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Abstract. We prove that every element of the special linear group can be represented
as the product of at most six block unitriangular matrices, and that there exist matrices
for which six products are necessary, independent of indexing. We present an analogous
result for the general linear group. These results serve as general statements regarding
the representational power of alternating linear updates. The factorizations and lower
bounds of this work immediately imply tight estimates on the expressive power of
linear affine coupling blocks in machine learning.

Introduction

Let F be an arbitrary field and Mm,n(F) denote the set of m × n matrices with
coefficients in F. When m = n, we simply write Mn(F). Let GLn(F) denote the group
of n×n non-singular matrices with coefficients in F, and SLn(F) denote the subgroup of
GLn(F) consisting of matrices with determinant one. Let I denote the identity matrix
and 0 denote the zero matrix; the dimension of each is always clear from context. Let
Sn denote the symmetric group and Pπ denote the permutation π ∈ Sn of the columns
of I. For X ⊂ Mn(F), let Xk ⊂ Mn(F) denote the set of k-fold products of elements of
X. Let BLm,n(F) and BUm,n(F) denote the subgroups of SLm+n(F) consisting of block
lower and upper unitriangular matrices, respectively, with block partition {1, ...,m} and
{m+ 1, ...,m+ n}:

BLm,n(F) =

{[
I 0
A I

] ∣∣∣∣A ∈ Mn,m(F)

}
,

BUm,n(F) =

{[
I A
0 I

] ∣∣∣∣A ∈ Mm,n(F)

}
.

In this work, we prove the existence of the following block unitriangular factorization
of the special linear group.

Theorem 1. For every M ∈ SL2n(F), there exists A1, ..., A6 ∈ Mn(F) such that

M =

[
I 0
A1 I

] [
I A2

0 I

] [
I 0
A3 I

] [
I A4

0 I

] [
I 0
A5 I

] [
I A6

0 I

]
.

For every m + n > 3, there exists some M ∈ SLm+n(F) such that M 6∈
[
BLm,n(F) ∪

BUm,n(F)
]5

. Furthermore, if F has at least four elements, then the lower bound holds
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independent of indexing: there exists M ∈ SLm+n(F) such that PπMPπ−1 6∈
[
BLm,n(F)∪

BUm,n(F)
]5

for all permutations π ∈ Sm+n.

We have an analogous theorem for the general linear group. Let Tm,n(F) denote the
set of matrices of the form [ B 0

A C ] or [ B A
0 C ], with B ∈ Mm(F) and C ∈ Mn(F) both

diagonal. We prove the following result.

Theorem 2. For every M ∈ GL2n(F), there exists A1, ..., A6 ∈ Mn(F) such that

M =

[
I 0
A1 I

] [
I A2

0 I

] [
I 0
A3 I

] [
I A4

0 I

] [
I 0
A5 I

] [
D A6

0 I

]
for any diagonal D ∈ GLn(F) with det(D) = det(M). Furthermore, for every m+n > 3,

there exists M ∈ SLm+n(F) such that M 6∈
[
Tm+n(F)

]5
.

The factorizations of Theorems 1 and 2 are efficiently computable. Our construction
is fairly unique among block matrix factorizations.1 It can be viewed as a generalized
version of a block LU factorization. One benefit of our construction is that such a
factorization always exists, whereas the existence of a block LU factorization relies on
the invertibility of the upper left block. Moreover, the above theorems serve as general
results regarding the representational power of alternating linear updates.

In fact, Theorem 2 immediately solves an open problem regarding affine coupling
networks in machine learning. An affine coupling block is a function f : Rm+n → Rm+n

of the form f(xu, xv) = (xu, xv�exp(s(xu))+t(xu)), where xu ∈ Rm, xv ∈ Rn (typically,
m ≈ n), s, t : Rm → Rn, and � is the entry-wise product. A version of these functions
(with s = 0) was originally introduced by Dinh, Krueger, and Y. Bengio in their NICE
deep learning model [2]. Dinh, Sohl-Dickstein, and S. Bengio expanded that work to
real NVP (non-volume preserving) transformations (e.g., the general formulation above)
[3]. These papers led, in part, to the popularization of normalizing flows in machine
learning, a general class of diffeomorphisms that map some standard distribution (say,
a standard Gaussian vector) to a more complex one. We refer the reader to [6, 8]
for two excellent surveys of this emerging field. As discussed in [8], the “question of
foremost importance” is the expressive power of such models, even when restricted to
simple inputs. Recently, Koehler, Mehta, and Risteski studied the expressive power
of linear affine couplings, i.e., matrices of the form [ I 0

