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Abstract. Krylov subspace methods are a powerful tool for efficiently solving high-dimensional

linear algebra problems. In this work, we study the approximation quality that a Krylov subspace

provides for estimating the numerical range of a matrix. In contrast to prior results, which often
depend on the gaps between eigenvalues, our estimates depend only on the dimensions of the matrix

and Krylov subspace, and the conditioning of the eigenbasis of the matrix. In addition, we provide

nearly matching lower bounds for our estimates, illustrating the tightness of our arguments.

1. Introduction

Moment-based methods are ubiquitous in applied mathematics, and numerical linear algebra is no
exception. Krylov subspace methods are an incredibly popular family of algorithms that approximate
the solution to some problem involving a matrix A using the Krylov subspace

Km(A, b) = span{b, Ab, A2b, . . . , Am−1b}.
This includes methods for approximating linear systems (conjugate gradient method [10], GMRES [26],
MINRES [23], hybrid methods [31] etc.), extremal eigenvalue problems (Arnoldi iteration [1], Lanczos
method [17], etc.), pseudospectra [32], and matrix functions (e.g., estimating f(A)b or b∗f(A)b). In
many applications, m is much smaller than n, and a key benefit of these methods is that they only
involve matrix-vector products, allowing for fast computation (sometimes without even forming A
explicitly). Here we focus on the quality of the estimate on the numerical range

W (A) =

{
x∗Ax

x∗x

∣∣∣∣x ∈ Cn×n

}
of a matrix A produced using the numerical range of a projection onto a Krylov subspace. In partic-
ular, we consider the orthogonal projection of A onto the Krylov subspace Km(A, b) for some vector
b, denoted by Hm. Such estimates are important not only in the computation of extremal eigenvalues,
but also for error estimates of other methods. For instance, standard error bounds for the residual in the
GMRES algorithm forAx = b afterm steps depend on the quantity minp∈Pm s.t. p(0)=1 maxλ∈Λ(A) |p(λ)|,
where Pm is the set of complex polynomials of degree at most m and Λ(A) is the spectrum of A [27,
Proposition 6.32]. If W (Hm) provides a good estimate of W (A), or even conv(Λ(A)), then computing
W (Hm) and estimating the separation from zero can produce guarantees for the convergence rate. For
more details about Krylov subspace methods in general, we refer the reader to [27, 28] (see also [29] for
a historical perspective). Here, we consider only the mathematical properties of a Krylov subspace and
neglect matters of implementation and rounding errors in floating point arithmetic (for a discussion of
these aspects, see [8, 18, 20, 21]).

Typically, estimates for approximating an extreme eigenvalue λ with a Krylov subspace Km+1(A, b)
depend on the quality of the initial guess b in relation to the eigenspace of λ, the eigenvector condition
number, and the quantity minp∈Pm s.t. p(λ)=1 maxµ∈Λ(A)\λ |p(µ)|. The latter quantity is small when
there is separation between λ and Λ(A)\λ in the complex plane, but can become arbitrarily close
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(a) Λ(A), ∂W (Hm), and Λ(Hm) for normal

A with Λ(A) = {e2πij/n}nj=1, n = 104, b ∼
Unif(Sn−1), and m = 30

(b) dH(conv(Λ(A)), conv(Λ(Hm)))×m compared

to dH(conv(Λ(A)),W (Hm)) × m2 for m =
1, . . . , 30

Figure 1. Estimating the eigenvalues of A = diag({e2πij/n}nj=1) using Km(A, b) for

b ∼ Unif(Sn−1), where n = 104 and m = 30. In Subfigure (a), note that, while there
is a decent gap between Λ(A) and Λ(Hm), the difference between Λ(A) and ∂W (Hm)
is imperceptible. This is further quantified in Subfigure (b), where we note that the
Hausdorff distance between conv(Λ(A)) and conv(Λ(Hm)) scales roughly like 1/m,
while the Hausdorff distance between conv(Λ(A)) and W (Hm) scales like 1/m2.

to one in many cases, producing unnecessarily pessimistic bounds. These issues can persist even
when A is Hermitian. For example, consider the tridiagonal matrix A ∈ Rn×n resulting from the
discretization of the Laplacian operator on an interval with Dirichlet boundary conditions (i.e., Aii = 2,
Ai,i+1 = Ai+1,i = −1). This matrix has no small eigenvalue gaps, and so standard gap-dependent error
estimates (e.g., [27, Theorem 6.4]) significantly over estimate the error in approximation for extreme
eigenvalues, producing error bounds greater than one even when the Krylov subspace dimension equals
n (see [33, Example 1.1] for details).

