣∣∑

i 6=jmi,j

∣∣/(n− 1)

for normal matrices M = (mi,j) [16, Theorem 2.1], and Mirsky produced the upper
bound

s(M) ≤
√

2
∑

i,j |mi,j|2 − (2/n)
∣∣∑

imi,i

∣∣2
for any n×n matrix M , which is tight for any normal matrix with n−2 of its eigenvalues
all equal and equal to the arithmetic mean of the other two [22, Theorem 2].

The spread of a matrix has also received interest in some particular cases. Consider
a simple undirected graph G = (V (G), E(G)) of order n. The adjacency matrix A of
a graph G is the n × n matrix whose rows and columns are indexed by the vertices
of G, with entries satisfying Au,v = 1 if {u, v} ∈ E(G) and Au,v = 0 otherwise.
This matrix is real and symmetric, and so its eigenvalues are real, and can be ordered
λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). When considering the spread of the adjacency matrix A
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of some graph G, the spread is simply the distance between λ1(G) and λn(G), denoted
by

s(G) := λ1(G)− λn(G).

In this instance, s(G) is referred to as the spread of the graph.
In [13], the authors investigated a number of properties regarding the spread of a

graph, determined upper and lower bounds on s(G), and made two key conjectures.
Let us denote the maximum spread over all n vertex graphs by s(n), the maximum
spread over all n vertex graphs of size e by s(n, e), and the maximum spread over all n
vertex bipartite graphs of size e by sb(n, e). The join of two graphs G∨H is the graph
containing both G, H, and all edges between the two, and the complement of a graph
G is the graph on V (G) containing only the edges not in E(G). Let Kk be the clique
of order k and G(n, k) := Kk ∨Kn−k be the join of the clique Kk (the graph with all
possible edges included) and the independent set Kn−k (the graph with no edges). We
say a graph is spread-extremal if it has spread s(n). The conjectures addressed in this
article are as follows.

Conjecture 1 ([13], Conjecture 1.3). For any positive integer n, the graph of order n
with maximum spread is G(n, b2n/3c); that is, s(n) is attained only by G(n, b2n/3c).

Conjecture 2 ([13], Conjecture 1.4). If G is a graph with n vertices and e ≤ bn2/4c
edges attaining the maximum spread s(n, e), then G must be bipartite. That is, sb(n, e) =
s(n, e) for all e ≤ bn2/4c.

Conjecture 1 is referred to as the Spread Conjecture, and Conjecture 2 is referred
to as the Bipartite Spread Conjecture. Much of what is known about Conjecture 1
is contained in [13], but the reader may also see [29] for a description of the problem
and references to other work on it. In this paper, we resolve both conjectures. We
prove the Spread Conjecture for all n sufficiently large, prove an asymptotic version of
the Bipartite Spread Conjecture, and provide an infinite family of counterexamples to
illustrate that our asymptotic version is as tight as possible, up to lower order error
terms. These results are given by Theorems 1.1 and 1.2.

Theorem 1.1. There exists a constant N so that the following holds: Suppose G is
a graph on n ≥ N vertices with maximum spread; then G is the join of a clique on
b2n/3c vertices and an independent set on dn/3e vertices.

Theorem 1.2.

s(n, e)− sb(n, e) ≤
1 + 16e−3/4

e3/4
s(n, e)

for all n, e ∈ N satisfying e ≤ bn2/4c. In addition, for any ε > 0, there exists some nε
such that

s(n, e)− sb(n, e) ≥
1− ε
e3/4

s(n, e)

for all n ≥ nε and some e ≤ bn2/4c depending on n.

The proof of Theorem 1.1 is quite involved, and constitutes the main subject of this
work. The general technique consists of showing that a spread-extremal graph has
certain desirable properties, considering and solving an analogous problem for graph
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limits, and then using this result to say something about the Spread Conjecture for
sufficiently large n. For the interested reader, we state the analogous graph limit result
in the language of functional analysis.

Theorem 1.3. Let W : [0, 1]2 → [0, 1] be a Lebesgue-measurable function such that
W (x, y) = W (y, x) for a.e. (x, y) ∈ [0, 1]2, and let A = AW be the kernel operator on
L 2[0, 1] associated with W . For all unit functions f, g ∈ L 2[0, 1],

〈f, Af〉 − 〈g, Ag〉 ≤ 2√
3
.

Moreover, equality holds if and only if there exists a measure-preserving transformation
σ on [0, 1] such that for a.e. (x, y) ∈ [0, 1]2,

W (σ(x), σ(y)) =

{
0, (x, y) ∈ [2/3, 1]× [2/3, 1]

1, otherwise
.

In addition to being a key ingredient in the proof of Theorem 1.1, Theorem 1.3 also
immediately implies a result for arbitrary symmetric non-negative matrices.

Corollary 1.4. Let A = (ai,j) be a n× n symmetric non-negative matrix. Then

λ1(A)− λn(A) ≤ 2n√
3

max
i,j

ai,j,

and
max

‖u‖=‖v‖=1
〈u,v〉=0

|〈u,Av〉| ≤ n√
3

max
i,j

ai,j.

This corollary, paired with the graph G(n, b2n/3c), implies that (2n − 1)/
√

3 <
s(n) ≤ 2n/

√
3 for all n > 1, i.e. the spread conjecture is true for all n up to an

additive 1/
√

3 factor. Furthermore, this corollary implies that the maximum spread of
a symmetric 0− 1 matrix is exactly 2n/

√
3 for n ≡ 0 mod 3 and is within 1/(2

√
3n)

of 2n/
√

3 for n 6≡ 0 mod 3. The second part of the corollary gives a bound on the
magnitude of off-diagonal entries of a non-negative matrix under a unitary change of
basis, and is also tight for n ≡ 0 mod 3 (and tight up to O(1/n) for n 6≡ 0 mod 3).

The proof of Theorem 1.1 can be found in Sections 2-6, with certain technical details
reserved for the Appendix. We provide an in-depth overview of the proof of Theorem
1.1 in Subsection 1.1. In comparison, the proof of Theorem 1.2 is surprisingly short,
making use of the theory of equitable decompositions and a well-chosen class of counter-
examples. The proof of Theorem 1.2 can be found in Section 7. Finally, in Section 8,
we discuss further questions and possible future avenues of research.

1.1. High-Level Outline of Spread Proof. Here, we provide a concise, high-level
description of our asymptotic proof of the Spread Conjecture. The proof itself is quite
involved, making use of interval arithmetic and a number of fairly complicated sym-
bolic calculations, but conceptually, is quite intuitive. Our proof consists of four main
steps.
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Step 1: Graph-Theoretic Results

In Section 2, we observe a number of important structural properties of any graph
that maximizes the spread for a given order n. In particular, we show that

• any graph that maximizes spread must be the join of two threshold graphs
(Lemma 2.1),
• both graphs in this join have order linear in n (Lemma 2.2),
• the unit eigenvectors x and z corresponding to λ1(A) and λn(A) have infinity

norms of order n−1/2 (Lemma 2.3),
• the quantities λ1x

2
u − λnz2u, u ∈ V , are all nearly equal, up to a term of order

n−1 (Lemma 2.4).

This last structural property serves as the backbone of our proof. In addition, we
note that, by a tensor argument, an asymptotic upper bound for s(n) implies a
bound for all n.

Step 2: Graphons and a Finite-Dimensional Eigenvalue Problem

In Sections 3 and 4, we make use of graphons to understand how spread-extremal
graphs behave as n tends to infinity. Section 3 consists of a basic introduction to
graphons, and a translation of the graph results of Step 1 to the graphon setting.
In particular, we prove the graphon analogue of the graph properties that

• vertices u and v are adjacent if and only if xuxv − zuzv > 0 (Lemma 3.6),
• the quantities λ1x

2
u − λnz2u, u ∈ V , are all nearly equal (Lemma 3.7).

Next, in Section 4, we show that the spread-extremal graphon for our problem takes
the form of a particular stepgraphon with a finite number of blocks (Theorem 4.1).
In particular, through an averaging argument, we note that the spread-extremal
graphon takes the form of a stepgraphon with a fixed structure of symmetric seven
by seven blocks, illustrated below (black equals one, white equals zero).
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The lengths α = (α1, ..., α7), α
T1 = 1, of each row and column in the spread-

extremal stepgraphon are unknown. For any choice of lengths α, we can associate
a 7× 7 matrix whose spread is identical to that of the associated stepgraphon pic-
tured above. Let B be the 7 × 7 matrix with Bi,j equal to the value of the above
stepgraphon on block i, j, and D = diag(α1, ..., α7) be a diagonal matrix with α on
the diagonal. Then the matrix D1/2BD1/2 has spread equal to the spread of the
associated stepgraphon.

Step 3: Computer-Assisted Proof of a Finite-Dimensional Eigenvalue Problem

In Section 5, we show that the optimizing choice of α is, without loss of generality,
given by α1 = 2/3, α7 = 1/3, and all other αi = 0 (Theorem 5.1). This is exactly
the limit of the conjectured spread-extremal graph as n tends to infinity. The proof
of this fact is extremely technical, and relies on a computer-assisted proof using
both interval arithmetic and symbolic computations. This is the only portion of
the proof (of Theorem 1.1) that requires the use of interval arithmetic. Though not
a proof, in Figure 1 we provide intuitive visual justification that this result is true.
In this figure, we provide contour plots resulting from numerical computations of
the spread of the above matrix for various values of α. The numerical results suggest
that the 2× 2 block stepgraphon with lengths 2/3 and 1/3 is indeed optimal. See
Figure 1 and the associated caption for details.

The actual proof of this fact consists of the following steps:

• we reduce the possible choices of non-zero αi from 27 to 17 different cases
(Lemma A.2),
• using eigenvalue equations, the graphon version of λ1x

2
u−λnz2u all nearly equal,

and interval arithmetic, we prove that, of the 17 cases, only the cases
– α1, α7 6= 0
– α4, α5, α7 6= 0

can produce a spread-extremal stepgraphon (Lemma 5.2),
• prove that the three by three case cannot be spread-extremal, using basic re-

sults from the theory of cubic polynomials and computer-assisted symbolic
calculations (Lemma 5.4).

This proves the the spread-extremal graphon is a two by two stepgraphon that,
without loss of generality, takes value zero on the block [2/3, 1]2 and one elsewhere
(Theorem 1.3/Theorem 5.1).

Step 4: From Graphons to an Asymptotic Proof of the Spread Conjecture

Finally, in Section 6, we convert our result for the spread-extremal graphon to a
statement for graphs. This process consists of two main parts:
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(a) αi 6= 0 for all i (b) α2 = α3 = α4 = 0

Figure 1. Contour plots of the spread for some choices of α. Each point
(x, y) of Plot (a) illustrates the maximum spread over all choices of α
satisfying α3 +α4 = x and α6 +α7 = y (and therefore, α1 +α2 +α5 = 1−
x−y) on a grid of step size 1/100. Each point (x, y) of Plot (b) illustrates
the maximum spread over all choices of α satisfying α2 = α3 = α4 = 0,
α5 = y, and α7 = x on a grid of step size 1/100. The maximum spread
of Plot (a) is achieved at the two black “x”s, and implies that, without
loss of generality, α3 + α4 = 0, and therefore α2 = 0 (indices α1 and
α2 can be combined when α3 + α4 = 0). Plot (b) treats this case when
α2 = α3 = α4 = 0, and the maximum spread is achieved on the black
line. This implies that either α5 = 0 or α7 = 0. In both cases, this
reduces to the block two by two case α1, α7 6= 0 (or, if α7 = 0, then
α1, α6 6= 0).

• using our graphon theorem (Theorem 5.1), we show that any spread-extremal
graph takes the form (Kn1∪̇Kn2)∨Kn3 for n1 = (2/3 + o(1))n, n2 = o(n), and
n3 = (1/3 + o(1))n (Lemma 6.2), i.e. any spread-extremal graph is equal up
to a set of o(n) vertices to the conjectured optimal graph Kb2n/3c ∨Kdn/3e,
• we show that, for n sufficiently large, the spread of (Kn1∪̇Kn2) ∨ Kn3 , n1 +
n2 + n3 = n, is maximized when n2 = 0 (Lemma 6.3).

Together, these two results complete our proof of the spread conjecture for suffi-
ciently large n (Theorem 1.1).

2. Properties of spread-extremal graphs

In this section, we review what has already been proven about spread-extremal
graphs (n vertex graphs with spread s(n)) in [13], where the original conjectures were
made. We then prove a number of properties of spread-extremal graphs and properties
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of the eigenvectors associated with the maximum and minimum eigenvalues of a spread-
extremal graph.

Let G be a graph, and let A be the adjacency matrix of G, with eigenvalues λ1 ≥
· · · ≥ λn. For unit vectors x, y ∈ Rn, we have

λ1 ≥ xTAx and λn ≤ yTAy.

Hence (as observed in [13]), the spread of a graph can be expressed

(1) s(G) = max
x,z

∑
u∼v

(xuxv − zuzv)

where the maximum is taken over all unit vectors x, z. Furthermore, this maximum is
attained only for x, z orthonormal eigenvectors corresponding to the eigenvalues λ1, λn,
respectively. We refer to such a pair of vectors x, z as extremal eigenvectors of G. For
any two vectors x, z in Rn, let G(x, z) denote the graph for which distinct vertices u, v
are adjacent if and only if xuxv − zuzv ≥ 0. Then from the above, there is some graph
G(x, z) which is a spread-extremal graph, with x, z orthonormal and x positive ([13,
Lemma 3.5]).

In addition, we enhance [13, Lemmas 3.4 and 3.5] using some helpful definitions
and the language of threshold graphs. Whenever G = G(x, z) is understood, let P =
P (x, z) := {u ∈ V (G) : zu ≥ 0} and N = N(x, z) := V (G) \ P . In addition, let G[S],
S ⊂ V , be the subgraph induced by S, i.e., the graph with vertex set S and containing
all edges of G that are between vertices in S.

For our purposes, we say that G is a threshold graph if and only if there exists a
function ϕ : V (G)→ (−∞,∞] such that for all distinct u, v ∈ V (G), uv ∈ E(G) if and
only if ϕ(u)+ϕ(v) ≥ 0 1. Here, ϕ is a threshold function for G (with 0 as its threshold).
The following detailed lemma shows that any spread-extremal graph is the join of two
threshold graphs with threshold functions which can be made explicit.

Lemma 2.1. Let n > 2 and suppose G is a n-vertex graph such that s(G) = s(n).
Denote by x and z the extremal unit eigenvectors for G. Then

(i) For any two vertices u, v of G, u and v are adjacent whenever xuxv − zuzv > 0
and u and v are nonadjacent whenever xuxv − zuzv < 0.

(ii) For any distinct u, v ∈ V (G), xuxv − zuzv 6= 0.
(iii) Let P := P (x, z), N := N(x, z) and let G1 := G[P ] and G2 := G[N ]. Then

G = G(x, z) = G1 ∨G2.
(iv) For each i ∈ {1, 2}, Gi is a threshold graph with threshold function defined on all

u ∈ V (Gi) by

ϕ(u) := log

∣∣∣∣xuzu
∣∣∣∣ .

1 Here, we take the usual convention that for all x ∈ (−∞,∞], ∞+ x = x+∞ =∞
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Proof. SupposeG is a n-vertex graph such that s(G) = s(n), and writeA = (auv)u,v∈V (G)

for its adjacency matrix. Item (i) is equivalent to Lemma 3.4 from [13]. For complete-
ness, we include a proof. By Equation (1) we have that

s(G) = max
x,z

xTAx− zTAz =
∑

u,v∈V (G)

auv · (xuxv − zuzv) ,

where the maximum is taken over all unit vectors of length n. If xuxv − zuzv > 0 and
auv = 0, then s(G+ uv) > s(G), a contradiction. And if xuxv − zuzv < 0 and auv = 1,
then s(G− uv) > s(G), a contradiction. So Item (i) holds.

For a proof of Item (ii), suppose xuxv−zuzv = 0 and denote by G′ the graph formed
by adding or deleting the edge uv from G. With A′ denoting the adjacency matrix of
G′, note that

s(G′) ≥ xTA′x− zTA′z = xTAx− zTAz = s(G) ≥ s(G′),

so each inequality is an equality. It follows that x, z are eigenvectors for A′. Further-
more, without loss of generality, we may assume that uv ∈ E(G). In particular, there
exists some λ′ such that

Ax = λx

(A− eue
T
v − eve

T
u )x = λ′x.

So (eue
T
v + eve

T
u )x = (λ − λ′)x. Let w ∈ V (G) \ {u, v}. By the above equation,

(λ − λ′)xw = 0 and either λ′ = λ or xw = 0. To find a contradiction, it is sufficient
to note that G is a connected graph with Perron-Frobenius eigenvector x. Indeed, let
P := {w ∈ V (G) : zw ≥ 0} and let N := V (G) \ P . Then for any w ∈ P and any
w′ ∈ N , xwxw′ − zwzw′ > 0 and by Item (i), ww′ ∈ E(G). So G is connected and this
completes the proof of Item (ii).

Now, we prove Item (iii). To see that G = G(x, z), note by Items (i) and (ii), for
all distinct u, v ∈ V (G), xuxv − zuzv > 0 if and only if uv ∈ E(G), and otherwise,
xuxv − zuzv < 0 and uv /∈ E(G). To see that G = G1 ∨ G2, note that for any u ∈ P
and any v ∈ N , 0 6= xuxv − zuzv ≥ zu · (−zv) ≥ 0.

Finally, we prove Item (iv). Suppose u, v are distinct vertices such that either u, v ∈
P or u, v ∈ N . Allowing the possibility that 0 ∈ {zu, zv}, the following equivalence
holds:

ϕ(u) + ϕ(v) ≥ 0 if and only if

log

∣∣∣∣xuxvzuzv

∣∣∣∣ ≥ 1 if and only if

xuxv − |zuzv| ≥ 0.

Since zu, zv have the same sign, Item (iv) holds. This completes the proof. �

From [21], we recall the following useful characterization in terms of “nesting” neigh-
borhoods: G is a threshold graph if and only there exists a numbering v1, · · · , vn of
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V (G) such that for all 1 ≤ i < j ≤ n, if vk ∈ V (G) \ {vi, vj}, vjvk ∈ E(G) implies
that vivk ∈ E(G). Given this ordering, if k is the largest natural number such that
vkvk+1 ∈ E(G), then the set {v1, · · · , vk} induces a clique and the set {vk+1, · · · , vn}
induces an independent set.

The next lemma shows that both P and N have linear size.

Lemma 2.2. If G is a spread-extremal graph, then both P and N have size Ω(n).

Proof. We will show that P and N both have size at least n
100

. First, since G is spread-
extremal, it has spread more than 1.1n and hence has smallest eigenvalue λn <

−n
10

.
Without loss of generality, for the remainder of this proof we will assume that |P | ≤ |N |,
that z is normalized to have infinity norm 1, and that v is a vertex satisfying |zv| = 1.
By way of contradiction, assume that |P | < n

100
.

If v ∈ N , then we have

λnzv = −λn =
∑
u∼v

zu ≤
∑
u∈P

zu ≤ |P | <
n

100
,

contradicting that λn <
−n
10

. Therefore, assume that v ∈ P . Then

λ2nzv = λ2n =
∑
u∼v

∑
w∼u

zw ≤
∑
u∼v

∑
w∼u
w∈P

zw ≤ |P ||N |+2e(P ) ≤ |P ||N |+ |P |2 ≤ 99n2

1002
+

n2

1002
.