A D ] and [D A
0 I ] for A ∈ Mn(R)

and diagonal D ∈ GLn(R) with strictly positive entries [7]. They posed the following
question: how many linear affine coupling layers are needed to represent an arbitrary
orientation-preserving matrix? They produced a 47-layer construction and showed that
at least five layers are necessary. Theorem 2 answers their question exactly.

Corollary 3. Every matrix M ∈ GL2n(R) with det(M) > 0 can be represented by
a depth-six linear affine coupling network. In addition, for every n > 1, there exists
M ∈ SL2n(R) for which six layers are necessary, i.e., M cannot be exactly represented
by a depth-five linear affine coupling network.

The lower bound of Corollary 3 immediately implies one for the non-linear setting,
by considering the function Mx, and applying a Jacobian argument; see [7, Corollary

1One somewhat similar construction is the LUL̃ factorization proposed by Serre and Püschel, where
L, L̃ are block lower unitriangular and U is block upper triangular; the authors studied how close (in
a rank sense) such a factorization can be to block diagonal [9].
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6] for details. Theorem 1 gives an analogous result for the aforementioned NICE model
(where D = I), with an additional lower bound independent of indexing, e.g., a learned
partition cannot do uniformly better than an arbitrary one. The improvement in con-
struction from depth 47 to depth six leads to a significant practical difference in terms
of architecture. For example, since permutation matrices can be represented with six
layers, the choice of partition may be of limited importance. Furthermore, the improved
construction has consequences for maximum likelihood estimation, as Corollary 3 im-
plies that the distributions representable as the application of a six-layer linear affine
coupling network to N(0, I) are exactly the set of N(0,Σ) with Σ invertible; see [7,
Appendix A.2] for details.

Proof of Theorems 1 and 2

In what follows, we make use of the theory of commutators, i.e., elements of a group
G of the form [g, h] := g−1h−1gh for some g, h ∈ G. We recall the following consequence
of a combination of results of R.C. Thompson.

Lemma 4 ([10, 11]). If SLn(F) 6= SL2(GF(2)), then every element is a commutator of
GLn(F).

Furthermore, given A ∈ SLn(F) 6= SL2(GF(2)), X, Y ∈ GLn(F) satisfying A = [X, Y ]
are efficiently computable; see [10, 11] for details. Using Lemma 4 and well-chosen
block unitriangular matrices, we produce a five-layer decomposition for matrices with a
non-singular upper right block.

Lemma 5. Let M =

[
M1 M2

M3 M4

]
∈ SL2n(F) 6= SL4(GF(2)) and M2 ∈ GLn(F). Then

M =

[
I 0
A1 I

] [
I A2

0 I

] [
I 0
A3 I

] [
I A4

0 I

] [
I 0
A5 I

]
,

where

A1 = M4M
−1
2 +M−1

2 X−1Y −1(I −X)−M−1
2 X−1,

A2 = XM2,

A3 = M−1
2 X−1(Y − I),

A4 = Y −1(I −X)M2,

A5 = M−1
2 (M1 − Y ),

and X, Y ∈ GLn(F) satisfy [X, Y ] = M2(M4M
−1
2 M1 −M3).

Proof. det
[
M2(M4M

−1
2 M1 −M3)

]
= detM [5, Sec. 0.8.5], and so, by Lemma 4, there

exists X, Y ∈ GLn(F) with [X, Y ] = M2(M4M
−1
2 M1 −M3). The result follows from a

short computation:[
I 0
A1 I

] [
I A2

0 I

] [
I 0
A3 I

]
=

[
Y XM2

M4M
−1
2 Y−M−1

2 [X,Y ] (M4M
−1
2 X+M−1

2 [X,Y ]Y −1(I−X))M2

]
,[

I A4

0 I

] [
I 0
A5 I

]
=

[
Y −1(M1 −X(M1 − Y )) Y −1(I −X)M2

M−1
2 (M1 − Y ) I

]
,

and, given [X, Y ] = M2(M4M
−1
2 M1 −M3), their product equals M . �
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SL4(GF(2)) cannot be treated using Lemma 5, as the matrices [ 1 1
0 1 ], [ 1 0