In practice, Krylov subspace methods perform well at estimating extreme eigenvalues, even when
eigenvalue gaps are small. In [22], Musco and Musco argue that while a good estimate of an eigenvector
naturally implies a good estimate of its corresponding eigenvalue, approximating the eigenvector may
be unnecessary. Consider two close eigenvalues λ and λ′ with corresponding eigenvectors φ,φ′. It
would be difficult to distinguish the components of φ and φ′, but, for eigenvalues, an estimate near
λ is clearly near λ′ as well. Kuczynski and Wozniakowski were arguably the first to fully recognize
this phenomenon in a quantitative way, producing a probabilistic upper bound of order ln2 n/m2 on

the quantity (λmax(A) − λ
(m)
max)/(λmax(A) − λmin(A)) for a real symmetric matrix A ∈ Rn×n, where

λ
(m)
max is the largest eigenvalue of Hm, the orthogonal projection of A onto Km(A, b), for an initial

guess b sampled uniformly from the hypersphere [16]. This concept was later extended to the block
setting. Musco and Musco introduced a block Krylov subspace method (a variant of the traditional
block Lanczos method) that produces an ϵ approximation to the best rank k approximation of A using
block size k and order lnn/

√
ϵ iterations (i.e., ϵ ≈ ln2 n/m2, where m is the number of iterations) [22].

The original upper bound of order ln2 n/m2 of Kuczynski and Wozniakowski has been shown to be
essentially tight in a variety of settings, see [7, 30, 33].

However, to date, much less is known for the general, non-Hermitian setting. For instance, no
such gap-independent upper or lower bounds have been produced for the extreme eigenvalues of non-
Hermitian matrices. The situation here is more subtle than the Hermitian case. For instance, even if
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A is normal, Hm is usually non-normal (see [14, Theorem 1]). This provides an additional difficulty
for approximating the extreme eigenvalues of A using the eigenvalues of Hm (i.e., the Ritz values). In
fact, in some cases, the numerical range W (Hm) provides a far superior estimate to Λ(A) than the Ritz
values Λ(Hm) themselves. See Figure 1 for an illustration of this phenomenon for a normal matrix with
eigenvalues located at the nth roots of unity. For this reason, in this work we focus exclusively on the
approximation provided by the numerical range W (Hm) rather than the Ritz values Λ(Hm). When A
is normal and W (Hm) approximates W (A) reasonably well, the profile of W (Hm) inherently encodes
information about the location of extreme eigenvalues of A, as they are the vertices of the polytope
W (A). When A is non-normal, this precise recognition of extreme eigenvalues using W (Hm) is no
longer possible, yet still something can be said about the possible location of an eigenvalue λ ∈ Λ(A)
by bounding the distance between either conv(Λ(A)) and W (Hm) or W (A) and W (Hm).

1.1. Our Contributions. Here we prove a number new results regarding the approximation quality
of W (Hm) to W (A), independent of the distribution of Λ(A), i.e., gap-free/uniform bounds. These are
the first estimates of their type in the non-Hermitian setting. We break our contributions into three
cases (all of the below results hold with high probability):

(1) Normal Matrix A. We prove that the Hausdorff distance between the numerical ranges of
A and Hm is at most order lnn/m (Theorem 3.2) and prove a lower bound of order 1/m for
the distance (standard distance, not Hausdorff) between their boundaries for some family of
matrices (Theorem 3.5).

(2) Normal Matrix A with Λ(A) ⊂ S0. When the spectrum of A lies on the unit circle, we can
further strengthen our estimates. In particular, we prove that the Hausdorff distance between
the numerical ranges of A and Hm is at most order ln2 n/m2 (Theorem 3.7) and prove a lower
bound of order 1/m2 for the distance between their boundaries for some family of matrices
(Theorem 3.10). The choice of S0 as the containing set is solely due to the popularity of unitary
matrices. Similar bounds almost certainly hold for the boundary of any convex body.