This gives |λn| ≤ n
10

, a contradiction. �

Lemma 2.3. If x and z are unit eigenvectors for λ1 and λn, then ‖x‖∞ = O(n−1/2)
and ‖z‖∞ = O(n−1/2).

Proof. During this proof we will assume that û and v̂ are vertices satisfying ‖x‖∞ = xû
and ‖z‖∞ = |zv̂| and without loss of generality that v̂ ∈ N . We will use the weak
estimates that λ1 >

n
2

and λn <
−n
10

. Define sets

A =
{
w : xw >

xû
4

}
B =

{
w : zw >

−zv̂
20

}
.

It suffices to show that A and B both have size Ω(n), for then there exists a constant
ε > 0 such that

1 = xTx ≥
∑
w∈A

x2
w ≥ |A|

‖x‖2∞
16

≥ εn ‖x‖2∞ ,

and similarly

1 = zTz ≥
∑
w∈B

z2w ≥ |B|
‖z‖2∞
400

≥ εn ‖z‖2∞ .

We now give a lower bound on the sizes of A and B using the eigenvalue-eigenvector
equation and the weak bounds on λ1 and λn.

n

2
‖x‖∞ =

n

2
xû < λ1xû =

∑
w∼û

xw ≤ ‖x‖∞
(
|A|+ 1

4
(n− |A|)

)
,
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giving that |A| > n
3
. Similarly,

n

10
‖z‖∞ = − n

10
zv̂ < λnzv̂ =

∑
w∼v̂

zw ≤ ‖z‖∞
(
|B|+ 1

20
(n− |B|)

)
,

and so |B| > n
19

.
�

Lemma 2.4. Assume that x and z are unit vectors. Then there exists a constant C
such that for any pair of vertices u and v, we have

|(λ1x2
u − λnz2u)− (λ1z

2
v − λnz2v)| <

C

n
.

Proof. Let u and v be vertices, and create a graph G̃ by deleting u and cloning v. That
is, V (G̃) = {v′} ∪ V (G) \ {u} and

E(G̃) = E(G \ {u}) ∪ {v′w : vw ∈ E(G)}.

Note that v 6∼ v′. Let Ã be the adjacency matrix of G̃. Define two vectors x̃ and z̃
by

x̃w =

{
xw w 6= v′

xv w = v′,

and

z̃w =

{
zw w 6= v′

zv w = v.

Then x̃T x̃ = 1− x2
u + x2

v and z̃T z̃ = 1− z2u + z2v. Similarly,

x̃T Ãx̃ = λ1 − 2xu
∑

uw∈E(G)

xw + 2xv′
∑

vw∈E(G)

xw − 2Auvxvxu

= λ1 − 2λ1x
2
u + 2λ1x

2
v − 2Auvxuxv,

and

z̃T Ãz̃ = λn − 2zu
∑

uw∈E(G)

zw + 2zv′
∑

vw∈E(G)

zw − 2Auvzvzu

= λn − 2λnz
2
u + 2λnz

2
v − 2Auvzuzv.

By Equation (1),

0 ≥

(
x̃T Ãx̃

x̃T x̃
− z̃T Ãz̃

z̃T z̃

)
− (λ1 − λn)

=

(
λ1 − 2λ1x

2
u + 2λ1x

2
v − 2Auvxuxv

1− x2
u + x2

v

− λn − 2λnz
2
u + 2λnz

2
v − 2Auvzuzv

1− z2u + z2v

)
− (λ1 − λn)

=
−λ1x2

u + λ1x
2
v − 2Aijxuxv

1− x2
u + x2

v

− −λnz
2
u + λnz

2
v − 2Aijzuzv

1− z2u + z2v
.
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By Lemma 2.3, we have that |xu|, |xv|, |zu|, and |zv| are all O(n−1/2), and so it
follows that

|(λ1x2
u − λ1x2

v)− (λnz
2
u − λnz2v)| <

C

n
,

for some absolute constant C. Rearranging terms gives the desired result. �

3. The spread-extremal problem for graphons

Graphons (or graph functions) are analytical objects which may be used to study
the limiting behavior of large, dense graphs, and were originally introduced in [6] and
[19].

3.1. Introduction to graphons. Consider the setW of all bounded symmetric mea-
surable functions W : [0, 1]2 → [0, 1] (by symmetric, we mean W (x, y) = W (y, x) for
all (x, y) ∈ [0, 1]2). A function W ∈ W is called a stepfunction if there is a partition of
[0, 1] into subsets S1, S2, . . . , Sm such that W is constant on every block Si×Sj. Every
graph has a natural representation as a stepfunction in W taking values either 0 or 1
(such a graphon is referred to as a stepgraphon). In particular, given a graph G on n
vertices indexed {1, 2, . . . , n}, we can define a measurable set KG ⊆ [0, 1]2 as

KG =
⋃
u∼v

[
u− 1

n
,
u

n

]
×
[
v − 1

n
,
v

n

]
,

and this represents the graph G as a bounded symmetric measurable function WG that
takes value 1 on KG and 0 everywhere else. For a measurable subset U we will use
m(U) to denote its Lebesgue measure.

This representation of a graph as a measurable subset of [0, 1]2 lends itself to a
visual presentation sometimes referred to as a pixel picture; see, for example, Figure 2
for two representations of a bipartite graph as a measurable subset of [0, 1]2. Clearly,
this indicates that such a representation is not unique; neither is the representation
of a graph as a stepfunction. Using an equivalence relation on W derived from the
so-called cut metric, we can identify graphons that are equivalent up to relabelling,
and up to any differences on a set of measure zero (i.e. equivalent almost everywhere).

For all symmetric, bounded Lebesgue-measurable functions W : [0, 1]2 → R, we let

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y) dx dy

∣∣∣∣ .
Here, ‖ · ‖� is referred to as the cut norm. Next, one can also define a semidistance

δ� on W as follows. First, we define the weak isomorphism of graphons. Let S be the
set of all measure-preserving functions on [0, 1]. For every ϕ ∈ S and every W ∈ W ,
define Wϕ : [0, 1]2 → [0, 1] by

Wϕ(x, y) := W (ϕ(x), ϕ(y))

for a.e. (x, y) ∈ [0, 1]2. Now for any W1,W2 ∈ W , let

δ�(W1,W2) = inf
φ∈S
‖W1 −W2 ◦ φ‖�.
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Figure 2. Two presentations of a bipartite graph as a stepfunction.

Define the equivalence relation ∼ on W as follows: for all W1,W2 ∈ W , W1 ∼ W2 if
and only if δ�(W1,W2) = 0. Furthermore, let Ŵ :=W/ ∼ be the quotient space of W
under ∼. Note that δ� induces a metric on Ŵ . Crucially, by [20, Theorem 5.1], Ŵ is
a compact metric space.

Given W ∈ Ŵ , we define the Hilbert-Schmidt operator AW : L 2[0, 1]→ L 2[0, 1] by

(AWf)(x) :=

∫ 1

0

W (x, y)f(y) dy

for all f ∈ L 2[0, 1] and a.e. x ∈ [0, 1].
Since W is symmetric and bounded, AW is a compact Hermitian operator. In partic-

ular, AW has a discrete, real spectrum Λ(W ) whose only possible accumulation point
is 0 (c.f. [5]), and so the maximum and minimum eigenvalues exist. Let µ(W ) and
ν(W ) be the maximum and minimum eigenvalues of AW , respectively, and define the
spread of W as

spr(W ) := µ(W )− ν(W ).

By the Min-Max Theorem, we have that

µ(W ) = max
‖f‖2=1

∫ 1

0

∫ 1

0

W (x, y)f(x)f(y) dx dy,

and

ν(W ) = min
‖f‖2=1

∫ 1

0

∫ 1

0

W (x, y)f(x)f(y) dx dy.

Both µ and ν are continuous functions with respect to δ�. In particular, we have
the following.

Theorem 3.1 (c.f. [6, Theorem 6.6] or [18, Theorem 11.54]). Let {Wi}i be a sequence
of graphons converging to W with respect to δ�. Then as n→∞,

µ(Wn)→ µ(W ) and ν(Wn)→ ν(W ).
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If W ∼ W ′ then µ(W ) = µ(W ′) and ν(W ) = ν(W ′). By compactness, we may

consider the optimization problem on the factor space Ŵ
spr(Ŵ) = max

W∈Ŵ
spr(W ),

and there is a W ∈ Ŵ that attains the maximum. Since every graph is represented by
WG ∈ Ŵ , this allows us to give an upper bound for s(n) in terms of spr(Ŵ). Indeed,
by replacing the eigenvectors of G with their corresponding stepfunctions, the following
proposition can be shown.

Proposition 3.2. Let G be a graph on n vertices. Then

λ1(G) = n · µ(WG) and λn(G) = n · ν(WG).

Proposition 3.2 implies that s(n) ≤ n · spr(Ŵ) for all n. Combined with Theorem
1.3, this gives the following corollary (a similar argument implies Corollary 1.4).

Corollary 3.3. For all n, s(n) ≤ 2n√
3
.

This can be proved more directly using Theorem 1.1 and taking tensor powers.

3.2. Properties of spread-extremal graphons. Our main objective in the follow-
ing two sections is to solve the maximum spread problem for graphons, in order to
produce a tight estimate for s(n). In this subsection, we prove some preliminary
results that is largely a translation of what is known in the graph setting (see Sec-
tion 2). First, we define what it means for a graphon to be connected, and show that
spread-extremal graphons must be connected. We then prove a standard corollary of
the Perron-Frobenius theorem. Finally, we prove graphon versions of Lemma 2.1 and
Lemma 2.4.

Let W1 and W2 be graphons, and let α1, α2 be positive real numbers with α1+α2 = 1.
We define the direct sum of W1 and W2 with weights α1 and α2, denoted W = α1W1⊕
α2W2, as follows. Let ϕ1 and ϕ2 be the increasing affine maps that send J1 := [0, α1]
and J2 := [α1, 1] to [0, 1], respectively. Then for all (x, y) ∈ [0, 1]2, let

W (x, y) :=

{
Wi(ϕi(x), ϕi(y)), if (x, y) ∈ Ji × Ji for some i ∈ {1, 2}

0, otherwise
.

A graphon W is connected if W is not weakly isomorphic to a direct sum α1W1⊕α2W2

where α1 6= 0, 1. Equivalently, W is connected if there does not exist a measurable
subset A ⊆ [0, 1] of positive measure such that W (x, y) = 0 for a.e. (x, y) ∈ A× Ac.

Proposition 3.4. Suppose W1,W2 are graphons and α1, α2 are positive real numbers
summing to 1. Let W := α1W1 ⊕ α2W2. Then as multisets,

Λ(W ) = {α1u : u ∈ Λ(W1)} ∪ {α2v : v ∈ Λ(W2)}.
Moreover, spr(W ) ≤ α1spr(W1) +α2spr(W2) with equality if and only W1 or W2 is the
all-zeroes graphon.
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Proof. For convenience, let Λi := {αiu : u ∈ Λ(Wi)} for each i ∈ {1, 2} and Λ := Λ(W ).
The first claim holds simply by considering the restriction of eigenfunctions to the in-
tervals [0, α1] and [α1, 1].

For the second claim, we first write spr(W ) = αiµ(Wi)−αjν(Wj) where i, j ∈ {1, 2}.
Let Ii := [min(Λi),max(Λi)] for each i ∈ {1, 2} and I := [min(Λ),max(Λ)]. Clearly
αispr(Wi) = diam(Ii) for each i ∈ {1, 2} and spr(W ) = diam(I). Moreover, I = I1∪I2.
Since 0 ∈ I1 ∩ I2, diam(I) ≤ diam(I1) + diam(I2) with equality if and only if either I1
or I2 equals {0}. So the desired claim holds. �

Furthermore, the following basic corollary of the Perron-Frobenius holds. For com-
pleteness, we prove it here.

Proposition 3.5. Let W be a connected graphon and write f for an eigenfunction
corresponding to µ(W ). Then f is nonzero with constant sign a.e.

Proof. Let µ = µ(W ). Since

µ = max
‖h‖2=1

∫
(x,y)∈[0,1]2

W (x, y)h(x)h(y),

it follows without loss of generality that f ≥ 0 a.e. on [0, 1]. Let Z := {x ∈ [0, 1] :
f(x) = 0}. Then for a.e. x ∈ Z,

0 = µf(x) =

∫
y∈[0,1]

W (x, y)f(y) =

∫
y∈Zc

W (x, y)f(y).

Since f > 0 on Zc, it follows that W (x, y) = 0 a.e. on Z × Zc. Clearly m(Zc) 6=
0. If m(Z) = 0 then the desired claim holds, so without loss of generality, 0 <
m(Z),m(Zc) < 1. It follows that W is disconnected, a contradiction to our assumption,
which completes the proof. �

We may now prove a graphon version of Lemma 2.1.

Lemma 3.6. Suppose W is a graphon achieving maximum spread, and let f, g be
eigenfunctions for the maximum and minimum eigenvalues for W , respectively. Then
the following claims hold:

(i) For a.e. (x, y) ∈ [0, 1]2,

W (x, y) =

{
1, f(x)f(y) > g(x)g(y)

0, otherwise
.

(ii) f(x)f(y)− g(x)g(y) 6= 0 for a.e. (x, y) ∈ [0, 1]2.

Proof. We proceed in the following order:

• Prove Item (i) holds for a.e. (x, y) ∈ [0, 1]2 such that f(x)f(y) 6= g(x)g(y). We
will call this Item (i)*.
• Prove Item (ii).
• Deduce Item (i) also holds.
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By Propositions 3.4 and 3.5, we may assume without loss of generality that f > 0
a.e. on [0, 1]. For convenience, we define the quantity d(x, y) := f(x)f(y) − g(x)g(y).
To prove Item (i)*, we first define a graphon W ′ by

W ′(x, y) =


1, d(x, y) > 0

0, d(x, y) < 0

W (x, y) otherwise

.

Then by inspection,

spr(W ′) ≥
∫
(x,y)∈[0,1]2

W ′(x, y)(f(x)f(y)− g(x)g(y))

=

∫
(x,y)∈[0,1]2

W (x, y)(f(x)f(y)− g(x)g(y))

+

∫
d(x,y)>0

(1−W (x, y))d(x, y)−
∫
d(x,y)<0

W (x, y)d(x, y)

= spr(W ) +

∫
d(x,y)>0

(1−W (x, y))d(x, y)−
∫
d(x,y)<0

W (x, y)d(x, y).

Since W maximizes spread, both integrals in the last line must be 0, and hence Item
(i)* holds.

Now, we prove Item (ii). For convenience, we define U to be the set of all pairs
(x, y) ∈ [0, 1]2 so that d(x, y) = 0. Now let W ′ be any graphon that differs from W
only on U . Then

spr(W ′) ≥
∫
(x,y)∈[0,1]2

W ′(x, y)(f(x)f(y)− g(x)g(y))

=

∫
(x,y)∈[0,1]2

W (x, y)(f(x)f(y)− g(x)g(y))

+

∫
(x,y)∈U

(W ′(x, y)−W (x, y))(f(x)f(y)− g(x)g(y))

= spr(W ).

Since spr(W ) ≥ spr(W ′), f and g are eigenfunctions for W ′, and we may write µ′ and
ν ′ for the corresponding eigenvalues. Now, we define

IW ′(x) := (µ′ − µ)f(x)

=

∫
y∈[0,1]

(W ′(x, y)−W (x, y))f(y)

=

∫
y∈[0,1], (x,y)∈U

(W ′(x, y)−W (x, y))f(y).
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Similarly, we define

JW ′(x) := (ν ′ − ν)g(x)

=

∫
y∈[0,1]

(W ′(x, y)−W (x, y))g(y)

=

∫
y∈[0,1], (x,y)∈U

(W ′(x, y)−W (x, y))g(y).

Since f and g are orthogonal, ∫
x∈[0,1]

IW ′(x)JW ′(x) = 0.

By definition of U , we have that for a.e. (x, y) ∈ U , 0 = d(x, y) = f(x)f(y)− g(x)g(y).
In particular, since f(x), f(y) > 0 for a.e. (x, y) ∈ [0, 1]2, then a.e. (x, y) ∈ U has
g(x)g(y) > 0. So by letting

U+ := {(x, y) ∈ U : g(x), g(y) > 0},
U− := {(x, y) ∈ U : g(x), g(y) < 0}, and

U0 := U \ (U+ ∪ U−),

U0 has measure 0.

First, let W ′ be the graphon defined by

W ′(x, y) =

{
1, (x, y) ∈ U+

W (x, y), otherwise
.

For this choice of W ′,

IW ′(x) =

∫
y∈[0,1], (x,y)∈U+

(1−W (x, y))f(y), and

JW ′(x) =

∫
y∈[0,1], (x,y)∈U+

(1−W (x, y))g(y).

Clearly IW ′ and JW ′ are nonnegative functions, so IW ′(x)JW ′(x) = 0 for a.e. x ∈ [0, 1].
Since f(y) and g(y) are positive for a.e. (x, y) ∈ U , W (x, y) = 1 for a.e. on U+.

If instead we let W ′(x, y) be 0 for all (x, y) ∈ U+, it follows by a similar argument
that W (x, y) = 0 for a.e. (x, y) ∈ U+. So U+ has measure 0. Repeating the same
argument on U−, we similarly conclude that U− has measure 0. This completes the
proof of Item (ii).

Finally we note that Items (i)* and (ii) together imply Item (i). �

From here, it is easy to see that any graphon maximizing the spread is a join of two
threshold graphons. Next we prove the graphon version of Lemma 2.4.
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Lemma 3.7. If W is a graphon achieving the maximum spread with corresponding
eigenfunctions f, g, then µf 2 − νg2 = µ− ν almost everywhere.

Proof. We will use the notation (x, y) ∈ W to denote that (x, y) ∈ [0, 1]2 satisfies
W (x, y) = 1. Let ϕ : [0, 1]→ [0, 1] be an arbitrary homeomorphism that is orientation-
preserving in the sense that ϕ(0) = 0 and ϕ(1) = 1. Then ϕ is a continuous strictly

monotone increasing function which is differentiable almost everywhere. Now let f̃ :=
ϕ′ · (f ◦ ϕ), g̃ := ϕ′ · (g ◦ ϕ) and W̃ := {(x, y) ∈ [0, 1]2 : (ϕ(x), ϕ(y)) ∈ W}. Using the
substitutions u = ϕ(x) and v = ϕ(y),

f̃ W̃ f̃ =

∫
(x,y)∈[0,1]2

χ(ϕ(x),ϕ(y))∈W̃ ϕ′(x)ϕ′(y) · f(ϕ(x))f(ϕ(y))dx dy

=

∫
(x,y)∈[0,1]2

χ(x,y)∈W f(u)f(v)du dv

= µ.

Similarly, g̃W̃ g̃ = ν.

Note however that the L2 norms of f̃ , g̃ may not be 1. Indeed using the substitu-
tion u = ϕ(x),

‖f̃‖22 =

∫
x∈[0,1]

ϕ′(x)2f(ϕ(x))2 dx =

∫
u∈[0,1]

ϕ′(ϕ−1(u)) · f(u)2 du.