1 1 ], [ 0 1
1 0 ] are not

commutators of SL2(GF(2)). Despite this, elements of SL4(GF(2)) with non-singular
upper right block can still be represented as the product of five block unitriangular
matrices, which, given the small group size, is easily verified by exhaustive search.2

Lemma 6 ([12]). Let M =
[
M1 M2
M3 M4

]
∈ SL4(GF(2)) and M2 ∈ SL2(GF(2)). Then there

exists A1, ..., A5 ∈ M2(GF(2)) such that M =
[
I 0
A1 I

][
I A2
0 I

][
I 0
A3 I

][
I A4
0 I

][
I 0
A5 I

]
.

The desired factorizations of Theorems 1 and 2 follow from the application of Lemmas
5 and 6 to the product M [ B A

0 I ] for some diagonal B ∈ GLn(F) satisfying det(B) =
det(M)−1 and A ∈ Mn(F) satisfying M1A+M2 ∈ GLn(F). That such a matrix A exists
is a consequence of the following simple lemma, as M ∈ GL2n(F) implies coker(M1) ∩
coker(M2) = 0.

Lemma 7. For any A,B ∈ Mn(F), there exists C ∈ Mn(F) such that CA+B ∈ GLn(F)
if and only if ker(A) ∩ ker(B) = 0.

Proof. ker(A)∩ker(B) = 0 is clearly necessary, as ker(A)∩ker(B) ⊂ ker(CA+B). The
converse also follows quickly. Simply choose C to be any matrix for which im(C) is a
complement of im(B) and ker(C)∩{Ax |x ∈ ker(B)} = 0. Such a matrix always exists,
as ker(A) ∩ ker(B) = 0 and the rank-nullity theorem together imply dim({Ax |x ∈
ker(B)}) = dim(im(C)). �

We now consider the lower bounds of Theorems 1 and 2. We have the following
lemma regarding the representation of block diagonal matrices.

Lemma 8. If
[
M1 0
0 M4

]
∈
[
Tm,n(F)

]5
, M1 ∈ GLm(F), M4 ∈ GLn(F), then there exist

diagonal matrices D ∈ GLm(F) and D̃ ∈ GLn(F) such that

m · 1 + trace(M4D̃) = n · 1 + trace(M−1
1 D).

Proof. It suffices to consider an LULUL factorization, as the lemma statement is in-
variant under transpose. Suppose[

M1 0
0 M4

]
=

[
B1 0
A1 C1

] [
B2 A2

0 C2

] [
B3 0
A3 C3

] [
B4 A4

0 C4

] [
B5 0
A5 C5

]
for some A1, A3, A5 ∈ Mn,m(F), A2, A4 ∈ Mm,n(F), and diagonal matrices B1, ..., B5 ∈
GLm(F) and C1, ..., C5 ∈ GLn(F). We have[
B1 0
A1 C1

] [
B2 A2

0 C2

] [
B3 0
A3 C3

]
=

[
B1B2B3 +B1A2A3 B1A2C3

A1B2B3 + C1C2A3 + A1A2A3 C1C2C3 + A1A2C3

]
and[

M1 0
0 M4

] [
B5 0
A5 C5

]−1 [
B4 A4

0 C4

]−1

=
[
M1 0
0 M4

][
B−1

5 0

−C−1
5 A5B

−1
5 C−1

5

][
B−1

4 −B−1
4 A4C

−1
4

0 C−1
4

]
=
[

M1B
−1
5 B−1

4 −M1B
−1
5 B−1

4 A4C
−1
4

−M4C
−1
5 A5B

−1
5 B−1

4 M4C
−1
5 (I+A5B

−1
5 B−1

4 A4)C
−1
4

]
.