(3) Non-Normal Matrix A. When A is non-normal, the above estimates decay rapidly with
eigenvector condition number (Example 4.2). We prove that the Hausdorff distance between
the numerical ranges of A and Hm is at most order κ2 lnn/m + κ(κ − 1), where κ is the
condition number of a matrix V with orthonormal columns that diagonalizes A (Theorem
4.4). The decay of this estimate with κ is consistent with observed worst-case behavior (see
Example 4.2). However, when the matrices V and (V −1)∗ each have nearly orthonormal
columns (roughly, inner products smaller than n−(1/2+β/2), see Definition 4.7 for details), we
can prove estimates for the convex hull of Λ(A), even when A is moderately non-normal. In
particular, if A satisfies the aforementioned condition for some β > 0, then the maximum
distance between a point z ∈ conv(Λ(A)) and the numerical range of Hm is at most order
lnn/m when m ≪ nβ/2 (Theorem 4.10).

The remainder of the paper is as follows. In Section 2, we introduce the notation, proof ideas, and
technical tools that we use in this work. In Section 3, we consider the case when A is normal, and
when A is normal with its spectrum on the unit circle Λ(A) ⊂ S0. In Section 4, we treat the case of
non-normal matrices.

2. Technical Tools: Convexity, Polynomials, and Probability

Here, we detail the basic notation used throughout the paper, outline the proof techniques for our
main results, and recall and prove a number of technical results regarding convex geometry, extremal
polynomials, and probabilistic inequalities.

2.1. Notation. Recall that the Krylov subspace for a matrix A ∈ Cn×n and vector b ∈ Cn of order m
is given by Km(A, b) = {p(A)b | p ∈ Pm−1}, where Pm−1 is the set of complex polynomials of degree
at most m − 1. If dim(Km(A, b)) = m, then we may define m orthonormal vectors {q(j)}mj=1 with

the property that span{q(1), . . . , q(j)} = span{b, Ab, . . . , Aj−1b} for j = 1, . . . ,m. If this is the case,
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we define Qm = [q(1) . . . q(m)] ∈ Cn×m, and denote by Hm = Q∗
mAQm the orthogonal projection of

A onto Km(A, b) in the basis of Qm (note Hm is an upper Hessenberg matrix). For simplicity, if

dim(Km(A, b)) = k < m, we define Hm = Hk. Also recall that W (A) =
{

x∗Ax
x∗x

∣∣x ∈ Cn
}

is the
numerical range of a matrix.

Let Sn−1 denote the unit complex n-sphere in Cn. Let NC(0, 1) be the standard complex normal
distribution (i.e., for z ∼ NC(0, 1), Re(z), Im(z) ∼ N (0, 1

2 ) and are independent) and NC(0, In) be the
distribution of standard complex normal vectors of length n. Given that the Krylov subspace Km(A, b)
is invariant under scaling b, we will often move between taking b ∼ Unif(Sn−1) or b ∼ NC(0, In),

depending on which formulation better suits our needs. We say X
d
= Y if the random variables X and

Y are equal in distribution.
To measure the proximity of two sets S, T ⊂ C, let

d(S, T ) = inf
s∈S,
t∈T

|s− t|,

d̃H(S, T ) = sup
s∈S

d(s, T ),

dH(S, T ) = max{sup
s∈S

d(s, T ), sup
t∈T

d(S, t)}

denote the distance, one-sided Hausdorff distance, and Hausdorff distance. Note that, despite the
name, d̃H(·, ·) is not a distance. Furthermore for a set S ⊂ C, let ∂S be its boundary.