We exploit this fact as follows. Suppose I, J are disjoint subintervals of [0, 1] of the
same positive length m(I) = m(J) = ` > 0, and for any ε > 0 sufficiently small (in
terms of `), let ϕ be the (unique) piecewise linear function that stretches I to length
(1 + ε)m(I), shrinks J to length (1− ε)m(J), and shifts only the elements in between
I and J . Note that for a.e. x ∈ [0, 1],

ϕ′(x) =


1 + ε, x ∈ I
1− ε, x ∈ J

1, otherwise.

Again with the substitution u = ϕ(x),

‖f̃‖22 =

∫
x∈[0,1]

ϕ′(x)2 · f(ϕ(x))2 dx

=

∫
[u∈[0,1]

ϕ′(ϕ−1(u))f(u)2 du

= 1 + ε · (‖χIf‖22 − ‖χJf‖22).
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The same equality holds for g̃ instead of f̃ . After normalizing f̃ and g̃, by optimality
of W , we get a difference of Rayleigh quotients as

0 ≤ (fWf − gWg)− f̃ W̃ f̃

‖f̃‖22
− g̃W̃ g̃

‖g̃‖22

=
µε · (‖χIf‖22 − ‖χJf‖22)

1 + ε · (‖χIf‖22 − ‖χJf‖22)
− νε · (‖χIg‖22 − ‖χJg‖22)

1 + ε · (‖χIg‖22 − ‖χJg‖22)

= (1 + o(1))ε ·
(∫

I

(µf(x)2 − νg(x)2)dx−
∫
J

(µf(x)2 − νg(x)2)dx

)
as ε → 0. It follows that for all disjoint intervals I, J ⊆ [0, 1] of the same length,
the corresponding integrals are the same. Taking finer and finer partitions of [0, 1], it
follows that the integrand µf(x)2 − νg(x)2 is constant almost everywhere. Since the
average of this quantity over all [0, 1] is µ− ν, the desired claim holds. �

4. From graphons to stepgraphons

The main result of this section is as follows.

Theorem 4.1. Suppose W maximizes spr(Ŵ). Then W is a stepfunction taking values
0 and 1 of the following form

.

Furthermore, the internal divisions separate according to the sign of the eigenfunction
corresponding to the minimum eigenvalue of W .

We begin Section 4.1 by mirroring the argument in [30], which proved a conjecture of
Nikiforov regarding the largest eigenvalue of a graph and its complement, µ+µ. There,
Terpai showed that performing two operations on graphons leads to a strict increase
in µ + µ. Furthermore based on previous work of Nikiforov from [24], the conjecture
for graphs reduced directly to maximizing µ+µ for graphons. Using these operations,
Terpai [30] reduced to a 4× 4 stepgraphon and then completed the proof by hand.

In our case, we are not so lucky and are left with a 7×7 stepgraphon after performing
similar but more technical operations, detailed in this section. In order to reduce to a
3×3 stepgraphon, we make use of interval arithmetic (see Section 5.2 and Appendices A
and B). Furthermore, our proof requires an additional technical argument to translate
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the result for graphons (Theorem 5.1) to our main result for graphs (Theorem 1.1). In
Section 4.2, we prove Theorem 4.1.

4.1. Averaging. For convenience, we introduce some terminology. For any graphon
W with λ-eigenfunction h, we say that x ∈ [0, 1] is typical (with respect to W and h)
if

λ · h(x) =

∫
y∈[0,1]

W (x, y)h(y).

Note that a.e. x ∈ [0, 1] is typical. Additionally if U ⊆ [0, 1] is measurable with positive
measure, then we say that x0 ∈ U is average (on U , with respect to W and h) if

h(x0)
2 =

1

m(U)

∫
y∈U

h(y)2.

Given W,h, U , and x0 as above, we define the L2[0, 1] function avU,x0h by setting

(avU,x0h)(x) :=

{
h(x0), x ∈ U
h(x), otherwise

.

Clearly ‖avU,x0h‖2 = ‖h‖2. Additionally, we define the graphon avU,x0W by setting

avU,x0W (x, y) :=


0, (x, y) ∈ U × U

W (x0, y), (x, y) ∈ U × U c

W (x, x0), (x, y) ∈ U c × U
W (x, y), (x, y) ∈ U c × U c

.

In the graph setting, this is analogous to replacing U with an independent set whose
vertices are clones of x0. The following lemma indicates how this cloning affects the
eigenvalues.

Lemma 4.2. Suppose W is a graphon with a λ-eigenfunction h, and suppose there exist
disjoint measurable subsets U1, U2 ⊆ [0, 1] of positive measures α and β, respectively.
Let U := U1∪U2. Moreover, suppose W = 0 a.e. on (U ×U)\ (U1×U1). Additionally,

suppose x0 ∈ U2 is typical and average on U , with respect to W and h. Let h̃ := avU,x0h

and W̃ := avU,x0W . Then for a.e. x ∈ [0, 1],

(AW̃ h̃)(x) = λh̃(x) +

{
0, x ∈ U

m(U) ·W (x0, x)h(x0)−
∫
y∈U W (x, y)h(y), otherwise

.(2)

Furthermore,

〈AW̃ h̃, h̃〉 = λ+

∫
(x,y)∈U1×U1

W (x, y)h(x)h(y).(3)
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Proof. We first prove Equation (2). Note that for a.e. x ∈ U . Then

(AW̃ h̃)(x) =

∫
y∈[0,1]

W̃ (x, y)h̃(y)

=

∫
y∈U

W̃ (x, y)h̃(y) +

∫
y∈[0,1]\U

W̃ (x, y)h̃(y)

=

∫
y∈[0,1]\U

W (x0, y)h(y)

=

∫
y∈[0,1]

W (x0, y)h(y)−
∫
y∈U

W (x0, y)h(y)

= λh(x0)

= λh̃(x),

as desired. Now note that for a.e. x ∈ [0, 1] \ U ,

(AW̃ h̃)(x) =

∫
y∈[0,1]

W̃ (x, y)h̃(y)

=

∫
y∈U

W̃ (x, y)h̃(y) +

∫
y∈[0,1]\U

W̃ (x, y)h̃(y)

=

∫
y∈U

W (x0, x)h(x0) +

∫
y∈[0,1]\U

W (x, y)h(y)

= m(U) ·W (x0, x)h(x0) +

∫
y∈[0,1]

W (x, y)h(y)−
∫
y∈U

W (x, y)h(y)

= λh(x) +m(U) ·W (x0, x)h(x0)−
∫
y∈U

W (x, y)h(y).
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So again, the claim holds and this completes the proof of Equation (2). Now we prove
Equation (3). Indeed by Equation (2),

〈(AW̃ h̃), h̃〉 =

∫
x∈[0,1]

(AW̃ h̃)(x)h̃(x)

=

∫
x∈[0,1]

λh̃(x)2 +

∫
x∈[0,1]\U

(
m(U) ·W (x0, x)h(x0)−

∫
y∈U

W (x, y)h(y)

)
· h(x)

= λ+m(U) · h(x0)

(∫
x∈[0,1]

W (x0, x)h(x)−
∫
x∈U

W (x0, x)h(x)

)
−
∫
y∈U

(∫
x∈[0,1]

W (x, y)h(x)−
∫
x∈U

W (x, y)h(x)

)
· h(y)

= λ+m(U) · h(x0)

(
λh(x0)−

∫
y∈U

0

)
−
∫
y∈U

(
λh(y)2 −

∫
x∈U

W (x, y)h(x)h(y)

)
= λ+ λm(U) · h(x0)

2 − λ
∫
y∈U

h(y)2 +

∫
(x,y)∈U×U

W (x, y)h(x)h(y)

= λ+

∫
(x,y)∈U1×U1

W (x, y)h(x)h(y),

and this completes the proof of desired claims. �

We have the following useful corollary.

Corollary 4.3. Suppose spr(W ) = spr(Ŵ) with maximum and minimum eigenvalues
µ, ν corresponding respectively to eigenfunctions f, g. Moreover, suppose that there
exist disjoint subsets A,B ⊆ [0, 1] and x0 ∈ B so that the conditions of Lemma 4.2 are
met for W with λ = µ, h = f , U1 = A, and U2 = B. Then,

(i) W (x, y) = 0 for a.e. (x, y) ∈ U2, and
(ii) f is constant on U .

Proof. Without loss of generality, we assume that ‖f‖2 = ‖g‖2 = 1. Write W̃ for the

graphon and f̃ , g̃ for the corresponding functions produced by Lemma 4.2. By Lemma
3.5, we may assume without loss of generality that f > 0 a.e. on [0, 1]. We first prove
Item (i). Note that

spr(W̃ ) ≥
∫
(x,y)∈[0,1]2

W̃ (x, y)(f̃(x)f̃(y)− g̃(x)g̃(y))

= (µ− ν) +

∫
(x,y)∈A×A

W (x, y)(f(x)f(y)− g(x)g(y))

= spr(W ) +

∫
(x,y)∈A×A

W (x, y)(f(x)f(y)− g(x)g(y)).(4)

Since spr(W ) ≥ spr(W̃ ) and by Lemma 3.6.(ii), f(x)f(y) − g(x)g(y) > 0 for a.e.
(x, y) ∈ A× A such that W (x, y) 6= 0. Item (i) follows.
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For Item (ii), we first note that f is a µ-eigenfunction for W̃ . Indeed, if not, then
the inequality in (4) holds strictly, a contradiction to the fact that spr(W ) ≥ spr(W̃ ).
Again by Lemma 4.2,

m(U) ·W (x0, x)f(x0) =

∫
y∈U

W (x, y)f(y)

for a.e. x ∈ [0, 1]\U . Let S1 := {x ∈ [0, 1]\U : W (x0, x) = 1} and S0 := [0, 1]\(U∪S1).
We claim that m(S1) = 0. Assume otherwise. By Lemma 4.2 and by Cauchy-Schwarz,
for a.e. x ∈ S1

m(U) · f(x0) = m(U) ·W (x0, x)f(x0)

=

∫
y∈U

W (x, y)f(y)

≤
∫
y∈U

f(y)

≤ m(U) · f(x0),

and by sandwiching, W (x, y) = 1 and f(y) = f(x0) for a.e. y ∈ U . Since m(S1) > 0,
it follows that f(y) = f(x0) = 0 for a.e. y ∈ U , as desired.

So we assume otherwise, that m(S1) = 0. Then for a.e. x ∈ [0, 1] \ U , W (x0, x) = 0
and

0 = m(U) ·W (x0, x)f(x0) =

∫
y∈U

W (x, y)f(y)

and since f > 0 a.e. on [0, 1], it follows that W (x, y) = 0 for a.e. y ∈ U . Altogether,
W (x, y) = 0 for a.e. (x, y) ∈ ([0, 1] \ U)× U . So W is a disconnected, a contradiction
to Fact 3.4. The desired claim holds. �

4.2. Proof of Theorem 4.1.

Proof. For convenience, we write µ := µ(W ) and ν := ν(W ) and let f, g denote the
corresponding unit eigenfunctions. By Proposition 3.5, we may assume without loss of
generality that f > 0.

First, we show without loss of generality that f, g are monotone on the sets P :=
{x ∈ [0, 1] : g(x) ≥ 0} and N := [0, 1] \ P . Indeed, we define a total ordering 4 on
[0, 1] as follows. For all x and y, we let x 4 y if:

(i) g(x) ≥ 0 and g(y) < 0, or
(ii) Item (i) does not hold and f(x) > f(y), or

(iii) Item (i) does not hold, f(x) = f(y), and x ≤ y.

By inspection, the function ϕ : [0, 1]→ [0, 1] defined by

ϕ(x) := m({y ∈ [0, 1] : y 4 x})
is a weak isomorphism between W and its entrywise composition with ϕ. By invariance
of spr(·) under weak isomorphism, we make the above replacement and write f, g for
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the replacement eigenfunctions. That is, we are assuming that our graphon is relabeled
so that [0, 1] respects 4.

As above, let P := {x ∈ [0, 1] : g(x) ≥ 0} and N := [0, 1] \ P . By Lemma 3.7, f
and −g are monotone nonincreasing on P . Additionally, f and g are monotone non-
increasing on N . Without loss of generality, we may assume that W is of the form
from Lemma 3.6. Now we let S := {x ∈ [0, 1] : f(x) < |g(x)|} and C := [0, 1] \ S. By
Lemma 3.6 we have that W (x, y) = 1 for almost every x, y ∈ C and W (x, y) = 0 for
almost every x, y ∈ S∩P or x, y ∈ S∩N . We have used the notation C and S because
the analogous sets in the graph setting form a clique or a stable set respectively. We
first prove the following claim.

Claim A: Except on a set of measure 0, f takes on at most 2 values on P ∩ S,
and at most 2 values on N ∩ S.

We first prove this claim for f on P ∩ S. Let D be the set of all discontinuities of f
on the interior of the interval P ∩ S. Clearly D consists only of jump-discontinuities.
By the Darboux-Froda Theorem, D is at most countable and moreover, (P ∩S) \D is
a union of at most countably many disjoint intervals I. Moreover, f is continuous on
the interior of each I ∈ I.

We show now that f is piecewise constant on the interiors of each I ∈ I. Indeed, let
I ∈ I. Since f is a µ-eigenfunction function for W ,

µf(x) =

∫
y∈[0,1]

W (x, y)f(y)

for a.e. x ∈ [0, 1]. By continuity of f on the interior of I, this equation holds everywhere
on the interior of I. Additionally, since f is continuous on the interior of I, by the
Mean Value Theorem, there exists some x0 in the interior of I so that

f(x0)
2 =

1

m(U)

∫
x∈U

f(x)2.

By Corollary 4.3, f is constant on the interior of U , as desired.

If |I| ≤ 2, the desired claim holds, so we may assume otherwise. Then there exists
distinct I1, I2, I3 ∈ I. Moreover, f equals a constant f1, f2, f3 on the interiors of I1, I2,
and I3, respectively. Additionally, since I1, I2, and I3 are separated from each other
by at least one jump discontinuity, we may assume without loss of generality that
f1 < f2 < f3. It follows that there exists a measurable subset U ⊆ I1 ∪ I2 ∪ I3 of
positive measure so that

f 2
2 =

1

m(U)

∫
x∈U

f(x)2.

By Corollary 4.3, f is constant on U , a contradiction. So Claim A holds on P ∩S. For
Claim A on N ∩ S, we may repeat this argument with P and N interchanged, and g
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and −g interchanged.

Now we show the following claim.

Claim B: For a.e. (x, y) ∈ (P × P ) ∪ (N × N) such that f(x) ≥ f(y), we have
that for a.e. z ∈ [0, 1], W (x, z) = 0 implies that W (y, z) = 0.

We first prove the claim for a.e. (x, y) ∈ P × P . Suppose W (y, z) = 0. By Lemma
3.6, in this case z ∈ P . Then for a.e. such x, y, by Lemma 3.7, g(x) ≤ g(y). By
Lemma 3.6.(i), W (x, z) = 0 implies that f(x)f(z) < g(x)g(z). Since f(x) ≥ f(y)
and g(x) ≤ g(y), f(y)f(z) < g(y)g(z). Again by Lemma 3.6.(i), W (y, z) = 0 for a.e.
such x, y, z, as desired. So the desired claim holds for a.e. (x, y) ∈ P × P such that
f(x) ≥ f(y). We may repeat the argument for a.e. (x, y) ∈ N × N to arrive at the
same conclusion.

The next claim follows directly from Lemma 3.7.

Claim C: For a.e. x ∈ [0, 1], x ∈ C if and only if f(x) ≥ 1, if and only if |g(x)| ≤ 1.

Finally, we show the following claim.

Claim D: Except on a set of measure 0, f takes on at most 3 values on P ∩ C,
and at most 3 values on N ∩ C.

For a proof, we first write P ∩ S = S1 ∪ S2 so that S1, S2 are disjoint, f equals some
constant f1 a.e. on S1, and f equals some constant f2 a.e. on S2. By Lemma 3.7,
g equals some constant g1 a.e. on S1 and g equals some constant g2 a.e. on S2. By
definition of P , g1, g2 ≥ 0. Now suppose x ∈ P ∩ C so that

µf(x) =

∫
y∈[0,1]

W (x, y)f(y).

Then by Lemma 3.6.(i),

µf(x) =

∫
y∈(P∩C)∪N

f(y) +

∫
y∈S1

W (x, y)f(y) +

∫
y∈S2

W (x, y)f(y).

By Claim B, this expression for µf(x) may take on at most 3 values. So the desired
claim holds on P ∩ C. Repeating the same argument, the claim also holds on N ∩ C.

We are nearly done with the proof of the theorem, as we have now reduced W to a
10× 10 stepgraphon. To complete the proof, we show that we may reduce to at most
7× 7. We now partition P ∩C,P ∩ S,N ∩C, and N ∩ S so that f and g are constant
a.e. on each part as:

• P ∩ C = U1 ∪ U2 ∪ U3,
• P ∩ S = U4 ∪ U5,
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• N ∩ C = U6 ∪ U7 ∪ U8, and
• N ∩ S = U9 ∪ U10.

Then by Lemma 3.6.(i), there exists a matrix (mij)i,j∈[10] so that for all (i, j) ∈ [10]×
[10],

• mij ∈ {0, 1},
• W (x, y) = mij for a.e. (x, y) ∈ Ui × Uj,
• mij = 1 if and only if fifj > gigj, and
• mij = 0 if and only if fifj < gigj.

Additionally, we set αi = m(Ui) and also denote by fi and gi the constant values of f, g
on each Ui, respectively, for each i = 1, . . . , 10. Furthermore, by Claim C and Lemma
3.6 we assume without loss of generality that that f1 > f2 > f3 ≥ 1 > f4 > f5 and
that f6 > f7 > f8 ≥ 1 > f9 > f10. Also by Lemma 3.7, 0 ≤ g1 < g2 < g3 ≤ 1 < g4 < g5
and 0 ≤ −g1 < −g2 < −g3 ≤ 1 < −g4 < −g5. Also, by Claim B, no two columns of m
are identical within the sets {1, 2, 3, 4, 5} and within {6, 7, 8, 9, 10}. Shading mij = 1
black and mij = 0 white, we let

M = .

Therefore, W is a stepgraphon with values determined by M and the size of each block
determined by the αi.

We claim that 0 ∈ {α3, α4, α5} and 0 ∈ {α8, α9, α10}. For the first claim, assume to
the contrary that all of α3, α4, α5 are positive and note that there exists some x4 ∈ U4

such that

µf4 = µf(x4) =

∫
y∈[0,1]

W (x4, y)f(y).
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Moreover for some measurable subsets U ′3 ⊆ U3 and U ′5 ⊆ U5 of positive measure so
that with U := U ′3 ∪ U4 ∪ U ′5,

f(x4)
2 =

1

m(U)

∫
y∈U

f(y)2.

Note that by Lemma 3.7, we may assume that x4 is average on U with respect to g as
well. The conditions of Corollary 4.3 are met for W with A = U ′3, B = U4∪U ′5, x0 = x4.
Since

∫
A×AW (x, y)f(x)f(y) > 0, this is a contradiction to the corollary, so the desired

claim holds. The same argument may be used to prove that 0 ∈ {α8, α9, α10}.