2See repository [12] for a short computer-assisted proof (using the Julia programming language [1]);
the program terminates in under a second on a personal computer. It is also possible to prove Lemma
6 via an involved case analysis. The details are left to the interested reader.
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By setting these matrices equal and inspecting the upper left and right blocks, we
deduce that A2A3 = B−1

1 M1B
−1
5 B−1

4 − B2B3 and A4C
−1
4 = −B4B5M

−1
1 B1A2C3. Using

the former equality applied to the lower left block,

−M4C
−1
5 A5B

−1
5 B−1

4 = A1B
−1
1 M1B

−1
5 B−1

4 + C1C2A3,

which, all together, implies (using the lower right block)

M4C
−1
5 C−1

4 = (C1C2 + A1A2)C3 −M4C
−1
5 A5B

−1
5 B−1

4 A4C
−1
4

= (C1C2 + A1A2)C3 + (A1B
−1
1 M1B

−1
5 B−1

4 + C1C2A3)(−B4B5M
−1
1 B1A2C3)

= C1C2C3 − C1C2A3B4B5M
−1
1 B1A2C3.

Therefore,

A2(A3B4B5M
−1
1 B1) = I −B2B3B4B5M

−1
1 B1

and

(A3B4B5M
−1
1 B1)A2 = I − C−1

2 C−1
1 M4C

−1
5 C−1

4 C−1
3 .

Taking the trace of each gives our desired result, as the product of two matrices has a
fixed trace, independent of the order of operands. �

Consider the matrices X ∈ GLm(F) and Y ∈ GLn(F), m,n > 1, defined as follows:

X(i, j) =

{
1 if j − i = 1 mod m

0 otherwise
,

Y (i, j) =


δ(m · 1− n · 1) if i = j = 1

(−1)m+n if i = n, j = 1

1 if j − i = 1

0 otherwise

,

where δ(·) is the Kronecker delta function. We have det(X) = det(Y ) = (−1)m+1,

trace(XD) = 0 for all diagonal D ∈ GLm(F), and, for every diagonal D̃ ∈ GLn(F),

trace(Y D̃) 6= 0 if and only if m·1 = n·1. Therefore, by Lemma 8,
[
X−1 0
0 Y

]
6∈
[
Tm,n(F)

]5
.

To complete our desired lower bound, we must briefly analyze the case when either m
or n is equal to one. If, say, n = 1 and m > 2, let us keep X as above and set
Y = (−1)m+1, so that

[
X−1 0
0 Y

]
∈ SLm+1(F). By the analysis in the proof of Lemma 8,

if
[
X−1 0
0 Y

]
∈
[
Tm,n(F)

]5
, then I − D̂XD is a rank one matrix for some diagonal D̂,D ∈

GLm(F). However, this is not possible, as [I − D̂XD](1, 1) = [I − D̂XD](2, 2) = 1 and

[I − D̂XD](2, 1) = 0. This completes the proof of Theorem 2. When F has at least
four elements, the lower bound for SLn(F) holds independent of indexing. The following
lemma completes the proof of Theorem 1.

Lemma 9. If F has at least four elements, then, for every m + n > 3, there exists

M ∈ SLm+n(F) such that PπMPπ−1 6∈
[
BLm,n(F) ∪ BUm,n(F)

]5
for all permutations

π ∈ Sm+n.

Proof. Let M be diagonal, with diagonal elements g, h, (gh)−1 (not necessarily distinct),
and 2n− 3 copies of 1, for some g, h 6= 1 satisfying gh 6= 1. Such g, h ∈ F always exists
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when F has at least four elements (take any g1, g2 6= 0, 1 distinct; either g21 6= 1 or
g1g2 6= 1). Now suppose

M =

[
M1 0
0 M4

]
=

[
I 0
A1 I

] [
I A2

0 I

] [
I 0
A3 I

] [
I A4

0 I

] [
I 0
A5 I

]
for some A1, A3, A5 ∈ Mn,m(F) and A2, A4 ∈ Mm,n(F). Repeating the same analysis as
in the proof of Lemma 8, we find that

A2(A3M
−1
1 ) = I −M−1

1 and (A3M
−1
1 )A2 = I −M4.

The product of two matrices has a fixed set of non-zero characteristic roots, independent
of the order of operands [4, Theorem 1]. However, in total, exactly three elements of
I−M−1

1 and I−M4 are non-zero. Therefore, there is no ordering and bipartition of the
diagonal elements such that the non-zero characteristic roots, taken with multiplicity,
of I −M−1

1 and I −M4 are the same, a contradiction. �
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presentation.
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