Finally, we recall miscellaneous and more basic notation that we will make use of. Let Tm(z)
denote the mth degree Chebyshev polynomial of the first kind, defined by Tm(cos θ) = cosmθ. Let
on(f(n)) denote an arbitrary function that, when divided by f(n), tends to zero as n → ∞ and other
parameters stay fixed. Let ∥ · ∥2 be the vector and matrix 2-norm, ∥ · · · ∥F be the Frobenius norm,
and κ(A) = ∥A∥2∥A−1∥2 be the matrix condition number, and κV (A) = infA=V ΛV −1 κ(V ) be the
eigenvector condition number of A, that is, the smallest condition number over all matrices V that
diagonalize A. Let i =

√
−1, ⟨·, ·⟩ be the complex inner product, diam(·) be the diameter of a set,

conv(·) be the convex hull of a set, ej be the jth standard basis vector, ⊗ be the Kronecker product,
diag(x) be the diagonal matrix with x on its diagonal, and [n] = {1, . . . , n}.

2.2. Main Ideas and Eigenvalue Approximation as a Polynomial Problem. In this work, we
are primarily concerned with estimating dH

(
W (Hm),W (A)

)
for b ∼ Unif(Sn−1) uniformly sampled

from the hypersphere. (See Subsection 2.3 for a pair of useful propositions concerning Hausdorff
distances between convex bodies.)

First, we sketch the rough argument for the upper bounds produced in this work (Theorems 3.2,
3.7, and 4.4). It is useful to think of the approximation to any particular eigenvalue λ as a polynomial
problem. Let A ∈ Cn×n be a diagonalizable matrix with eigendecomposition A = V ΛV −1, where the
columns of V have norm one, and α = V −1b. Then the distance d(λ,W (Hm)) equals

min
x∈Km(A,b)

∣∣∣∣λ− x∗Ax

x∗x

∣∣∣∣ = min
p∈Pm−1

∣∣∣∣λ− [p(A)b]∗A[p(A)b]

[p(A)b]∗[p(A)b]

∣∣∣∣ = min
p∈Pm−1

∣∣∣∣α∗p(Λ)∗V ∗V (λI − Λ)p(Λ)α

α∗p(Λ)∗V ∗V p(Λ)α

∣∣∣∣ . (1)

In the special case where A is normal, V ∗V = I and this expression can be simplified further

min
x∈Km(A,b)

∣∣∣∣λ− x∗Ax

x∗x

∣∣∣∣ = min
p∈Pm−1

∣∣∣∣∣
∑n

j=1 |αj |2|p(Λj)|2(λ− Λj)∑n
j=1 |αj |2|p(Λj)|2

∣∣∣∣∣ . (2)

To make this quantity small for some fixed b, we construct an extremal polynomial p ∈ Pm−1 in
Subsection 2.4 that is large at λ and very small for all other eigenvalues at least some distance away
from λ. In Subsection 2.5, we state some standard inequalities in high-dimensional probability, which
allow us to handle the randomness of b and bound dH

(
W (Hm),W (A)

)
with high probability. In

particular, we bound the probability that b is too close to orthogonal to any eigenspace. When A is
non-normal, the V ∗V and α = V −1b terms in Equation 1 can produce barriers to this argument. To
produce some estimates in the setting where A is moderately non-normal, we show that, under certain
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conditions, the V ∗V can be removed to match the normal case with small additive and multiplicative
error and that the distribution of V −1b is close to as well-behaved as b.

Finally, the main idea behind the lower bounds produced here (Theorems 3.5 and 3.10) consists of
carefully choosing matrices A for which Hm is a perturbation (with respect to the randomness of b) of
a simple matrix that is easily analyzed, and measuring the distance between the numerical ranges of
A and Hm by measuring their distances to this simpler matrix.

2.3. Convex Geometry in the Plane. In order to quantify the approximation that W (Hm) provides
to either W (A) or conv(Λ(A)), we recall and prove two results regarding the approximation of a convex
body in the complex plane.

Proposition 2.1 ([3, Section 4],[24]). Let U be a convex body in C with boundary length L. There
exist n points S on the boundary of U such that the Hausdorff distance

dH(U , conv(S)) ≤ L

2n
tan

π

n
.

Proposition 2.2. Let U ⊂ C be a convex polytope with vertices u1, . . . , un ∈ C, and V ⊂ C be a convex
body with d(uj ,V) ≤ δ for all j ∈ [n]. Then d̃H(U ,V) ≤ δ. Furthermore, if V ⊂ U , then dH(U ,V) ≤ δ.