We now form the principal submatrix M ′ by removing the i-th row and column from
M if and only if αi = 0. Since αi = 0, W is a stepgraphon with values determined
by M ′. Let M ′

P denote the principal submatrix of M ′ corresponding to the indices
i ∈ {1, . . . , 5} so that αi > 0. That is, M ′

P corresponds to the upper left hand block
of M . We use red to indicate rows and columns present in M but not M ′

P . When
forming the submatrix M ′

P , we borrow the internal subdivisions which are present in
the definition of M above to denote where f ≥ 1 and where f < 1 (or between S ∩ P
and C ∩ P ). Note that this is not the same as what the internal divisions denote in
the statement of the theorem. Since 0 ∈ {α3, α4, α5}, it follows that M ′

P is a principal
submatrix of

, , or .

In the second case, columns 2 and 3 are identical in M ′, and in the third case, columns
1 and 2 are identical in M ′. So without loss of generality, M ′

P is a principal submatrix
of one of

, , or .
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In each case, M ′
P is a principal submatrix of

.

An identical argument shows that the principal submatrix of M ′ on the indices i ∈
{6, . . . , 10} such that αi > 0 is a principal submatrix of

.

Finally, we note that 0 ∈ {α1, α6}. Indeed otherwise the corresponding columns are
identical in M ′, a contradiction. So without loss of generality, row and column 6 were
also removed from M to form M ′. This completes the proof of the theorem. �

5. Spread maximum graphons

In this section, we complete the proof of the graphon version of the spread conjecture
of Gregory, Hershkowitz, and Kirkland from [13]. In particular, we prove the following
theorem. For convenience and completeness, we state this result in the following level
of detail.

Theorem 5.1. If W is a graphon that maximizes spread, then W may be represented
as follows. For all (x, y) ∈ [0, 1]2,

W (x, y) =

{
0, (x, y) ∈ [2/3, 1]2

1, otherwise
.

Furthermore,

µ =
1 +
√

3

3
and ν =

1−
√

3

3

are the maximum and minimum eigenvalues of W , respectively, and if f, g are unit
eigenfunctions associated to µ, ν, respectively, then, up to a change in sign, they may
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be written as follows. For every x ∈ [0, 1],

f(x) =
1

2
√

3 +
√

3
·

{
3 +
√

3, x ∈ [0, 2/3]

2 ·
√

3 otherwise
, and

g(x) =
1

2
√

3−
√

3
·

{
3−
√

3, x ∈ [0, 2/3]

−2 ·
√

3 otherwise
.

To help outline our proof of Theorem 5.1, let the spread-extremal graphon have
block sizes α1, . . . , α7. Note that the spread of the graphon is the same as the spread
of matrix M∗ in Figure 3, and so we will optimize the spread of M∗ over choices of
α1, . . . , α7. Let G∗ be the unweighted graph (with loops) corresponding to the matrix.

We proceed in the following steps.

1. In Section A.1, we reduce the proof of Theorem 5.1 to 17 cases, each corresponding
to a subset S of V (G∗). For each such S we define an optimization problem SPRS,
the solution to which gives us an upper bound on the spread of any graphon in the
case corresponding to S.

2. In Section 5.2, we appeal to interval arithmetic to translate these optimization
problems into algorithms. Based on the output of the 17 programs we wrote, we
eliminate 15 of the 17 cases. We address the multitude of formulas used throughout
and relocate their statements and proofs to Appendix B.1.

3. Finally in Section 5.3, we complete the proof of Theorem 5.1 by analyzing the 2
remaining cases. Here, we apply Viète’s Formula for roots of cubic equations and
make a direct argument.

M∗ := D1/2
α



1 1 1 1 1 1 1

1 1 1 0 1 1 1

1 1 0 0 1 1 1

1 0 0 0 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0


D1/2
α

1

2

3

4

5

6

7

Figure 3. The matrix M∗ with corresponding graph G∗, where Dα is
the diagonal matrix with entries α1, . . . , α7.



MAXIMUM SPREAD OF GRAPHS AND BIPARTITE GRAPHS 29

For concreteness, we define G∗ on the vertex set {1, . . . , 7}. Explicitly, the neighbor-
hoods N1, . . . , N7 of 1, . . . , 7 are defined as:

N1 := {1, 2, 3, 4, 5, 6, 7} N2 := {1, 2, 3, 5, 6, 7}
N3 := {1, 2, 5, 6, 7} N4 := {1, 5, 6, 7}
N5 := {1, 2, 3, 4, 5, 6} N6 := {1, 2, 3, 4, 5}
N7 := {1, 2, 3, 4}

.

More compactly, we may note that

N1 = {1, . . . , 7} N2 = N1 \ {4} N3 = N2 \ {3} N4 = N3 \ {2}
N5 = N1 \ {7} N6 = N5 \ {6} N7 = N6 \ {5}

.

5.1. Stepgraphon case analysis. Let W be a graphon maximizing spread. By The-
orem 4.1, we may assume that W is a 7× 7 stepgraphon corresponding to G∗. We will
break into cases depending on which of the 7 weights α1, . . . α7 are zero and which are
positive. For some of these combinations the corresponding graphons are isomorphic,
and in this section we will outline how one can show that we need only consider 17
cases rather than 27.

We will present each case with the set of indices which have strictly positive weight.
Additionally, we will use vertical bars to partition the set of integers according to its
intersection with the sets {1}, {2, 3, 4} and {5, 6, 7}. Recall that vertices in block 1
are dominating vertices and vertices in blocks 5, 6, and 7 have negative entries in the
eigenfunction corresponding to ν. For example, we use 4|57 to refer to the case that
α4, α5, α7 are all positive and α1 = α2 = α3 = α6 = 0; see Figure 4.

4

5

7

Figure 4. The family of graphons and the graph corresponding to case 4|57

To give an upper bound on the spread of any graphon corresponding to case 4|57
we solve a constrained optimization problem. Let f4, f5, f7 and g4, g5, g7 denote the
eigenfunction entries for unit eigenfunctions f and g of the graphon. Then we maximize
µ− ν subject to
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α4 + α5 + α7 = 1

α4f
2
4 + α5f

2
5 + α7f

2
7 = 1

α4g
2
4 + α5g

2
5 + α7g

2
7 = 1

µf 2
i − νg2i = µ− ν for all i ∈ {4, 5, 7}

µf4 = α5f5 + α7f7, µf5 = α4f4 + α5f5, µf7 = α4f4

νg4 = α5g5 + α7g7, νg5 = α4g4 + α5g5, νg7 = α4g4

The first three constraints say that the weights sum to 1 and that f and g are
unit eigenfunctions. The fourth constraint is from Lemma 3.7. The final two lines of
constraints say that f and g are eigenfunctions for µ and ν respectively. Since these
equations must be satisfied for any spread-extremal graphon, the solution to this opti-
mization problem gives an upper bound on any spread-extremal graphon corresponding
to case 4|57. For each case we formulate a similar optimization problem in Appendix
A.1.

First, if two distinct blocks of vertices have the same neighborhood, then without
loss of generality we may assume that only one of them has positive weight. For
example, see Figure 5: in case 123|567, blocks 1 and 2 have the same neighborhood,
and hence without loss of generality we may assume that only block 1 has positive
weight. Furthermore, in this case the resulting graphon could be considered as case
13|567 or equivalently as case 14|567; the graphons corresponding to these cases are
isomorphic. Therefore cases 123|567, 13|567, and 14|567 reduce to considering only
case 14|567.

Additionally, if there is no dominant vertex, then some pairs cases may correspond
to isomorphic graphons and the optimization problems are equivalent up to flipping
the sign of the eigenvector corresponding to ν. For example, see Figure 6, in which
cases 23|457 and 24|567 reduce to considering only a single one. However, because of
how we choose to order the eigenfunction entries when setting up the constraints of the
optimization problems, there are some examples of cases corresponding to isomorphic
graphons that we solve as separate optimization problems. For example, the graphons
corresponding to cases 1|24|7 and 1|4|57 are isomorphic, but we will consider them
separate cases; see Figure 7.

Repeated applications of these three principles show that there are only 17 distinct
cases that we must consider. The details are straightforward to verify, see Lemma A.2.

The distinct cases that we must consider are the following, summarized in Figure 8.

S17 :=

{
1|234|567, 1|24|567, 1|234|57, 1|4|567, 1|24|57, 1|234|7, 234|567,

24|567, 4|567, 24|57, 1|567, 1|4|57, 1|2|47, 1|57, 4|57, 1|4|7, 1|7

}

5.2. Interval arithmetic. Interval arithmetic is a computational technique which
bounds errors that accumulate during computation. For convenience, let R∗ := [−∞,+∞]
be the extended real line. To enhance order floating point arithmetic, we replace ex-
tended real numbers with unions of intervals which are guaranteed to contain them.
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1

2

3

5

6

7

1

3

5

6

7

1

4

5

6

7

Figure 5. Redundancy, then renaming: we can assume α2 = 0 in the
family of graphons corresponding to 123|567, which produces families of
graphons corresponding to both cases 13|567 and 14|567.

Moreover, we extend the basic arithmetic operations +,−,×,÷, and
√

to operations
on unions of intervals. This technique has real-world applications in the hard sciences,
but has also been used in computer-assisted proofs. For two famous examples, we
refer the interested reader to [15] for Hales’ proof of the Kepler Conjecture on optimal
sphere-packing in R2, and to [31] for Warwick’s solution of Smale’s 14th problem on
the Lorenz attractor as a strange attractor.

As stated before, we consider extensions of the binary operations +,−,×, and ÷
as well as the unary operation

√
defined on R to operations on unions of intervals of

extended real numbers. For example if [a, b], [c, d] ⊆ R, then we may use the following
extensions of +,−, and ×:

[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c], and

[a, b]× [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}] .

For ÷, we must address the cases 0 ∈ [c, d] and 0 /∈ [c, d]. Here, we take the extension

[a, b]÷ [c, d] =

[
min

{
a

c
,
a

d
,
b

c
,
b

d

}
,max

{
a

c
,
a

d
,
b

c
,
b

d

}]
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2

3

4

5

7

5

6

7

2

4

Figure 6. Changing the sign of g: the optimization problems in these
cases are equivalent.

where

1÷ [c, d] =


[min{c−1, d−1},max{c−1, d−1}] , 0 /∈ [c, d]

[d−1,+∞] , c=0

[−∞, c−1] , d = 0[
−∞, 1

c

]
∪
[
1
d
,+∞

]
, c < 0 < d

.

Additionally, we may let

√
[a, b] =

 ∅, b < 0[√
max {0, a},

√
b
]
, othewise

.

When endpoints of [a, b] and [c, d] include −∞ or +∞, the definitions above must be
modified slightly in a natural way.

We use interval arithmetic to prove the strict upper bound < 2/
√

3 for the maximum
graphon spread claimed in Theorem 5.1, for any solutions to 15 of the 17 constrained
optimization problems SPRS stated in Lemma A.2. The constraints in each SPRS

allow us to derive equations for the variables (αi, fi, gi)i∈S in terms of each other, and
µ and ν. For the reader’s convenience, we relocate these formulas and their derivations
to Appendix B.1. In the programs corresponding to each set S ∈ S17, we find we find
two indices i ∈ S ∩ {1, 2, 3, 4} and j ∈ S ∩ {5, 6, 7} such that for all k ∈ S, αk, fk,



MAXIMUM SPREAD OF GRAPHS AND BIPARTITE GRAPHS 33

1

2

4

7

1

4

5

7

Figure 7. The cases 1|24|7 and 1|4|57 correspond to the same family
graphons but we consider the optimization problems separately, due to
our prescribed ordering of the vertices.

and gk may be calculated, step-by-step, from αi, αj, µ, and ν. See Table 1 for each set
S ∈ S17, organized by the chosen values of i and j.

1 2 3 4

5 1|57
24|57

1|234|57
4|57

1|24|57 1|4|57

6 1|567
24|567 234|567 4|567

1|24|567 1|234|567 1|4|57

7 1|7 1|24|7 1|234|7 1|4|7
Table 1. The indices i, j corresponding to the search space used to
bound solutions to SPRS.

In the program corresponding to a set S ∈ S17, we search a carefully chosen set
Ω ⊆ [0, 1]3 × [−1, 0] for values of (αi, αj, µ, ν) which satisfy SPRS. We first divide
Ω into a grid of “boxes”. Starting at depth 0, we test each box B for feasibility by
assuming that (αi, αj, µ, ν) ∈ B and that µ − ν ≥ 2/

√
3. Next, we calculate αk, fk,

and gk for all k ∈ S in interval arithmetic using the formulas from Section B. When
the calculation detects that a constraint of SPRS is not satisfied, e.g., by showing that
some αk, fk, or gk lies in an empty interval, or by constraining

∑
i∈S αi to a union

of intervals which does not contain 1, then the box is deemed infeasible. Otherwise,



34 JANE BREEN, ALEX W. N. RIASANOVKSY, MICHAEL TAIT, AND JOHN URSCHEL

1|234|567

234|567 1|24|567 1|234|57

24|567 1|4|567 1|24|57 1|234|7

4|567 24|57 1|567 1|4|57 1|24|7

4|57 1|57 1|4|7

1|7

Figure 8. The set S17, as a poset ordered by inclusion. Each element
is a subset of V (G∗) = {1, . . . , 7}, written without braces and commas.
As noted in the proof of Lemma A.2, the sets {1}, {2, 3, 4}, and {5, 6, 7}
have different behavior in the problems SPRS. For this reason, we use
vertical bars to separate each S ∈ S17 according to the corresponding
partition.

the box is split into two boxes of equal dimensions, with the dimension of the cut
alternating cyclically.

For each S ∈ S17, the program SPRS has 3 norm constraints, 2|S| linear eigenvec-

tor constraints, |S| elliptical constraints,
(|S|

2

)
inequality constraints, and 3|S| interval

membership constraints. By using interval arithmetic, we have a computer-assisted
proof of the following result.

Lemma 5.2. Suppose S ∈ S17 \ {{1, 7}, {4, 5, 7}}. Then any solution to SPRS attains
a value strictly less than 2/

√
3.

To better understand the role of interval arithmetic in our proof, consider the fol-
lowing example.

Example 5.3. Suppose µ, ν, and (αi, fi, gi) is a solution to SPR{1,...,7}. We show that

(α3, µ, ν) /∈ [.7, .8] × [.9, 1] × [−.2,−.1]. By Proposition B.1, g23 =
ν(α3 + 2µ)

α3(µ+ ν) + 2µν
.
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Using interval arithmetic,

ν(α3 + 2µ) = [−.2,−.1]×
(
[.7, .8] + 2× [.9, 1]

)
= [−.2,−.1]× [2.5, 2.8] = [−.56,−.25], and

α3(µ+ ν) + 2µν = [.7, .8]×
(
[.9, 1] + [−.2,−.1]

)
+ 2× [.9, 1]× [−.2,−.1]

= [.7, .8]× [.7, .9] + [1.8, 2]× [−.2,−.1]

= [.49, .72] + [−.4,−.18] = [.09, .54].

Thus

g23 =
ν(α3 + 2µ)

α3(µ+ ν) + 2µν
= [−.56,−.25]÷ [.09, .54] = [−6.2,−.4629].

Since g23 ≥ 0, we have a contradiction.

Example 5.3 illustrates a number of key elements. First, we note that through
interval arithmetic, we are able to provably rule out the corresponding region. However,
the resulting interval for the quantity g23 is over fifty times bigger than any of the input
intervals. This growth in the size of intervals is common, and so, in some regions, fairly
small intervals for variables are needed to provably illustrate the absence of a solution.
For this reason, using a computer to complete this procedure is ideal, as doing millions
of calculations by hand would be untenable.

However, the use of a computer for interval arithmetic brings with it another issue.
Computers have limited memory, and therefore cannot represent all numbers in R∗.
Instead, a computer can only store a finite subset of numbers, which we will denote
by F ( R∗. This set F is not closed under the basic arithmetic operations, and so
when some operation is performed and the resulting answer is not in F , some rounding
procedure must be performed to choose an element of F to approximate the exact
answer. This issue is the cause of roundoff error in floating point arithmetic, and must
be treated in order to use computer-based interval arithmetic as a proof.

PyInterval is one of many software packages designed to perform interval arithmetic
in a manner which accounts for this crucial feature of floating point arithmetic. Given
some x ∈ R∗, let fl−(x) be the largest y ∈ F satisfying y ≤ x, and fl+(x) be the
smallest y ∈ F satisfying y ≥ x. Then, in order to maintain a mathematically accurate
system of interval arithmetic on a computer, once an operation is performed to form
a union of intervals

⋃k
i=1[ai, bi], the computer forms a union of intervals containing

[fl−(ai), f l+(bi)] for all 1 ≤ i ≤ k. The programs which prove Lemma 5.2 can be found
at [27].

5.3. Completing the proof of Theorem 5.1. Finally, we complete the second main
result of this paper. We will need the following lemma.

Lemma 5.4. If (α4, α5, α7) is a solution to SPR{4,5,7}, then α7 = 0.

We delay the proof of Lemma 5.4 to Section A because it is technical. We now
proceed with the Proof of Theorem 5.1.
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Proof of Theorem 5.1. Let W be a graphon such that spr(W ) = maxU∈W spr(U). By
Lemma 5.2 and Lemma 5.4, W is a 2× 2 stepgraphon. Let the weights of the parts be
α1 and 1− α1.

Thus, it suffices to demonstrate the uniqueness of the desired solution µ, ν, and
(αi, fi, gi)i∈{1,7} to SPR{1,7}. Indeed, we first note that with

N(α1) :=

[
α1 1− α1

α1 0

]
,

the quantities µ and ν are precisely the eigenvalues of the characteristic polynomial

p(x) = x2 − α1x− α1(1− α1).

In particular,

µ =
α1 +

√
α1(4− 3α1)

2
, ν =

α1 −
√
α1(4− 3α1)

2
,

and

µ− ν =
√
α1(4− 3α1).

Optimizing, it follows that (α1, 1 − α1) = (2/3, 1/3). Calculating the eigenfunctions
and normalizing them gives that µ, ν, and their respective eigenfunctions match those
from the statement of Theorem 5.1.

�

6. From graphons to graphs

In this section, we show that Theorem 5.1 implies Conjecture 1.1 for all n sufficiently
large; that is, the solution to the problem of maximizing the spread of a graphon implies
the solution to the problem of maximizing the spread of a graph for sufficiently large
n.

The outline for our argument is as follows. First, we define the spread-maximum
graphon W as in Theorem 5.1. Let {Gn} be any sequence where each Gn is a spread-
maximum graph on n vertices and denote by {Wn} the corresponding sequence of
graphons. We show that, after applying measure-preserving transformations to each
Wn, the extreme eigenvalues and eigenvectors of each Wn converge suitably to those
of W . It follows for n sufficiently large that except for o(n) vertices, Gn is a join of
a clique of 2n/3 vertices and an independent set of n/3 vertices (Lemma 6.2). Using
results from Section 2, we precisely estimate the extreme eigenvector entries on this
o(n) set. Finally, Lemma 6.3 shows that the set of o(n) exceptional vertices is actually
empty, completing the proof.

Before proceeding with the proof, we state the following corollary of the Davis-Kahan
theorem [10], stated for graphons.

Corollary 6.1. Suppose W,W ′ : [0, 1]2 → [0, 1] are graphons Let µ be an eigenvalue of
W with f a corresponding unit eigenfunction. Let {hk} be an orthonormal eigenbasis
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for W ′ with corresponding eigenvalues {µ′k}. Suppose that |µ′k − µ| > δ for all k 6= 1.
Then

√
1− 〈h1, f〉2 ≤

‖AW ′−Wf‖2
δ

.