Proof. Take any point u ∈ U . Then u =
∑n

j=1 tjuj for some
∑n

i=1 tj = 1 and tj ≥ 0 for all j. For

each uj , let vj ∈ V be such that d(uj , vj) ≤ δ, and set v =
∑n

j=1 tjvj = u +
∑n

j=1 tj(vj − uj). Then

|u−v| =
∣∣∑n

j=1 tj(vi−ui)
∣∣ ≤ δ by the triangle inequality. Hence, d̃H(U ,V) ≤ δ. If, in addition V ⊂ U ,

then d̃H(V,U) = 0, implying that dH(U ,V) ≤ δ. □

2.4. Extremal Polynomials. Chebyshev polynomials Tm(z) often play a key role in the analysis of
Krylov subspaces for Hermitian matrices. One key property is that Tm(x) achieves the so-called Remez
inequality for intervals – an upper bound on the infinity norm of a polynomial that is bounded by one
on some subset of fixed measure (see [25] for details). In our analysis, we require polynomials with
similar extremal properties for segments of the circle and the half disk in the complex plane. For the
unit circle, we give the following result.

Proposition 2.3. Let m ∈ N, −1 ≤ c1 < c2 ≤ 1, 0 ≤ δ < 1, and

P̂m,c1,c2,δ(z) = zm Tm

(
z + z−1 − 2c1
(1− δ)(c2 − c1)

− 1

)
.

Then P̂m,c1,c2,δ ∈ P2m and∣∣P̂m,c1,c2,δ(e
arccos(c2)i)

∣∣ ≥ 1

2
exp

(
2m

√
δ
)

max
cos θ∈[c1,c2−δ(c2−c1)]

∣∣P̂m,c1,c2,δ(e
θi)
∣∣.

Proof. Clearly, P̂m,c1,c2,δ ∈ P2m. To prove the above inequality, it suffices to show that |P̂m,c1,c2,δ(e
θi)| ≤

1 for cos θ ∈ [c1, c2 − δ(c2 − c1)], and |P̂m,c1,c2,δ(e
arccos(c2)i)| ≥ 1

2 exp
(
2m

√
δ
)
. That |P̂m,c1,c2δ(e

θi)| ≤ 1
for cos θ ∈ [c1, c2 − δ(c2 − c1)] follows immediately from the property |Tm(x)| ≤ 1 for all x ∈ [−1, 1].
The lower bound for earccos(c2)i follows from [33, proof of Lemma 3.9]. □

In addition, for a fixed δ > 0 and degree m, we need a polynomial that has modulus at most one in
the half annulus

Dδ = {z ∈ C | δ ≤ |z| ≤ 1,Re(z) ≤ 0} (3)

and is as large as possible at z = 0. A nearly extremal (up to exponential constants) polynomial was
constructed by Erdelyi, Li, and Saff for the unit disk.

Proposition 2.4 ([6, proof of Theorem 2.6]). Let m ∈ N, 0 < ϵ < 1, Qm,ϵ(z) = z2m Tm

(
z+z−1

2 cos ϵ

)
, and

Rϵ = {z ∈ C
∣∣ |z| ≤ 1, arg z ∈ [ϵ, π − ϵ] ∪ [π + ϵ, 2π − ϵ]} ∪ {z ∈ C

∣∣ |z| ≤ 1− ϵ/8}.
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z 7→ (1− δ
4
)z2 + (1− δ

8
)z + 1

Figure 2. The mapping from eigenvalues to inputs for Remez-type polynomials. The
desired extremal eigenvalue is shown in red, and the blue region represents all possible
eigenvalues at least δ distance away. The illustrated transformation maps the blue
region Dδ into the outlined region Rε from Proposition 2.4

Then Qm,ϵ ∈ P3m and

Qm,ϵ(1) ≥ exp
(mϵ

8

)
max
z∈Rϵ

|Qm,ϵ(z)|.

This construction can be modified to Dδ by applying a simple quadratic transformation.

Proposition 2.5. Let m ∈ N, 0 ≤ δ < 1, P (z) = (1− δ
4 )z

2 + (1− δ
8 )z + 1, and

P̃m,δ(z) = P (z)2m Tm

(
P (z) + P (z)−1

2 cos
(
2
3δ
) )

.