Before proving Theorem 1.1, we prove the following approximate result. For all
nonnegative integers n1, n2, n3, let G(n1, n2, n3) := (Kn1∪̇Kc

n2
) ∨Kc

n3
.

Lemma 6.2. For all positive integers n, let Gn denote a graph on n vertices which
maximizes spread. Then Gn = G(n1, n2, n3) for some nonnegative integers n1, n2, n3

such that n1 = (2/3 + o(1))n, n2 = o(n), and n3 = (1/3 + o(1))n.

Proof. Our argument outline is:

(1) show that the eigenvectors for the spread-extremal graphs resemble the eigen-
functions of the spread-extremal graphon in an L2 sense

(2) show that with the exception of a small proportion of vertices, a spread-extremal
graph is the join of a clique and an independent set

Let P := [0, 2/3] and N := [0, 1] \ P . By Theorem 5.1, the graphon W which is
the indicator function of the set [0, 1]2 \ N 2 maximizes spread. Denote by µ and ν
its maximum and minimum eigenvalues, respectively. For every positive integer n, let
Gn denote a graph on n vertices which maximizes spread, let Wn be any stepgraphon
corresponding to Gn, and let µn and νn denote the maximum and minimum eigenvalues
of Wn, respectively. By Theorems 3.1 and 5.1, and compactness of Ŵ ,

max {|µ− µn|, |ν − νn|, δ�(W,Wn)} → 0.

Moreover, we may apply measure-preserving transformations to each Wn so that with-
out loss of generality, ‖W − Wn‖� → 0. As in Theorem 5.1, let f and g be unit
eigenfunctions that take values f1, f2, g1, g2. Furthermore, let ϕn be a nonnegative unit
µn-eigenfunction for Wn and let ψn be a νn-eigenfunction for Wn.

We show that without loss of generality, ϕn → f and ψn → g in the L2 sense.
Since µ is the only positive eigenvalue of W and it has multiplicity 1, taking δ := µ/2,
Corollary 6.1 implies that

1− 〈f, ϕn〉2 ≤
4‖AW−Wnf‖22

µ2

=
4

µ2
· 〈AW−Wnf, AW−Wnf〉

≤ 4

µ2
· ‖AW−Wnf‖1 · ‖AW−Wnf‖∞

≤ 4

µ2
· (‖AW−Wn‖∞→1‖f‖∞) · ‖f‖∞

≤ 16‖W −Wn‖� · ‖f‖2∞
µ2

,
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where the last inequality follows from Lemma 8.11 of [18]. Since ‖f‖∞ ≤ 1/µ, this
proves the first claim. The second claim follows by replacing f with g, and µ with |ν|.

Note: For the remainder of the proof, we will introduce quantities εi > 0 in lieu
of writing complicated expressions explicitly. When we introduce a new εi, we will re-
mark that given ε0, . . . , εi−1 sufficiently small, εi can be made sufficiently small enough
to meet some other conditions.

Let ε0 > 0 and for all n ≥ 1, define

Pn := {x ∈ [0, 1] : |ϕn(x)− f1| < ε0 and |ψn(x)− g1| < ε0},
Nn := {x ∈ [0, 1] : |ϕn(x)− f2| < ε0 and |ψn(x)− g2| < ε0}, and

En := [0, 1] \ (Pn ∪Nn).

Since ∫
|ϕn−f |≥ε0

|ϕn − f |2 ≤
∫
|ϕn − f |2 → 0, and∫

|ψn−g|≥ε0
|ψn − g|2 ≤

∫
|ψn − g|2 → 0,

it follows that

max {m(Pn \ P),m(Nn \ N ),m(En)} → 0.

For all u ∈ V (Gn), let Su be the subinterval of [0, 1] corresponding to u in Wn, and
denote by ϕu and ψu the constant values of ϕn on Su. For convenience, we define the
following discrete analogues of Pn,Nn, En:

Pn := {u ∈ V (Gn) : |ϕu − f1| < ε0 and |ψu − g1| < ε0},
Nn := {u ∈ V (Gn) : |ϕu − f2| < ε0 and |ψu − g2| < ε0}, and

En := V (Gn) \ (Pn ∪Nn).

Let ε1 > 0. By Lemma 2.4 and using the fact that µn → µ and νn → ν,∣∣µϕ2
u − νψ2

u − (µ− ν)
∣∣ < ε1 for all u ∈ V (Gn)(5)

for all n sufficiently large. Let ε′0 > 0. We next need the following claim, which says
that the eigenvector entries of the exceptional vertices behave as if they have neigh-
borhood Nn.

Claim I. Suppose ε0 is sufficiently small and n is sufficiently large in terms of ε′0.
Then for all v ∈ En,

max

{∣∣∣∣ϕv − f2
3µ

∣∣∣∣ , ∣∣∣ψv − g2
3ν

∣∣∣} < ε′0.(6)

Indeed, suppose v ∈ En and let

Un := {w ∈ V (Gn) : vw ∈ E(Gn)} and Un :=
⋃
w∈Un

Sw.
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We take two cases, depending on the sign of ψv.

Case A: ψv ≥ 0.
Recall that f2 > 0 > g2. Furthermore, ϕv ≥ 0 and by assumption, ψv ≥ 0. It follows

that for all n sufficiently large, f2ϕv − g2ψv > 0, so by Lemma 2.1, Nn ⊆ Un. Since ϕn
is a µn-eigenfunction for Wn,

µnϕv =

∫
y∈[0,1]

Wn(x, y)ϕn(y) =

∫
y∈Pn∩Un

ϕn(y) +

∫
y∈Nn

ϕn(y) +

∫
y∈En∩Un

ϕn(y).

Similarly,

νnψv =

∫
y∈[0,1]

Kn(x, y)ψn(y) =

∫
y∈Pn∩Un

ψn(y) +

∫
y∈Nn

ψn(y) +

∫
y∈En∩Un

ψn(y).

Let ρn := m(Pn ∩Un). Note that for all ε2 > 0, as long as n is sufficiently large and ε1
is sufficiently small, then

max

{∣∣∣∣ϕv − 3ρnf1 + f2
3µ

∣∣∣∣ , ∣∣∣∣ψv − 3ρng1 + g2
3ν

∣∣∣∣} < ε2.(7)

Let ε3 > 0. By Equations (5) and (7) and with ε1, ε2 sufficiently small,∣∣∣∣∣µ ·
(

3ρnf1 + f2
3µ

)2

− ν ·
(

3ρng1 + g2
3ν

)2

− (µ− ν)

∣∣∣∣∣ < ε3.

Substituting the values of f1, f2, g1, g2 from Theorem 5.1 and simplifying, it follows
that ∣∣∣∣∣

√
3

2
· ρn(3ρn − 2)

∣∣∣∣∣ < ε3

Let ε4 > 0. It follows that if n is sufficiently large and ε3 is sufficiently small, then

min {ρn, |2/3− ρn|} < ε4.(8)

Combining Equations (7) and (8), it follows that with ε2, ε4 sufficiently small, then

max

{∣∣∣∣ϕv − f2
3µ

∣∣∣∣ , ∣∣∣∣ψv − g2
3µ

∣∣∣∣} < ε′0, or

max

{∣∣∣∣ϕv − 2f1 + f2
3µ

∣∣∣∣ , ∣∣∣∣ψv − 2g1 + g2
3µ

∣∣∣∣} < ε′0.

Note that

f1 =
2f1 + f2

3µ
and g1 =

2g1 + g2
3ν

.

Since v ∈ En, the second inequality does not hold, which completes the proof of the
desired claim.

Case B: ψv < 0.
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Recall that f1 > g1 > 0. Furthermore, ϕv ≥ 0 and by assumption, ψv < 0. It follows
that for all n sufficiently large, f1ϕv − g1ψv > 0, so by Lemma 2.1, Pn ⊆ Un. Since ϕn
is a µn-eigenfunction for Wn,

µnϕv =

∫
y∈[0,1]

Wn(x, y)ϕn(y) =

∫
y∈Nn∩Un

ϕn(y) +

∫
y∈Pn

ϕn(y) +

∫
y∈En∩Un

ϕn(y).

Similarly,

νnψv =

∫
y∈[0,1]

Wn(x, y)ψn(y) =

∫
y∈Nn∩Un

ψn(y) +

∫
y∈Pn

ψn(y) +

∫
y∈En∩Un

ψn(y).

Let ρn := m(Nn ∩Un). Note that for all ε5 > 0, as long as n is sufficiently large and ε1
is sufficiently small, then

max

{∣∣∣∣ϕv − 2f1 + 3ρnf2
3µ

∣∣∣∣ , ∣∣∣∣ψv − 2g1 + 3ρng2
3ν

∣∣∣∣} < ε5.(9)

Let ε6 > 0. By Equations (5) and (9) and with ε1, ε2 sufficiently small,∣∣∣∣∣µ ·
(

2f1 + 3ρnf2
3µ

)2

− ν ·
(

2g1 + 3ρng2
3ν

)2

− (µ− ν)

∣∣∣∣∣ < ε6.

Substituting the values of f1, f2, g1, g2 from Theorem 5.1 and simplifying, it follows
that ∣∣∣2√3 · ρn(3ρn − 1)

∣∣∣ < ε6

Let ε7 > 0. It follows that if n is sufficiently large and ε6 is sufficiently small, then

min {ρn, |1/3− ρn|} < ε7.(10)

Combining Equations (7) and (10), it follows that with ε2, ε4 sufficiently small, then

max

{∣∣∣∣ϕv − 2f1
3µ

∣∣∣∣ , ∣∣∣∣ψv − 2g1
3µ

∣∣∣∣} < ε′0, or

max

{∣∣∣∣ϕv − 2f1 + f2
3µ

∣∣∣∣ , ∣∣∣∣ψv − 2g1 + g2
3µ

∣∣∣∣} < ε′0.

Again, note that

f1 =
2f1 + f2

3µ
and g1 =

2g1 + g2
3ν

.

Since v ∈ En, the second inequality does not hold.

Similarly, note that

f2 =
2f1
3µ

and g2 =
2g1
3ν

.

Since v ∈ En, the first inequality does not hold, a contradiction. So the desired claim
holds.
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We now complete the proof of Lemma 6.3 by showing that for all n sufficiently large,
Gn is the join of an independent set Nn with a disjoint union of a clique Pn and an
independent set En.

As above, we let ε0, ε
′
0 > 0 be arbitrary. By definition of Pn and Nn and by Equation

(6) from Claim I, then for all n sufficiently large,

max {|ϕv − f1| , |ψv − g1|} < ε0 for all v ∈ Pn

max

{∣∣∣∣ϕv − f2
3µ

∣∣∣∣ , ∣∣∣ψv − g2
3ν

∣∣∣} < ε′0 for all v ∈ En

max {|ϕv − f2| , |ψv − g2|} < ε0 for all v ∈ Nn

With rows and columns respectively corresponding to the vertex sets Pn, En, and Nn,
we note the following inequalities: Indeed, note the following inequalities:

f 2
1 > g21 f1 ·

f2
3µ

< g1 ·
g2
3ν

f1f2 > g1g2(
f2
3µ

)2

<
( g2

3ν

)2 f2
3µ
· f2 >

g2
3ν

f 2
2 < g22

.

Let ε0, ε
′
0 be sufficiently small. Then for all n sufficiently large and for all u, v ∈ V (Gn),

then ϕuϕv−ψuψv < 0 if and only if u, v ∈ En, u, v ∈ Nn, or (u, v) ∈ (Pn×En)∪ (En×
Pn). By Lemma 2.1, since m(Pn)→ 2/3 and m(Nn)→ 1/3, the proof is complete. �

We have now shown that the spread-extremal graph is of the form (Kn1∪̇Kc
n2

)∨Kc
n3

where n2 = o(n). The next lemma refines this to show that actually n2 = 0.

Lemma 6.3. For all nonnegative integers n1, n2, n3, let G(n1, n2, n3) := (Kn1 ∪Kc
n2

)∨
Kc
n3

. Then for all n sufficiently large, the following holds. If spr(G(n1, n2, n3)) is
maximized subject to the constraint n1 + n2 + n3 = n and n2 = o(n), then n2 = 0.

Proof outline: We aim to maximize the spread of G(n1, n2, n3) subject to n2 = o(n).
The spread of G(n1, n2, n3) is the same as the spread of the quotient matrix

Qn =


n1 − 1 0 n3

0 0 n3

n1 n2 0

 .
We reparametrize with parameters ε1 and ε2 representing how far away n1 and n3

are proportionally from 2n
3

and n
3
, respectively. Namely, ε1 = 2

3
− n1

n
and ε2 = 1

3
− n3

n
.

Then ε1 + ε2 = n2

n
. Hence maximizing the spread of G(n1, n2, n3) subject to n2 = o(n)

is equivalent to maximizing the spread of the matrix

n


2
3
− ε1 − 1

n
0 1

3
− ε2

0 0 1
3
− ε2

2
3
− ε1 ε1 + ε2 0
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subject to the constraint that 2
3
− ε1 and 1

3
− ε2 are nonnegative integer multiples of 1

n

and ε1+ε2 = o(1). In order to utilize calculus, we instead solve a continuous relaxation
of the optimization problem.

As such, consider the following matrix.

Mz(ε1, ε2) :=


2

3
− ε1 − z 0

1

3
− ε2

0 0
1

3
− ε2

2

3
− ε1 ε1 + ε2 0

 .
Since Mz(ε1, ε2) is diagonalizable, we may let Sz(ε1, ε2) be the difference between

the maximum and minimum eigenvalues of Mz(ε1, ε2). We consider the optimization
problem Pz,C defined for all z ∈ R and all C > 0 such that |z| and C are sufficiently
small, by

(Pz,C) :

{
max Sz(ε1, ε2)

s.t. ε1, ε2 ∈ [−C,C].

We show that as long as C and |z| are sufficiently small, then the optimum of Pz,C
is attained by

(ε1, ε2) =

(
(1 + o(z)) · 7z

30
, (1 + o(z)) · −z

3

)
.

Moreover we show that in the feasible region of Pz,C , Sz,C(ε1, ε2) is concave-down in
(ε1, ε2). We return to the original problem by imposing the constraint that 2

3
− ε1 and

1
3
− ε2 are multiples of 1

n
. Together these two observations complete the proof of the

lemma. Under these added constraints, the optimum is obtained when

(ε1, ε2) =


(0, 0), n ≡ 0 (mod 3)

(2/3,−2/3), n ≡ 1 (mod 3)

(1/3,−1/3), n ≡ 2 (mod 3)

.

Since the details are straightforward but tedious calculus, we delay this part of the
proof to Section A.3.

We may now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose G is a graph on n vertices which maximizes spread.
By Lemma 6.2, G = (Kn1∪̇Kc

n2
) ∨ Kc

n3
for some nonnegative integers n1, n2, n3 such

that n1 + n2 + n3 = n where

(n1, n2, n3) =

((
2

3
+ o(1)

)
, o(n),

(
1

3
+ o(1)

)
· n
)
.

By Lemma 6.3, if n is sufficiently large, then n2 = 0. To complete the proof of the
main result, it is sufficient to find the unique maximum of spr(Kn1 ∨Kc

n2
), subject to

the constraint that n1 + n2 = n. This is determined in [13] to be the join of a clique
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on b2n
3
c and an independent set on dn

3
e vertices. The interested reader can prove that

n1 is the nearest integer to (2n−1)/3 by considering the spread of the quotient matrix[
n1 − 1 n2

n1 0

]
and optimizing the choice of n1.

�

7. The Bipartite Spread Conjecture

In [13], the authors proved the upper bound

(11) s(G) ≤ λ1 +
√

2e− λ21 ≤ 2
√
e,

and noted that equality holds throughout if and only if G is the union of isolated
vertices and Kp,q, for some p + q ≤ n satisfying e = pq [13, Thm. 1.5]. This led the
authors to make Conjecture 2, namely, that if G has n vertices, e ≤ bn2/4c edges, and
spread s(n, e), then G is bipartite [13, Conj. 1.4]. Recall that s(n, e) is the maximum
spread over all graphs with n vertices and e edges, and sb(n, e), e ≤ bn2/4c, is the
maximum spread over all bipartite graphs with n vertices and e edges. This conjecture
can be equivalently stated as s(n, e) = sb(n, e) for all n ∈ N and e ≤ bn2/4c. In
this section, we prove an asymptotic form of this conjecture and provide an infinite
family of counterexamples to the exact conjecture which verifies that the error in our
asymptotic result is of the correct order of magnitude (Theorem 1.2).

To explicitly compute the spread of certain graphs, we make use of the theory of
equitable partitions. In particular, we note that if φ is an automorphism of G, then the
quotient matrix of A(G) with respect to φ, denoted by Aφ, satisfies Λ(Aφ) ⊂ Λ(A), and
therefore s(G) is at least the spread of Aφ (for details, see [9, Section 2.3]). Additionally,
we require two propositions, one regarding the largest spectral radius of subgraphs
of Kp,q of a given size, and another regarding the largest gap between sizes which
correspond to a complete bipartite graph of order at most n.

Let Ke
p,q, 0 ≤ pq − e < min{p, q}, be the subgraph of Kp,q resulting from removing

pq − e edges all incident to some vertex in the larger side of the bipartition (if p = q,
the vertex can be from either set). In [17], the authors proved the following result.

Proposition 7.1. If 0 ≤ pq−e < min{p, q}, then Ke
p,q maximizes λ1 over all subgraphs

of Kp,q of size e.

We also require estimates regarding the longest sequence of consecutive sizes e <
bn2/4c for which there does not exist a complete bipartite graph on at most n vertices
and exactly e edges. As pointed out by [4], the result follows quickly by induction.
However, for completeness, we include a brief proof.

Proposition 7.2. The length of the longest sequence of consecutive sizes e < bn2/4c
for which there does not exist a complete bipartite graph on at most n vertices and
exactly e edges is zero for n ≤ 4 and at most

√
2n− 1− 1 for n ≥ 5.
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Proof. We proceed by induction. By inspection, for every n ≤ 4, e ≤ bn2/4c, there
exists a complete bipartite graph of size e and order at most n, and so the length of
the longest sequence is trivially zero for n ≤ 4. When n = e = 5, there is no complete
bipartite graph of order at most five with exactly five edges. This is the only such
instance for n = 5, and so the length of the longest sequence for n = 5 is one.

Now, suppose that the statement holds for graphs of order at most n− 1, for some
n > 5. We aim to show the statement for graphs of order at most n. By our inductive
hypothesis, it suffices to consider only sizes e ≥ b(n − 1)2/4c and complete bipartite
graphs on n vertices. We have(n

2
+ k
)(n

2
− k
)
≥ (n− 1)2

4
for |k| ≤

√
2n− 1

2
.

When 1 ≤ k ≤
√

2n− 1/2, the difference between the sizes of Kn/2+k−1,n/2−k+1 and
Kn/2+k,n/2−k is at most∣∣E(Kn

2
+k−1,n

2
−k+1

)∣∣− ∣∣E(Kn/2+k,n/2−k
)∣∣ = 2k − 1 ≤

√
2n− 1− 1.