Then P̃m,δ ∈ P6m and

P̃m,δ(1) ≥ exp

(
mδ

12

)
max
z∈Dδ

|P̃m,δ(z)|. (4)

Given Proposition 2.4, to prove Proposition 2.5, it suffices to set ϵ = 2
3δ and show that P (0) = 1

and P (Dδ) ⊂ Rϵ. This requires some fairly lengthy and un-insightful analysis and casework, and so we
defer the proof of Proposition 2.5 to the Appendix. See Figure 2 for an illustration.

In addition, we note that the construction in Proposition 2.5 is useful not only for the gap-
independent analysis presented in this work, but also for existing gap-dependent estimates as well.
For instance, the following is an immediate consequence of Proposition 2.5 and [28, Lemma 6.2].

Proposition 2.6. Let A ∈ Cn×n be a diagonalizable matrix with eigendecomposition A = V ΛV −1,
where the columns of V have norm one. If Λj ̸∈ conv(Λ(A)\Λj) and d(Λj ,Λ(A)\Λj) ≥ ϵdiam(Λ(A)),
then

∥(I − Pm)V ej∥2 ≤ ∥V −1b∥22
|[V −1b]j |2

exp

(
− (m− 1)ϵ

72

)
,

where Pm is the orthogonal projection onto Km(A, b).

2.5. Probabilistic Inequalities. To properly analyze the behavior of a Krylov subspace for a random
b ∼ Unif(Sn−1) on the complex hypersphere, or, equivalently, a complex Gaussian vector b ∼ NC(0, In),
we recall the following fairly standard results.

Proposition 2.7 ([34, Example 2.11]). Let X ∼ χ2
k be a chi-squared random variable with k degrees

of freedom. Then P[|X − k| ≥ kt] ≤ 2e−kt2/8 for all t ∈ (0, 1).
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Proposition 2.8. Let M ∈ Cn×n be invertible, b ∼ Unif(Sn−1), and t ∈ (0, 1). Then

P
[
min
j∈[n]

|[Mb]j |2

∥Mb∥22
≥ t

n2κ2(M)

]
≥ 1− et.

Proof. By [4, Lemma 2.2], P
[
|⟨b,ν⟩|2 ≤ τ

n

]
≤ eτ for τ ∈ [0, 1) and ∥ν∥2 = 1. We have

P
[
|⟨Mb,ν⟩|2 ≤ t

n2∥M−1∥22

]
≤ P

[
|⟨b,M∗ν⟩|2 ≤ t∥M∗ν∥22

n2

]
≤ et

n
.

Applying a union bound for ej , j ∈ [n], and noting that ∥Mb∥22 ≤ ∥M∥22 implies our desired result. □

In addition, the following propositions will be used to treat the non-normal setting in Section 4.

Proposition 2.9. Let b ∼ NC(0, In) and M ∈ Cn×n be a normal matrix. Then, E[b∗Mb] = trace(M)
and Var[b∗Mb] = ∥M∥2F .

Proof. We provide a proof only because of the involvement of complex random variables; see [19,
Lemma 3.2b.2] for well-known results for the real symmetric case. When M is normal, the invariance

of the distribution of b under rotation allows us to rewrite b∗Mb
d
=
∑n

j=1 λj |bj |2, where {λj}nj=1 are

the eigenvalues of M . For bj ∼ NC(0, 1), we have E[|bj |2] = 1 and Var[|bj |2] = 1, and so

E
[ n∑

j=1

λj |bj |2
]
=

n∑
j=1

λjE
[
|bj |2

]
=

n∑
j=1

λj

and

Var

[ n∑
j=1

λj |bj |2
]
=

n∑
j=1

|λj |2Var[|bj |2] =
n∑

j=1

|λj |2.

□

Proposition 2.10 ([34, Example 2.8, Proposition 2.9]). Let b ∼ NC(0, In) and M ∈ Cn×n be a
Hermitian or skew-Hermitian matrix. Let X = b∗Mb. Then,

P [|X − E[X]| ≥ t] ≤ 2 exp

[
−min

(
t2

4∥M∥2F
,

t

4∥M∥2

)]
.