Let k∗ be the largest value of k satisfying k ≤
√

2n− 1/2 and n/2 + k ∈ N. Then∣∣E(Kn
2
+k∗,n

2
−k∗
)∣∣ < (n

2
+

√
2n− 1

2
− 1

)(
n

2
−
√

2n− 1

2
+ 1

)
=
√

2n− 1 +
(n− 1)2

4
− 1,

and the difference between the sizes of Kn/2+k∗,n/2−k∗ and Kdn−1
2
e,bn−1

2
c is at most

∣∣E(Kn
2
+k∗,n

2
−k∗
)∣∣− ∣∣E(Kdn−1

2
e,bn−1

2
c
)∣∣ < √2n− 1 +

(n− 1)2

4
−
⌊

(n− 1)2

4

⌋
− 1

<
√

2n− 1.

Combining these two estimates completes our inductive step, and the proof.
�

We are now prepared to prove an asymptotic version of [13, Conjecture 1.4], and
provide an infinite class of counterexamples that illustrates that the asymptotic version
under consideration is the tightest version of this conjecture possible.

Theorem 7.3 (Restatement of Theorem 1.2).

s(n, e)− sb(n, e) ≤
1 + 16 e−3/4

e3/4
s(n, e)

for all n, e ∈ N satisfying e ≤ bn2/4c. In addition, for any ε > 0, there exists some nε
such that

s(n, e)− sb(n, e) ≥
1− ε
e3/4

s(n, e)

for all n ≥ nε and some e ≤ bn2/4c depending on n.
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Proof. The main idea of the proof is as follows. To obtain an upper bound on s(n, e)−
sb(n, e), we upper bound s(n, e) by 2

√
e using Inequality (11), and we lower bound

sb(n, e) by the spread of some specific bipartite graph. To obtain a lower bound on
s(n, e)−sb(n, e) for a specific n and e, we explicitly compute sb(n, e) using Proposition
7.1, and lower bound s(n, e) by the spread of some specific non-bipartite graph.

First, we analyze the spread of Ke
p,q, 0 < pq − e < q ≤ p, a quantity that will be

used in the proof of both the upper and lower bound. Let us denote the vertices in
the bipartition of Ke

p,q by u1, ..., up and v1, ..., vq, and suppose without loss of generality
that u1 is not adjacent to v1, ..., vpq−e. Then

φ = (u1)(u2, ..., up)(v1, ..., vpq−e)(vpq−e+1, ..., vq)

is an automorphism of Ke
p,q. The corresponding quotient matrix is given by

Aφ =


0 0 0 e− (p− 1)q

0 0 pq − e e− (p− 1)q

0 p− 1 0 0

1 p− 1 0 0

 ,

has characteristic polynomial

Q(p, q, e) = det[Aφ − λI] = λ4 − eλ2 + (p− 1)(e− (p− 1)q)(pq − e),

and, therefore,

(12) s
(
Ke
p,q

)
≥ 2

(
e+

√
e2 − 4(p− 1)(e− (p− 1)q)(pq − e)

2

)1/2

.

For pq = Ω(n2) and n sufficiently large, this lower bound is actually an equality, as
A(Ke

p,q) is a perturbation of the adjacency matrix of a complete bipartite graph with

each partite set of size Ω(n) by an O(
√
n) norm matrix. For the upper bound, we only

require the inequality, but for the lower bound, we assume n is large enough so that
this is indeed an equality.

Next, we prove the upper bound. For some fixed n and e ≤ bn2/4c, let e = pq − r,
where p, q, r ∈ N, p+ q ≤ n, and r is as small as possible. If r = 0, then by [13, Thm.
1.5] (described above), s(n, e) = sb(n, e) and we are done. Otherwise, we note that
0 < r < min{p, q}, and so Inequality (12) is applicable (in fact, by Proposition 7.2,
r = O(

√
n)). Using the upper bound s(n, e) ≤ 2

√
e and Inequality (12), we have

(13)
s(n, pq − r)− s

(
Ke
p,q

)
s(n, pq − r)

≤ 1−

(
1

2
+

1

2

√
1− 4(p− 1)(q − r)r

(pq − r)2

)1/2

.

To upper bound r, we use Proposition 7.2 with n′ = d2
√
ee ≤ n and e. This implies

that

r ≤
√

2d2
√
ee − 1− 1 <

√
2(2
√
e+ 1)− 1− 1 =

√
4
√
e+ 1− 1 ≤ 2e1/4.
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Recall that
√

1− x ≥ 1− x/2− x2/2 for all x ∈ [0, 1], and so

1−
(
1
2

+ 1
2

√
1− x

)1/2 ≤ 1−
(
1
2

+ 1
2
(1− 1

2
x− 1

2
x2)
)1/2

= 1−
(
1− 1

4
(x+ x2)

)1/2
≤ 1−

(
1− 1

8
(x+ x2)− 1

32
(x+ x2)2

)
≤ 1

8
x+ 1

4
x2

for x ∈ [0, 1]. To simplify Inequality (13), we observe that

4(p− 1)(q − r)r
(pq − r)2

≤ 4r

e
≤ 8

e3/4
.

Therefore,
s(n, pq − r)− s

(
Ke
p,q

)
s(n, pq − r)

≤ 1

e3/4
+

16

e3/2
.

This completes the proof of the upper bound.
Finally, we proceed with the proof of the lower bound. Let us fix some 0 < ε < 1, and

consider some sufficiently large n. Let e = (n/2+k)(n/2−k)+1, where k is the smallest
number satisfying n/2+k ∈ N and ε̂ := 1−2k2/n < ε/2 (here we require n = Ω(1/ε2)).
Denote the vertices in the bipartition of Kn/2+k,n/2−k by u1, ..., un/2+k and v1, ..., vn/2−k,
and consider the graph K+

n/2+k,n/2−k := Kn/2+k,n/2−k ∪ {(v1, v2)} resulting from adding

one edge to Kn/2+k,n/2−k between two vertices in the smaller side of the bipartition.
Then

φ = (u1, ..., un/2+k)(v1, v2)(v3, ..., vn/2−k)

is an automorphism of K+
n/2+k,n/2−k, and

Aφ =


0 2 n/2− k − 2

n/2 + k 1 0

n/2 + k 0 0


has characteristic polynomial

det[Aφ − λI] = −λ3 + λ2 +
(
n2/4− k2

)
λ− (n/2 + k)(n/2− k − 2)

= −λ3 + λ2 +

(
n2

4
− (1− ε̂)n

2

)
λ−

(
n2

4
− (3− ε̂)n

2
−
√

2(1− ε̂)n
)
.

By matching higher order terms, we obtain

λmax(Aφ) =
n

2
− 1− ε̂

2
+

(8− (1− ε̂)2)
4n

+ o(1/n),

λmin(Aφ) = −n
2

+
1− ε̂

2
+

(8 + (1− ε̂)2)
4n

+ o(1/n),

and

s(K+
n/2+k,n/2−k) ≥ n− (1− ε̂)− (1− ε̂)2

2n
+ o(1/n).

Next, we aim to compute sb(n, e), e = (n/2 + k)(n/2− k) + 1. By Proposition 7.1,
sb(n, e) is equal to the maximum of s(Ke

n/2+`,n/2−`) over all ` ∈ [0, k− 1], k− ` ∈ N. As
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previously noted, for n sufficiently large, the quantity s(Ke
n/2+`,n/2−`) is given exactly

by Equation (12), and so the optimal choice of ` minimizes

f(`) := (n/2 + `− 1)(k2 − `2 − 1)(n/2− `− (k2 − `2 − 1))

= (n/2 + `)
(
(1− ε̂)n/2− `2

)(
ε̂n/2 + `2 − `

)
+O(n2).

We have
f(k − 1) = (n/2 + k − 2)(2k − 2)(n/2− 3k + 3),

and if ` ≤ 4
5
k, then f(`) = Ω(n3). Therefore the minimizing ` is in [4

5
k, k]. The

derivative of f(`) is given by

f ′(`) = (k2 − `2 − 1)(n/2− `− k2 + `2 + 1)

− 2`(n/2 + `− 1)(n/2− `− k2 + `2 + 1)

+ (2`− 1)(n/2 + `− 1)(k2 − `2 − 1).

For ` ∈ [4
5
k, k],

f ′(`) ≤ n(k2 − `2)
2

− `n(n/2− `− k2 + `2) + 2`(n/2 + `)(k2 − `2)

≤ 9k2n

50
− 4

5
kn(n/2− k − 9

25
k2) + 18

25
(n/2 + k)k3

=
81k3n

125
− 2kn2

5
+O(n2)

= kn2

(
81(1− ε̂)

250
− 2

5

)
+O(n2) < 0

for sufficiently large n. This implies that the optimal choice is ` = k−1, and sb(n, e) =
s(Ke

n/2+k−1,n/2−k+1). The characteristic polynomial Q(n/2 + k− 1, n/2− k+ 1, n2/4−
k2 + 1) equals

λ4 −
(
n2/4− k2 + 1

)
λ2 + 2(n/2 + k − 2)(n/2− 3k + 3)(k − 1).

By matching higher order terms, the extreme root of Q is given by

λ =
n

2
− 1− ε̂

2
−
√

2(1− ε̂)
n

+
27− 14ε̂− ε̂2

4n
+ o(1/n),

and so

sb(n, e) = n− (1− ε̂)− 2

√
2(1− ε̂)

n
+

27− 14ε̂− ε̂2

2n
+ o(1/n),

and

s(n, e)− sb(n, e)
s(n, e)

≥ 23/2(1− ε̂)1/2

n3/2
− 14− 8ε̂

n2
+ o(1/n2)

=
(1− ε̂)1/2

e3/4
+

(1− ε̂)1/2

(n/2)3/2

[
1− (n/2)3/2

e3/4

]
− 14− 8ε̂

n2
+ o(1/n2)

≥ 1− ε/2
e3/4

+ o(1/e3/4).
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This completes the proof. �

8. Concluding remarks

In this work we provided a proof of the spread conjecture for sufficiently large n,
a proof of an asymptotic version of the bipartite spread conjecture, and an infinite
class of counterexamples that illustrates that our asymptotic version of this conjecture
is the strongest result possible. There are a number of interesting future avenues of
research, some of which we briefly describe below. These avenues consist primarily of
considering the spread of more general classes of graphs (for instance, directed graphs,
graphs with loops) or considering more general objective functions.

Our proof of the spread conjecture for sufficiently large n immediately implies a
nearly-tight estimate for the adjacency matrix of undirected graphs with loops, also
commonly referred to as symmetric 0−1 matrices. Given a directed graph G = (V,A),
the corresponding adjacency matrix A has entry Ai,j = 1 if the arc (i, j) ∈ A, and is
zero otherwise. In this case, A is not necessarily symmetric, and may have complex
eigenvalues. One interesting question is what digraph of order n maximizes the spread
of its adjacency matrix, where spread is defined as the diameter of the spectrum. Is this
more general problem also maximized by the same set of graphs as in the undirected
case? This problem for either loop-less directed graphs or directed graphs with loops
is an interesting question, and the latter is equivalent to asking the above question for
the set of all 0− 1 matrices.

Another approach is to restrict ourselves to undirected graphs or undirected graphs
with loops, and further consider the competing interests of simultaneously producing
a graph with both λ1 and −λn large, and understanding the trade-off between these
two goals. To this end, we propose considering the class of objective functions

f(G; β) = βλ1(G)− (1− β)λn(G), β ∈ [0, 1].

When β = 0, this function is maximized by the complete bipartite graph Kdn/2e,bn/2c
and when β = 1, this function is maximized by the complete graph Kn. This paper
treats the specific case of β = 1/2, but none of the mathematical techniques used
in this work rely on this restriction. In fact, the structural graph-theoretic results of
Section 2, suitably modified for arbitrary β, still hold (see the thesis [32, Section 3.3.1]
for this general case). Understanding the behavior of the optimum between these three
well-studied choices of β = 0, 1/2, 1 is an interesting future avenue of research.

More generally, any linear combination of graph eigenvalues could be optimized over
any family of graphs. Many sporadic examples of this problem have been studied.
Nikiforov [23] proposed a general framework for it and proved some conditions under
which the problem is well-behaved. We conclude with some specific instances of the
problem that we think are most interesting.

Given a graph F , maximizing λ1 over the family of n-vertex F -free graphs can be
thought of as a spectral version of Turán’s problem. Many papers have been written
about this problem, which was proposed in generality in [25]. We remark that these
results can often strengthen classical results in extremal graph theory. Maximizing
λ1 +λn over the family of triangle-free graphs has been considered in [8] and is related
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to an old conjecture of Erdős on how many edges must be removed from a triangle-free
graph to make it bipartite [12]. In general it would be interesting to maximize λ1 + λn
over the family of Kr-free graphs. When a graph is regular the difference between
λ1 and λ2 (the spectral gap) is related to the graph’s expansion properties. Aldous
and Fill [3] asked to minimize λ1 − λ2 over the family of n-vertex connected regular
graphs. Partial results were given by [1, 2, 7, 14]. A nonregular version of the problem
was proposed by Stanić [28] who asked to minimize λ1 − λ2 over connected n-vertex
graphs. Finally, maximizing λ3 or λ4 over the family of n-vertex graphs seems to be a
surprisingly difficult question and even the asymptotics are not known (see [26]).
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Appendix A. Technical proofs

A.1. Reduction to 17 cases. Now, we introduce the following specialized notation.
For any nonempty set S ⊆ V (G∗) and any labeled partition (Ii)i∈S of [0, 1], we define
the stepgraphon WI as follows. For all i, j ∈ S, WI equals 1 on Ii × Ij if and only if
ij is an edge (or loop) of G∗, and 0 otherwise. If α = (αi)i∈S where αi = m(Ii) for all
i ∈ S, we may write Wα to denote the graphon WI up to weak isomorphism.

To make the observations from Section 5.1 more explicit, we note that Theorem 4.1
implies that a spread-optimal graphon has the form W = WI where I = (Ii)i∈S is
a labeled partition of [0, 1], S ⊆ [7], and each Ii is measurable with positive positive
measure. Since W is a stepgraphon, its extreme eigenfunctions may be taken to be
constant on Ii, for all i ∈ S. With f, g denoting the extreme eigenfunctions for W ,
we may let fi and gi be the constant value of f and g, respectively, on step Si, for all

https://github.com/ariasanovsky/spread_numeric
https://github.com/ariasanovsky/spread_numeric
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i ∈ S. Appealing again to Theorem 4.1, we may assume without loss of generality that
fi ≥ 0 for all i ∈ S, and for all i ∈ S, gi ≥ 0 implies that i ∈ {1, 2, 3, 4}. By Lemma
3.7, for each i ∈ S, µf 2

i − νg2i = µ− ν. Combining these facts, we note that fi and gi
belong to specific intervals as in Figure 9.

|
−∞

|
−1

|
0

|
1

|
+∞

g6, g7 g5

f3, f4, f6, f7
g1, g2

f1, f2, f5
g3, g4

Figure 9. Intervals containing the quantities fi and gi. Note that fi
and gi are only defined for all i ∈ S.

For convenience, we define the following sets Fi and Gi, for all i ∈ S. First, let
U := [0, 1] and V := [1,+∞]. With some abuse of notation, we denote −U = [−1, 0]
and −V = [−∞,−1].

For each i ∈ V (G∗), we define the intervals Fi and Gi by

(Fi, Gi) :=


(V ,U), i ∈ {1, 2}
(U ,V), i ∈ {3, 4}

(V ,−U), i = 5

(U ,−V), i ∈ {6, 7}

Given that the set S and the quantities (αi, fi, gi)i∈S are clear from context, we label
the following equation: ∑

i∈S

αi =
∑
i∈S

αif
2
i =

∑
i∈S

αig
2
i = 1.(14)

Furthermore when i ∈ S is understood from context, we define the equations

µf 2
i − νg2i = µ− ν(15) ∑

j∈Ni∩S

αjfj = µfi(16)

∑
j∈Ni∩S

αjgj = νgi(17)

Additionally, we consider the following inequalities. For all S ⊆ V (G∗) and all distinct
i, j ∈ S,

fifj − gigj

{
≥ 0, ij ∈ E(G∗)

≤ 0, ij /∈ E(G∗)
(18)
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Finally, for all nonempty S ⊆ V (G∗), we define the constrained-optimization problem
SPRS by:

(SPRS) :



max µ− ν
s.t Equation (14)

Equations (15), (16), and (17) for all i ∈ S
Inequality (18) for all distinct i, j ∈ S
(αi, fi, gi) ∈ [0, 1]× Fi ×Gi for all i ∈ S
µ, ν ∈ R

.

For completeness, we state and prove the following observation.

Proposition A.1. Let W ∈ W such that spr(W ) = maxU∈W spr(U) and write µ, ν for
the maximum and minimum eigenvalues of W , with corresponding unit eigenfunctions
f, g. Then for some nonempty set S ⊆ V (G∗), the following holds. There exists a triple
(Ii, fi, gi)i∈S, where (Ii)i∈S is a labeled partition of [0, 1] with parts of positive measure
and fi, gi ∈ R for all i ∈ S, such that:

(i) W = WI.
(ii) Allowing the replacement of f by −f and of g by −g, for all i ∈ S, f and g equal

fi and gi a.e. on Ii.
(iii) With αi := m(Ii) for all i ∈ S, SPRS is solved by µ, ν, and (αi, fi, gi)i∈S.

Proof. First we prove Item (i). By Theorem 4.1 and the definition of G∗, there exists
a nonempty set S ⊆ V (G∗) and a labeled partition I = (Ii)i∈S such that W = WI . By
merging any parts of measure 0 into some part of positive measure, we may assume
without loss of generality that m(Ii) > 0 for all i ∈ S. So Item (i) holds.

For Item (ii), the eigenfunctions corresponding to the maximum and minimum eigen-
values of a stepgraphon must be constant on each block by convexity and the Courant-
Fischer Min-Max Theorem.

Finally, we prove Item (iii), we first prove that for all i ∈ V (G∗), (fi, gi) ∈ Fi × Gi.
By Lemma 3.7,

µf 2
i − νg2i = µ− ν

for all i ∈ S. In particular, either f 2
i ≤ 1 ≤ g2i or g2i ≤ 1 ≤ f 2

i . By Lemma 3.6, for
all i, j ∈ S, fifj − gigj 6= 0 and ij ∈ E(G) if and only if fifj − gigj > 0. Note that
the loops of G∗ are 1, 2, and 5. It follows that for all i ∈ S, f 2

i > 1 > g2i if and only if
i ∈ {1, 2, 5}, and g2i > 1 > f 2

i , otherwise. Since f is positive on [0, 1], this completes
the proof that fi ∈ Fi for all i ∈ S. Similarly since g is positive on

⋃
i∈{1,2,3,4}∩S Ii and

negative on
⋃
i∈{5,6,7} Ii, by inspection gi ∈ Gi for all i ∈ S. Similarly, Inequalities (18)

follow directly from Lemma 3.6.
Continuing, we note the following. Since W is a stepgraphon, if λ 6= 0 is an eigenvalue

of W , there exists a λ-eigenfunction h for W such that for all i ∈ S, h = hi on Ii for
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some hi ∈ R. Moreover for all i ∈ S, since m(Ii) > 0,

λhi =
∑
i∈S

αihi.

In particular, any solution to SPRS is at most µ − ν. Since f, g are eigenfunctions
corresponding to W and the eigenvalues µ, ν, respectively, Equations (16), and (17)
hold. Finally since (Ii)i∈S is a partition of [0, 1] and since ‖f‖22 = ‖g‖22 = 1, Equation
(14) holds. So µ, ν, and (αi, fi, gi)i∈S lie in the domain of SPRS. This completes the
proof of item (iii), and the desired claim. �

We enhance Proposition A.1 as follows.

Lemma A.2. Proposition A.1 holds with the added assumption that S ∈ S17.

Proof. We begin our proof with the following claim.

Claim A: Suppose i ∈ S and j ∈ V (G∗) are distinct such that Ni ∩ S = Nj ∩ S.
Then Proposition A.1 holds with the set S ′ := (S \ {i}) ∪ {j} replacing S.

First, we define the following quantities. For all k ∈ S ′ \ {j}, let (f ′k, g
′
k, I
′
k) :=

(fk, gk, Ik), and also let (f ′j, g
′
j) := (fi, gi). If j ∈ S, let I ′j := Ii ∪ Ij, and otherwise,

let I ′j := Ii. Additionally let I ′ := (I ′k)k∈S′ and for each k ∈ S ′, let α′k := m(I ′k). By
the criteria from Proposition A.1, the domain criterion (α′k, f

′
k, g
′
k) ∈ [0, 1] × Fk × Gk

as well as Equation (15) holds for all k ∈ S ′. Since we are reusing µ, ν, the constraint
µ, ν ∈ R also holds.

It suffices to show that Equation (14) holds, and that Equations (16) and (17) hold
for all k ∈ S ′. To do this, we first note that for all k ∈ S ′, f = f ′k and g = g′k on I ′k.
By definition, f = fk and g = gk on I ′k = Ik for all k ∈ S ′ \ {j} as needed by Claim A.
Now suppose j /∈ S. Then f = fi = f ′j and g = gi = g′j and I ′j = Ii on the set Ii = I ′j,
matching Claim A. Finally, suppose j ∈ S. Note by definition that f = fi = f ′j and
g = gi = g′j on Ii. Since and I ′j = Ii ∪ Ij, it suffices to prove that f = f ′j and g = g′j on
Ij. We first show that fj = fi and gj = gi. Indeed,

µfj =
∑

k∈Nj∩S

αkfk =
∑

k∈Ni∩S

αkfk = µfi

and since µ 6= 0, fj = fi. Similarly, gj = gi. So f = fj = fi = f ′j and g = gj = gi = g′j
on the set I ′j = Ii ∪ Ij.

Finally, we claim that WI′ = W . Indeed, this follows directly from Lemma 3.6
and the fact that W = WI . Since I ′ is a partition of [0, 1] and since f, g are unit
eigenfunctions for W Equation (14) holds, and Equations (16) and (17) hold for all
k ∈ S ′. This completes the proof of Claim A.

Next, we prove the following claim.
Claim B: If S satisfies the criteria of Proposition A.1, then without loss of generality
the following holds.

(a) If there exists some i ∈ S such that Ni = S, then i = 1.
(b) S ∩ {1, 2, 3, 4} 6= ∅.
(c) S ∩ {2, 3, 4} is one of ∅, {4}, {2, 4}, and {2, 3, 4}.
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(d) S ∩ {5, 6, 7} is one of {7}, {5, 7}, and {5, 6, 7}.

Since N1 ∩ S = S = Ni, item (a) follows from Claim A applied to the pair (i, 1).
Since f, g are orthogonal and f is positive on [0, 1], g is positive on a set of positive
measure, so item (b) holds.

To prove item (c), we have 4 cases. If S ∩ {2, 3, 4} = {2}, then N2 ∩ S = N1 ∩ S
and we may apply Claim A to the pair (2, 1). If S ∩ {2, 3, 4} = {3} or {3, 4}, then
N3∩S = N4∩S and we may apply Claim A to the pair (3, 4). If S ∩{2, 3, 4} = {2, 3},
then N2 ∩S = N1 ∩S and we may apply Claim A to the pair (2, 1). So item (c) holds.
For item (d), we reduce S ∩ {5, 6, 7} to one of ∅, {7}, {5, 7}, and {5, 6, 7} in the same
fashion. To eliminate the case where S ∩{5, 6, 7} = ∅, we simply note that since f and
g are orthogonal and f is positive on [0, 1], g is negative on a set of positive measure.
This completes the proof of Claim B.

∅ {4} {2, 4} {2, 3, 4}

{7} 1|7
4|7 24|7 234|7

1|4|7 1|24|7 1|234|7

{5, 7} 1|57
4|57 24|57 234|57

1|4|57 1|24|57 1|234|57

{5, 6, 7} 1|567
4|567 24|567 234|567

1|4|567 1|24|567 1|234|567

Table 2. The 21 sets which arise from repeated applications of Claim B.

After repeatedly applying Claim B, we may replace S with one of the cases found
in Table 2. Let S21 denote the sets in Table 2. By definition,

S21 = S17
⋃
{{4, 7}, {2, 4, 7}, {2, 3, 4, 7}, {2, 3, 4, 5, 7}} .

Finally, we eliminate the 4 cases in S21 \ S17. If S = {4, 7}, then W is a bipartite
graphon, hence spr(W ) ≤ 1, a contradiction since maxU∈W spr(W ) > 1.

For the three remaining cases, let τ be the permutation on {2, . . . , 7} defined as
follows. For all i ∈ {2, 3, 4}, τ(i) := i + 3 and τ(i + 3) := i. If S is among
{2, 4, 7}, {2, 3, 4, 7}, {2, 3, 4, 5, 7}, we apply τ to S in the following sense. Replace
g with −g and replace (αi, Ii, fi, gi)i∈S with (ατ(i), Iτ(i), fτ(i),−gτ(i))i∈τ(S). By care-
ful inspection, it follows that τ(S) satisfies the criteria from Proposition A.1. Since
τ({2, 4, 7}) = {4, 5, 7}, τ({2, 3, 4, 7}) = {4, 5, 6, 7}, and τ({2, 3, 4, 5, 7}) = {2, 4, 5, 6, 7},
this completes the proof. �

A.2. Proof of Lemma 5.4. Let (α4, α5, α7) be a solution to SPR457.
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First, let T := {(ε1, ε2) ∈ (−1/3, 2/3) × (−2/3, 1/3) : ε1 + ε2 ∈ (0, 1)}, and for all
ε = (ε1, ε2) ∈ T , let

M(ε) :=


2/3− ε1 0 1/3− ε2

0 0 1/3− ε2
2/3− ε1 ε1 + ε2 0

 .
As a motivation, suppose µ, ν, and (α4, α5, α7) are part of a solution to SPR{4,5,7}.
Then with ε := (ε1, ε2) = (2/3 − α5, 1/3 − α4), ε ∈ T and µ, ν are the maximum and
minimum eigenvalues of M(ε), respectively. By the end of the proof, we show that any
solution of SPR{4,5,7} has α7 = 0.

To proceed, we prove the following claims.

Claim A: For all ε ∈ T , M(ε) has two distinct positive eigenvalues and one neg-
ative eigenvalue.

Since M(ε) is diagonalizable, it has 3 real eigenvalues which we may order as
µ ≥ δ ≥ ν. Since µδν = det(M(ε)) = −α4α5α7 6= 0 < 0, M(ε) has an odd num-
ber of negative eigenvalues. Since 0 < α5 = µ + δ + ν, it follows that µ ≥ δ > 0 > ν.
Finally, note by the Perron-Frobenius Theorem that µ > δ. This completes the proof
of Claim A.

Next, we define the following quantities, treated as functions of ε for all ε ∈ T . For
convenience, we suppress the argument “ε” in most places. Let k(x) = ax3+bx2+cx+d
be the characteristic polynomial of M(ε). By inspection,

a = 1 b = ε1 −
2

3

c =
(3ε2 + 2)(3ε2 − 1)

9
d =

(ε1 + ε2)(3ε1 − 2)(3ε2 − 1)

9
Continuing, let

p :=
3ac− b2

3a2
q :=

2b3 − 9abc+ 27a2d

27a3

A := 2

√
−p
3

B :=
−b
3a

φ := arccos

(
3q

Ap

)
.

Let S(ε) be the difference between the maximum and minimum eigenvalues of M(ε).
We show the following claim.

Claim B: For all ε ∈ T ,

S(ε) =
√

3 · A(ε) · cos

(
2φ(ε)− π

6

)
.
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Moreover, S is analytic on T .
Indeed, by Viéte’s Formula, using the fact that k(x, y) has exactly 3 distinct real

roots, the quantities a(ε), . . . , φ(x, y) are analytic on T . Moreover, the eigenvalues of
M(ε) are x0, x1, x2 where, for all k ∈ {0, 1, 2},

xk(ε) = A(ε) · cos

(
φ+ 2π · k

3

)
+B(ε).

Moreover, x0(ε), x1(ε), x2(ε) are analytic on T . For all k, ` ∈ {1, 2, 3}, let

D(k, `, x) := cos

(
x+

2πk

3

)
− cos

(
x+

2π`

3

)
For all (k, `) ∈ {(0, 1), (0, 2), (2, 1)}, note the trigonometric identities

D(k, `, x) =
√

3 ·


cos
(
x− π

6

)
, (k, `) = (0, 1)

cos
(
x+

π

6

)
, (k, `) = (0, 2)

sin(x), (k, `) = (2, 1)

.

By inspection, for all x ∈ (0, π/3),

D(0, 1) > max {D(0, 2), D(2, 1)} ≥ min {D(0, 2), D(2, 1)} ≥ 0.

Since A > 0 and φ ∈ (0, π/3), the claimed equality holds. Since x0(ε), x1(ε) are ana-
lytic, S(ε) is analytic on T . This completes the proof of Claim B.

Next, we compute the derivatives of S(ε) on T . For convenience, denote byAi, φi, and
Si for the partial derivatives of A and φ by εi, respectively, for i ∈ {1, 2}. Furthermore,
let

ψ(ε) :=
2φ(ε)− π

6
.

The next claim follows directly from Claim B.

Claim C: For all i ∈ T , then on the set T , we have

3Si = 3Ai · cos (ψ)− ·Aφi sin (ψ) .

Moreover, each expression is analytic on T .
Finally, we solve SPR{4,5,7}.

Claim D: If (α4, α5, α7) is a solution to SPR{4,5,7}, then 0 ∈ {α4, α5, α7}.
With (α4, α5, α7) := (1/3− ε2, 2/3− ε1, ε1 + ε2) and using the fact that S is analytic

on T , it is sufficient to eliminate all common zeroes of S1 and S2 on T . With the help
of a computer algebra system and the formulas for S1 and S2 from Claim C, we replace
the system S1 = 0 and S2 = 0 with a polynomial system of equations P = 0 and Q = 0
whose real solution set contains all previous solutions. Here,

P (ε) = 9ε31 + 18ε21ε2 + 54ε1ε
2
2 + 18ε32 − 15ε21 − 33ε1ε2 − 27ε22 + 5ε1 + ε2
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and Q = 43046721ε181 ε2 + · · · + (−532480ε2) is a polynomial of degree 19, with co-
efficients between −184862311457373 and 192054273812559. For brevity, we do not
express Q explicitly.

To complete the proof of Claim D, it suffices to show that no common real solution
to P = Q = 0 which lies in T also satisfies S1 = S2 = 0. Again using a computer
algebra system, we first find all common zeroes of P and Q on R2. Included are the
rational solutions (2/3,−2/3), (−1/3, 1/3), (0, 0), (2/3, 1/3), and (2/3,−1/6) which do
not lie in T . Furthermore, the solution (1.2047 . . . , 0.0707 . . . ) may also be eliminated.
For the remaining 4 zeroes, S1, S2 6= 0. A notebook showing these calculations can be
found at [27].

Claim E: If µ, ν, and α = (α4, α5, α7) is part of a solution to SPR{4,5,7} such that
µ− ν ≥ 1, then α7 = 0.

By definition of SPR{4,5,7}, µ and ν are eigenvalues of the matrix

N(α) :=


α5 0 α4

0 0 α4

α5 α7 0

 .
Furthermore, N(α) has characteristic polynomial

p(x) = x3 − α5x
2 − α4 · (α5 + α7) + α4α5α7.

Recall that α4 + α5 + α7 = 1. By Claim D, 0 ∈ {4, 5, 7}, and it follows that p ∈
{p4, p5, p7} where

p4(x) := x2 · (x− α5),

p5(x) := x · (x2 − α4(1− α4)), and

p7(x) := x · (x2 − (1− α4)x− α4(1− α4)).

If p = p4, then µ − ν = α5 ≤ 1, and if p = p5, then µ − ν = 2
√
α4(1− α4) ≤ 1. So

p = p7, which completes the proof of Claim E.
This completes the proof of Lemma 5.4.

A.3. Proof of Lemma 6.3. First, we find Sz(ε1, ε3) using Viète’s Formula. In doing
so, we define functions kz(ε1, ε2;x), . . . , δz(ε1, ε2). To ease the burden on the reader, we
suppress the subscript z and the arguments ε1, ε2 when convenient and unambiguous.
Let k(x) = ax3 + bx2 + cx + d be the characteristic polynomial of Mz(ε1, ε2). By
inspection,

a = 1 b = ε1 + z − 2

3

c =
(3ε2 + 2)(3ε2 − 1)

9
d =

(ε1 + ε2)(3ε1 + 3z − 2)(3ε2 − 1)

9
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Continuing, let

p :=
3ac− b2

3a2
q :=

2b3 − 9abc+ 27a2d

27a3

A := 2

√
−p
3

B :=
−b
3a

φ := arccos

(
3q

Ap

)
.

By Viète’s Formula, the roots of kz(ε1, ε2;x) are the suggestively defined quantities:

µ := A cos

(
φ

3

)
+B ν := A cos

(
φ+ 2π

3

)
+B

δ := A cos

(
φ+ 4π

3

)
+B.

First, We prove the following claim.

Claim A: If (ε1, ε2, z) is sufficiently close to (0, 0, 0), then

Sz(ε1, ε2) = Az(ε1, ε2)
√

3 · cos

(
2φz(ε1, ε2)− π

6

)
.(19)

Indeed, suppose z > 0 and z → 0. Then for all (ε1, ε2) ∈ (−3z, 3z), ε1, ε2 → 0. With
the help of a computer algebra system, we substitute in z = 0 and ε1, ε2 = 0 to find
the limits:

(a, b, c, d)→
(

1,
−2

3
,
−2

9
, 0

)
(p, q)→

(
−10

27
,
−52

729

)
(A,B, φ)→

(
2
√

10

9
,
2

9
, arccos

(
13
√

10

50

))
.

Using a computer algebra system, these substitutions imply that

(µ, ν, δ)→ (0.9107 . . . ,−0.2440 . . . , 0.)

So for all z sufficiently small, S = µ− ν. After some trigonometric simplification,

µ− ν = A ·
(

cos

(
φ

3

)
− cos

(
φ+ 2φ

3

))
= A
√

3 · cos

(
2φ− π

6

)
and Equation (19). This completes the proof of Claim A.

Now we prove the following claim.

Claim B: There exists a constants C ′0 > 0 such that the following holds. If |z|
is sufficiently small, then Sz is concave-down on [−C0, C0]

2 and strictly decreasing on
[−C0, C0]

2 \ [−C0z, C0z]2.
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First, we define

Dz(ε1, ε2) :=

(
∂2Sz
∂ε21

· ∂
2Sz
∂ε22

−
(

∂2Sz
∂ε1∂ε2

)2
)∣∣∣∣∣

(ε1,ε2,z)

.

As a function of (ε1, ε2), Dz is the determinant of the Hessian matrix of Sz. Using a
computer algebra system, we note that

D0(0, 0) = 22.5 . . . , and(
∂2S

∂ε21
,
∂2S

∂ε1∂ε2
,
∂2S

∂ε22

) ∣∣∣∣
(0,0,0)

= (−8.66 . . . ,−8.66 . . . ,−11.26 . . . ) .

Since S is analytic to (0, 0, 0), there exist constants C1, C2 > 0 such that the following
holds. For all z ∈ [−C1, C1], Sz is concave-down on [−C1, C1]

2. This completes the
proof of the first claim. Moreover for all z ∈ [−C1, C1] and for all (ε1, ε2) ∈ [−C1, C1]

2,

max

{
∂2Sz
∂ε21

,
∂2Sz
∂ε1∂ε2

,
∂2Sz
∂ε22

} ∣∣∣∣
(ε1,ε2,z)

≤ −C2.

to complete the proof of the second claim, note also that since S is analytic at (0, 0, 0),
there exist constants C3, C4 > 0 such that for all z ∈ [−C3, C3] and all (ε1, ε2) ∈
[−C3, C3]

2,

∂2S

∂z∂εi
≤ C4.

Since (0, 0) is a local maximum of S0,

∂S

∂εi

∣∣∣∣
(ε1,ε2,z)

=
∂S

∂εi

∣∣∣∣
(0,0,0)

+

∫ z

w=0

∂2S

∂z∂εi

∣∣∣∣
(0,0,w)

dw +

∫ (ε1,ε2)

u=(0,0)

∂2S

∂u∂εi

∣∣∣∣
(u,z)

du

≤ C4 · z − C2 · ‖(ε1, ε2)‖2.
Since C2, C4 > 0, this completes the proof of Claim B.

Next, we prove the following claim.

Claim C: If z is sufficiently small, then Pz,C0 is solved by a unique point (ε∗1, ε
∗
2) =

(ε∗1(z), ε∗2(z)). Moreover as z → 0,

(ε∗1, ε
∗
2) =

(
(1 + o(z))

7z

30
, (1 + o(z))

−z
3

)
.(20)

Indeed, the existence of a unique maximum (ε∗1, ε
∗
2) on [−C0, C0]

2 follows from the
fact that Sz is strictly concave-down and bounded on [−C0, C0]

2 for all z sufficiently
small. Since Sz is strictly decreasing on [−C0, C0]

2 \ (−C0z, C0z)2, it follows that
(ε∗1, ε

∗
2) ∈ (−C0z, C0z). For the second claim, note that since S is analytic at (0, 0, 0),

0 =
∂S

∂εi

∣∣∣∣
(ε∗1,ε

∗
2,z)

=
√

3 ·
(
∂A

∂εi
· cos

(
2φ− π

6

)
− A

3
· ∂φ
∂εi
· sin

(
2φ− π

6

))
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for both i = 1 and i = 2. Let

τi :=
3 · ∂A

∂εi

A · ∂φ
∂εi

for both i = 1 and i = 2 Then by Equation (19),

arctan(τi)
∣∣
(ε∗1,ε

∗
2,z)

=
2φ− π

6

∣∣∣∣
(ε∗1,ε

∗
2,z)

for both i = 1 and i = 2. We first consider linear approximation of the above quantities
under the limit (ε1, ε2, z) → (0, 0, 0). Here, we write f(ε1, ε2, z) ∼ g(ε1, ε2, z) to mean
that

f(ε1, ε2, z) = (1 + o (max {|ε1|, |ε2|, |z|})) · g(ε1, ε2, z).

With the help of a computer algebra system, we note that

arctan (τ1) ∼
−78ε1 − 96ε2 − 3z − 40 arctan

(
1

3

)
40

arctan (τ2) ∼
−64ε1 − 103ε2 − 14z − 20 arctan

(
1

3

)
20

2φ− π
6

∼
108ε1 + 81ε2 + 18z + 20 arccos

(
13
√

10

50

)
− 10π

60
.

By inspection, the constant terms match due to the identity

− arctan

(
1

3

)
=

1

3
arccos

(
13
√

10

50

)
− π

6
.