Proof. Again rewrite b∗Mb
d
=
∑n

j=1 λj |bj |2 where λj are the eigenvalues of M . Since M is Her-

mitian or skew-Hermitian, the eigenvalues are purely real or imaginary. Each term |λj ||bj |2 is sub-

exponential with parameters (
√
2|λj |, 2|λj |); thus,

∑n
j=1 |λj ||bj |2 is sub-exponential with parameters

(
√
2∥M∥F , 2∥M∥2). □

Corollary 2.11. Let M ∈ Cn×n, M1 = 1
2 (M + M∗), and M2 = 1

2 (M − M∗), with corresponding
random variables X = b∗Mb, X1 = b∗M1b, and X2 = b∗M2b. Then

Var[X] = ∥M1∥2F + ∥M2∥2F and P [|X − E[X]| ≥ t] ≤ 4 exp

[
−min

(
t2

8Var[X]
,

t

4
√
2∥M∥2

)]
.

Proof. Note that X = X1 + X2, X1 is purely real, and X2 is purely imaginary. For the first part,
rewrite

Var[X] = Var[Re(X)] + Var[Im(X)] = Var[X1] + Var[X2].

For the second, note that

P [|X − E[X]| ≥ t] ≤ P
[
|X1 − E[X1]| ≥ t/

√
2
]
+ P

[
|X2 − E[X2]| ≥ t/

√
2
]
.

The given bound is not tight but suffices for our purposes. □

Proposition 2.12. Let b ∼ NC(0, In) be a random vector and M ∈ Cn×n be a positive-definite
Hermitian matrix. Then, P [b∗Mb ≤ t · trace(M)] ≤ et for all t > 0.
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Proof. The proof is a standard Chernoff bound adapted from [13] for complex normals. Again rewrite

b∗Mb
d
=
∑n

j=1 λj |bj |2 where λj are the eigenvalues of M . Assume t < 1, otherwise the statement is

trivially true. Then, for c = (t−1 − 1)/trace(M),

P [b∗Mb ≤ t · trace(M)] = P

t n∑
j=1

λj −
n∑

j=1

λj |bj |2 ≥ 0


= P

 n∏
j=1

ecλj(t−|bj |2) ≥ 1


≤

n∏
j=1

E
[
ecλj(t−|bj |2)

]
=

n∏
j=1

ecλjt

1 + cλj

≤ ec·trace(M)t(1 + c · trace(M))−1 = e1−tt.

□

3. The Numerical Range of a Normal Matrix

In this section, we produce estimates on the approximation of the numerical range W (A) of a
normal matrix A ∈ Cn×n by a Krylov subspace. In particular, we prove estimates on the Hausdorff
distance between W (A) and W (Hm), where Hm is the orthogonal projection of A onto Km(A, b) for a
random b ∼ Unif(Sn−1). We produce an upper bound of the form lnn

m for an arbitrary normal matrix

(Subsection 3.1), and a nearly matching lower bound of the form 1
m (Subsection 3.2). (The necessity

of the log term has already been treated in a number of previous works, see [30, Theorem A.1] and [33,

Lemma 3.8].) We also provide an improved estimate of the form ln2 n
m2 for normal matrices with their

spectrum on the unit circle S0, and a nearly matching lower bound of the form 1
m2 (Subsection 3.3).

We note that, based on the degree of the polynomials constructed in Subsection 2.4, the below results
are stated not for all m, but for either 2m + 1 or 6m + 1. However, this immediately implies bounds
for arbitrary m, based on the standard inclusion K1(A, b) ⊂ K2(A, b) ⊂ . . . ⊂ Km(A, b) ⊂ . . .

3.1. Estimating the Numerical Range. To estimate the approximation W (Hm) provides to W (A),
we first estimate the distance between W (Hm) and an arbitrary extreme eigenvalue λ of A.

Lemma 3.1. Let m,n ∈ N, A ∈ Cn×n be normal, and λ ∈ Λ(A) be an extreme point of W (A) with a
corresponding unit eigenvector φ. Then

min
x∈K6m+1(A,b)

∣∣∣∣λ− x∗Ax

x∗x

∣∣∣∣ ≤ 6

m
ln

(
em∥b∥22
6|⟨b,φ⟩|2

)
diam(W (A)).