Since max {|ε∗1|, |ε∗2|} ≤ C0z, replacing (ε1, ε2) with (ε∗1, ε
∗
2) implies that

−78ε∗1 − 96ε∗2 − 3z

2
= (1 + o(z)) · (36ε∗1 + 27ε∗2 + 6z), and

−64ε∗1 − 103ε∗2 − 14z = (1 + o(z)) · (36ε∗1 + 27ε∗2 + 6z)

as z → 0. After applying Gaussian Elimination to this 3-variable system of 2 equations,
it follows that

(ε∗1, ε
∗
2) =

(
(1 + o(z)) · 7z

30
, (1 + o(z)) · −z

3

)
.

This completes the proof of Claim C.

For the next step, we prove the following claim. First, let Qn denote the program
formed from Pn−1,C0

subject to the added constraint that n · (2
3
− ε1), n · (13 − ε2) ∈ Z.
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Claim D: For all n sufficiently large, Qn is solved by a unique point (n∗1, n
∗
3) which

satisfies n∗1 + n∗3 = n.

Note by Lemma 6.2 that for all n sufficiently large,

max

{∣∣∣∣n1

n
− 2

3

∣∣∣∣ , ∣∣∣∣n3

n
− 1

3

∣∣∣∣} ≤ C0.

Moreover, by Claim C, Pn−1 is solved uniquely by

(ε∗1, ε
∗
2) =

(
(1 + o(z)) · 7

30n
, (1 + o(z)) · −1

3n

)
.

Since

2n

3
− n · ε∗1 =

2n

3
− (1 + o(1)) · 7

30

and 7/30 < 1/3, it follows for n sufficiently large that 2n/3− n · ε∗1 ∈ I1 where

I1 :=


(

2n

3
− 1,

2n

3

)
, 3 | n(⌊

2n

3

⌋
,

⌈
2n

3

⌉)
, 3 - n

.

Similarly since

n · (ε∗1 + ε∗2) = (1 + o(1)) ·
(

7

30
− 1

3

)
= (1 + o(1)) · −1

10

and 1/10 < 1/3, it follows that n · (ε∗1 + ε∗2) ∈ (−1, 0). Altogether,(
2n

3
− n · ε1, n · (ε∗1 + ε∗2)

)
∈ I1 × (−1, 0).

Note that to solve Qn, it is sufficient to maximize Sn−1 on the set [−C0, C0]
2 ∩

{(n1/n, n3/n)}u,v∈N. Since Sn−1 is concave-down on I1 × (−1, 0), (n∗1, n − n∗1 − n∗3) is
a corner of the square I1 × (−1, 0). So n∗1 + n∗2 = n, which implies Claim D. This
completes the proof of the main result.

Appendix B. A Computer-Assisted Proof of Lemma 5.2

In this appendix, we derive a number of formulas that a stepgraphon corresponding
to some set S ⊆ {1, 2, 3, 4, 5, 6, 7} in Lemma A.2 satisfies, and detail how these formulas
are used to provide a computer-assisted proof of Lemma 5.2.



62 JANE BREEN, ALEX W. N. RIASANOVKSY, MICHAEL TAIT, AND JOHN URSCHEL

B.1. Formulas. In this subsection, we derive the formulas used in our computer-
assisted proof, from the equations described in Section A.1. First, we define a number
of functions which will ease the notational burden in the results that follow. Let

F1(x) := (µ+ ν)x+ 2µν,

F2(x) := 2(µν + (µ+ ν)x)2 + (µ+ ν)x3,

F3(x) := 4µ2ν2 · (µν + (µ+ ν)x)2

− 2(µ+ ν)x3 · ((µ+ ν)x+ µν)((µ+ ν)x+ 3µν)

− (µ+ ν)x5 · (2µν + (µ+ ν)x),

F4(x) := 4µ2ν2x · ((3(µ+ ν)x+ µν) · (2(µ+ ν)x+ µν)− µν(µ+ ν)x)

+ 4(µ+ ν)x4 · (((µ+ ν)x+ µν)2 + (µ+ ν)2 · ((µ+ ν)x+ 4µν))

+ (µ+ ν)2x7.

Letting S := {i ∈ {1, . . . , 7} : αi > 0}, we prove the following six formulas.

Proposition B.1. Let i ∈ {1, 2, 5} ∩ S and j ∈ {3, 4, 6, 7} ∩ S be such that Ni ∩ S =
(Nj ∩ S)∪̇{j}. Then

f 2
j =

(αj + 2ν)µ

F1(αj)
, g2j =

(αj + 2µ)ν

F1(αj)

and

fi =

(
1 +

αj
µ

)
fj, gi =

(
1 +

αj
ν

)
gj.

Moreover, F1(αj) and αj + 2ν are negative.

Proof. By Lemma 3.7,

µf 2
i − νg2i = µ− ν

µf 2
j − νg2j = µ− ν.

By taking the difference of the eigenvector equations for fi and fj (and also gi and gj),
we obtain

αjfj = µ(fi − fj)
αjgj = ν(gi − gj),

or, equivalently,

fi =

(
1 +

αj
µ

)
fj

gi =
(

1 +
αj
ν

)
gj.
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This leads to the system of equations µ −ν

µ ·
(

1 +
αj
µ

)2

−ν ·
(

1 +
αj
ν

)2
 · [ f 2

j

g2j

]
=

[
µ− ν
µ− ν

]
.

If the corresponding matrix is invertible, then after substituting the claimed formulas
for f 2

j , g
2
j and simplifying, it follows that they are the unique solutions. To verify that

F1(αj) and αj + 2ν are negative, it is sufficient to inspect the formulas for fj and gj,
noting that ν is negative and both µ and αj + 2µ are positive.

Suppose the matrix is not invertible. By assumption µ, ν 6= 0, and so(
1 +

αj
µ

)2

=

(
1 +

αj
ν

)2

.

But, since i ∈ {1, 2, 5} and j ∈ {3, 4, 6, 7},

1 > f 2
j g

2
i = f 2

i g
2
i ·
(

1 +
αj
µ

)2

= f 2
i g

2
i ·
(

1 +
αj
ν

)2
= f 2

i g
2
j > 1,

a contradiction. �

Proposition B.2. Let i ∈ {1, 2, 5} ∩ S and j ∈ {3, 4, 6, 7} ∩ S be such that Ni ∩ S =
(Nj ∩ S)∪̇{i}. Then

f 2
i =

(αi − 2ν)µ

−F1(−αi)
, g2i =

(αi − 2µ)ν

−F1(−αi)
,

and

fj =

(
1− αi

µ

)
fi, gj =

(
1− αi

ν

)
gi.

Moreover, −F1(−αi) is positive and αi − 2µ is negative.

Proof. The proof of Proposition B.1, slightly modified, gives the desired result. �

Proposition B.3. Suppose i, j, k ∈ S where (i, j, k) is either (2, 3, 4) or (5, 6, 7). Then

fk =
µfj − αifi

µ
, gk =

νgj − αigi
ν

,

and

αi =
2µ2ν2αj
F2(αj)

.

Proof. Using the eigenfunction equations for fj, fk and for gj, gk, it follows that

fk =
µfj − αifi

µ
, gk =

νgj − αigi
ν

.
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Combined with Lemma 3.7, it follows that

0 = µf 2
k − νg2k − (µ− ν)

= µ

(
µfj − αifi

µ

)2

− ν
(
νgj − αigi

ν

)2

− (µ− ν).

After expanding, we note that the right-hand side can be expressed purely in terms of
µ, ν, αi, f

2
i , fifj, f

2
j , g

2
i , gigj, and g2j . Note that Proposition B.1 gives explicit formulas

for f 2
i , fifj, and f 2

j , as well as g2i , gigj, and g2j , purely in terms of µ, ν, and αj. With
the help of a computer algebra system, we make these substitutions and factor the
right-hand side as:

0 = (µ− ν) · αi ·
2µ2ν2 · αj − F2(αj) · αi

µ2ν2 · F1(αi)
.

Since αi, (µ− ν) 6= 0, the desired claim holds. �

Proposition B.4. Suppose 1, i, j, k ∈ S where (i, j, k) is either (2, 3, 4) or (5, 6, 7).
Then

f1 =
µfi + αkfk

µ
, g1 =

νgi + αkgk
ν

,

and

αk =
αj · F2(αj)

2

F3(αj)
.

Proof. Using the eigenfunction equations for f1, fi, fj, fk and for g1, gi, gj, gk, it follows
that

f1 =
µfi + αkfk

µ
, g1 =

νgi + αkgk
ν

,

and

fk =
µfj − αifi

µ
, gk =

νgj − αigi
ν

.

Altogether,

f1 =
µ2fi + αk(µfj − αifi)

µ2
, g1 =

ν2gi + αk(νgj − αigi)
ν2

Combined with Lemma 3.6, it follows that

0 = µf 2
1 − νg21 − (µ− ν)

= µ

(
µ2fi + αk(µfj − αifi)

µ2

)2

− ν
(
ν2gi + αk(νgj − αigi)

ν2

)2

− (µ− ν).

After expanding, we note that the right-hand side can be expressed purely in terms of
µ, ν, f 2

i , fifj, f
2
j , g

2
i , gigj, and αi. Note that Proposition B.1 gives explicit formulas for
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f 2
i , fifj, f

2
j , g

2
i , gigj, and g2j purely in terms of µ, ν, and αj. With the help of a computer

algebra system, we make these substitutions and factor the right-hand side as:

0 = 2αk · (µ− ν) · αj · F2(αj)
2 − αk · F3(αj)

F1(αj) · F2(αj)2
.

So the desired claim holds.
�

Proposition B.5. Suppose 1, i, k ∈ S and j /∈ S where (i, j, k) is either (2, 3, 4) or
(5, 6, 7). Then,

f1 =
µfi + αkfk

µ
, g1 =

νgi + αkgk
ν

,

and

αk =
2αiµ

2ν2

F2(−αi)
Proof. Using the eigenfunction equations for f1, fi, fj, fk and for g1, gi, gj, gk, it follows
that

f1 =
µfi + αkfk

µ
, g1 =

νgi + αkgk
ν

,

and

fk =
µfi − αifi

µ
, gk =

νgi − αigi
ν

.

Altogether,

f1 =
µ2fi + αk(µfi − αifi)

µ2
, g1 =

ν2gi + αk(νgi − αigi)
ν2

Combined with Lemma 3.6, it follows that

0 = µf 2
1 − νg21 − (µ− ν)

= µ

(
µ2fi + αk(µfi − αifi)

µ2

)2

− ν
(
ν2gi + αk(νgi − αifi)

ν2

)2

− (µ− ν).

After expanding, we note that the right-hand side can be expressed purely in terms of
µ, ν, f 2

i , fifj, f
2
j , g

2
i , gigj, and αi. Note that Proposition B.1 gives explicit formulas for

f 2
i , fifj, f

2
j , g

2
i , gigj, and g2j purely in terms of µ, ν, and αj. With the help of a computer

algebra system, we make these substitutions and factor the right-hand side as:

0 = 2αk · (µ− ν) · αj · F2(αj)
2 − αk · F3(αj)

F1(αj) · F2(αj)2
.

So the desired claim holds. �

Proposition B.6. Suppose 1 /∈ S and i, j, k, ` ∈ S where (i, j, k, `) is either (2, 3, 4, 7)
or (5, 6, 7, 4). Then

αk =
F4(x)

F3(x)
.
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Proof. Using the eigenfunction equations for f`, fi, fj, fk and for g`, gi, gj, gk, it follows
that

f` =
αifi + αjfj + αkfk

µ
, g1 =

αigi + αjgj + αkgk
ν

,

and

fk =
µfj − αifi

µ
, gk =

νgj − αigi
ν

.

Altogether,

f` =
µαifi + αjfj + αk(µfj − αifi)

µ2
, g` =

ναigi + αjgj + αk(νgj − αigi)
ν2

Combined with Lemma 3.7, it follows that

0 = µf 2
` − νg2` − (µ− ν)

= µ

(
µαifi + αjfj + αk(µfj − αifi)

µ2

)2

− ν
(
ναigi + αjgj + αk(νgj − αigi)

ν2

)2

− (µ− ν)

After expanding, we note that the right-hand side can be expressed purely in terms
of µ, ν, f 2

i , fifj, f
2
j , g

2
i , gigj, and αi. Note that Proposition B.1 gives explicit formulas

for f 2
i , fifj, f

2
j , g

2
i , gigj, g

2
j , αi, αj, αk purely in terms of µ, ν, and αj. With the help of a

computer algebra system, we make these substitutions and factor the right-hand side
as:

0 = 2(µ− ν) · αk ·
F4(αj)− αk · F3(αj)

F1(αj) · F2(αj)2

�

Proposition B.7. Suppose 2, 4, 5, 7 ∈ S and let α6=4,7 :=
∑

i∈S,
i 6=4,7

αi. Then

α4 =
(1− α 6=4,7)f7 − µ(f2 − f7)

f4 + f7
,

α7 =
(1− α 6=4,7)f4 − µ(f5 − f2)

f4 + f7
,

and

α4 =
((1− α6=4,7)g7 − ν(g2 − g7)

g4 + g7
,

α7 =
(1− α6=4,7)g4 − ν(g5 − g2)

g4 + g7
.

Proof. Taking the difference of the eigenvector equations for f2 and f5, and for g2 and
g5, we have

α7f7 − α4f4 = µ(f2 − f5), α7g7 − α4g4 = ν(g2 − g5).
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Combining these equalities with the equation α4 +α7 = 1−α 6=4,7 completes the proof.
�

B.2. Algorithm. In this subsection, we briefly detail how the computer-assisted proof
of Lemma 5.2 works. This proof is via interval arithmetic, and, at a high level, consists
largely of iteratively decomposing the domain of feasible choices of (α3, α6, µ, ν) for
a given S into smaller subregions (boxes) until all subregions violate some required
equality or inequality. We provide two similar, but slightly different computer assisted
proofs of this fact, and both of which can be found at the spread numeric GitHub
repository [27]. The first, found in folder interval1, is a shorter and simpler version,
containing slightly fewer formulas, albeit at the cost of overall computation and run
time. The second, found in the folder interval2, contains slightly more formulas and
makes a greater attempt to optimize computation and run time. Below, we further
detail the exact output and run time of both versions (exact output can be found in
[27]), but for now, we focus on the main aspects of both proofs, and consider both
together, saving a more detailed discussion of the differences for later.

These algorithms are implemented in Python using the PyInterval package. The al-
gorithms consists of two parts: a main file containing useful formulas and subroutines
and 17 different files used to rule out each of the 17 cases for S. The main file, case-
work helper, contains functions with the formulas of Appendix Subsection B.1 (suitably
modified to limit error growth), and functions used to check that certain equalities and
inequalities are satisfied. In particular, casework helper contains formulas for

• α2, assuming {2, 3, 4} ⊂ S (using Proposition B.3)
• α4, assuming {1, 2, 3, 4} ⊂ S (using Proposition B.4)
• α4, assuming {2, 3, 4, 7} ⊂ S, 1 6∈ S (using Proposition B.6)
• α4, assuming {1, 2, 4} ⊂ S, 3 6∈ S (using Proposition B.5)
• f3 and g3, assuming {2, 3} ⊂ S (using Proposition B.1)
• f2 and g2, assuming {2, 3} ⊂ S (using Proposition B.1)
• f4 and g4, assuming {2, 3, 4} ⊂ S (using Proposition B.3)
• f1 and g1, assuming {1, 2, 4} ⊂ S (using Propositions B.4 and B.5)
• f2 and g2, assuming {2, 4} ⊂ S, 3 6∈ S (using Proposition B.2)
• f4 and g4, assuming {2, 4} ⊂ S, 3 6∈ S (using Proposition B.2)

as a function of α3, µ, and ν (and α2 and α4, which can be computed as functions of α3,
µ, and ν). Some of the formulas are slightly modified compared to their counterparts
in this Appendix, for the purpose of minimizing accumulated error. Each formula is
performed using interval arithmetic, while restricting the resulting interval solution to
the correct range. In addition, we recall that we have the inequalities

• αi ∈ [0, 1], for i ∈ S
• |g2|, |f3| ≤ 1, |f2|, |g3| ≥ 1, for {2, 3} ⊂ S
• |f4| ≤ 1, |g4| ≥ 1, for 4 ∈ S
• |f1| ≥ 1, |g1| ≤ 1, for {1, 2, 4} ∈ S
• |f4|, |g2| ≤ 1, |f2|, |g4| ≥ 1, for {2, 4} ∈ S, 3 6∈ S
• α3 + 2ν ≤ 0, for {2, 3} ∈ S (using Proposition B.1)
• α2 − 2µ ≤ 0, for {2, 4} ∈ S, 3 6∈ S (using Proposition B.2).
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These inequalities are also used at various points in the algorithms. This completes
a brief overview of the casework helper file. Next, we consider the different files used to
test feasibility for a specific choice of S ⊂ {1, ..., 7}, each denoted by case{elements of S},
i.e., for S = {1, 4, 5, 7}, the associated file is case1457. For each specific case, there
are a number of different properties which can be checked, including eigenvector equa-
tions, bounds on edge density, norm equations for the eigenvectors, and the ellipse
equations. Each of these properties has an associated function which returns FALSE,
if the property cannot be satisfied, given the intervals for each variable, and returns
TRUE otherwise. The implementation of each of these properties is rather intuitive,
and we refer the reader to the programs themselves (which contain comments) for ex-
act details [27]. Each feasibility file consists of two parts. The first part is a function
is feasible(mu,nu,a3,a6) that, given bounding intervals for µ, ν, α3, α6, computes inter-
vals for all other variables (using interval arithmetic) and checks feasibility using the
functions in the casework helper file. If any checked equation or inequality in the file is
proven to be unsatisfiable (i.e., see Example 5.3), then this function outputs ‘FALSE’,
otherwise the function outputs ‘TRUE’ by default. The second part is a divide and
conquer algorithm that breaks the hypercube

(µ, ν, α3, α6) ∈ [.65, 1]× [−.5,−.15]× [0, 1]× [0, 1]

into sub-boxes of size 1/20 by 1/20 by 1/10 by 1/10, checks feasibility in each box using
is feasible, and subdivides any box that does not rule out feasibility (i.e., subdivides
any box that returns ‘TRUE’). This subdivision breaks a single box into two boxes of
equal size, by subdividing along one of the four variables. The variable used for this
subdivision is chosen iteratively, in the order α3, α6, µ, ν, α3, .... The entire divide and
conquer algorithm terminates after all sub-boxes, and therefore, the entire domain

(µ, ν, α3, α6) ∈ [.65, 1]× [−.5,−.15]× [0, 1]× [0, 1],

has been shown to be infeasible, at which point the algorithm prints ‘infeasible’. Al-
ternatively, if the number of subdivisions reaches some threshold, then the algorithm
terminates and outputs ‘feasible’.

Next, we briefly detail the output of the algorithms casework helper/intervals1 and
casework helper/intervals2. Both algorithms ruled out 15 of the 17 choices for S using
a maximum depth of 26, and failed to rule out cases S = {4, 5, 7} and S = {1, 7} up
to depth 51. For the remaining 15 cases, intervals1 considered a total of 5.5 million
boxes, was run serially on a personal computer, and terminated in slightly over twelve
hours. For these same 15 cases, intervals2 considered a total of 1.3 million boxes,
was run in parallel using the Penn State math department’s ‘mathcalc’ computer,
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and terminated in under 140 minutes. The exact output for both versions of the
spread numeric algorithm can be found at [27].
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