Proof. Without loss of generality, let λ = 0 be the extreme point of W (A) of interest, diam(W (A)) = 1,
and W (A) ⊂ D0, the half disk (see Equation 3). Let δ > 0 and Sδ = {Λj ∈ Λ(A) | |Λj | > δ}. By
Equation 2,

min
x∈K6m+1(A,b)

∣∣∣∣x∗Ax

x∗x

∣∣∣∣ ≤ min
p∈P6m

∣∣∣∣∣
∑

Λj∈Sδ
|αj |2|p(Λj)|2Λj∑n

j=1 |αj |2|p(Λj)|2

∣∣∣∣∣+
∣∣∣∣∣
∑

Λj ̸∈Sδ
|αj |2|p(Λj)|2Λj∑n

j=1 |αj |2|p(Λj)|2

∣∣∣∣∣
≤ min

p∈P6m

∑
Λj∈Sδ

|αj |2|p(Λj)|2

|⟨b,φ⟩|2|p(0)|2
+ δ.
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Now, consider the choice p(z) = P̃m,δ(z), as defined in Proposition 2.5. By Inequality 4,∑
Λj∈Sδ

|αj |2|P̃m,δ(Λj)|2

|⟨b,φ⟩|2|P̃m,δ(0)|2
≤ ∥b∥22

|⟨b,φ⟩|2
exp

(
−mδ

6

)
.

Setting δ = 6m−1 ln
( m∥b∥2

2

6|⟨b,φ⟩|2
)
(if δ > 1, the result is trivially true), we obtain our desired result

∥b∥22
|⟨b,φ⟩|2

exp

(
−mδ

6

)
+ δ ≤ 6

m

(
1 + ln

(
m∥b∥22

6|⟨b,φ⟩|2

))
.

□

Theorem 3.2. Let m,n ∈ N, α > 0, A ∈ Cn×n be normal, and {φ(1), . . . ,φ(n)} be an orthonormal
eigenbasis. Then

dH
(
W (H6m+1),W (A)

)
≤ 6

m
ln

(
em∥b∥22

6minj∈[n] |⟨b,φ(j)⟩|2

)
diam(W (A)).

In particular, if b ∼ Unif(Sn−1), then

P
[
dH
(
W (H6m+1),W (A)

)
diam(W (A))

≤ 6(2 + α) lnn

m

]
≥ 1− 5m

4nα
.

Proof. By Proposition 2.2 and the inclusion W (H6m+1) ⊂ W (A), if the distance from every extreme
point ofW (A) toW (H6m+1) is at most ϵ diam(W (A)), then the Hausdorff distance betweenW (H6m+1)
and W (A) is also at most that quantity. Combining this fact with Lemma 3.1 completes the proof of
the first part of the theorem statement.

Now suppose that b ∼ Unif(Sn−1). By Proposition 2.8 with M = [φ(1) . . . φ(n)]∗ and t = em/(6nα),
minj∈[n] |⟨b,φ(j)⟩|2 ≥ em/(6n2+α) with probability at least 1− e2m/(6nα) > 1 − 5

4mn−α. Therefore,

with probability at least 1− 5
4mn−α,

6

m
ln

(
em∥b∥22

6|⟨b,φ(j)⟩|2

)
≤ 6

m
lnn2+α =

6(2 + α) lnn

m
for all j ∈ [n].

□

3.2. Lower Bounds for Krylov Subspace Approximation. In the previous subsection we proved
that, with high probability, the numerical range is approximated up to error ϵ when m ≳ ϵ−1 lnn. It is
already well-known that the Krylov subspace dimension m must be at least lnn in order to guarantee
any non-trivial approximation of the entire numerical range [30, Theorem A.1]. Furthermore, some
multiplicative relationship between lnn and ϵ−1 is needed in the bound for m. For instance, taking
ϵ = [(1 + γ) ln lnn]−1, m = γ lnn+ P (1/ϵ) for any fixed constant γ > 0 and polynomial P , and taking
n sufficiently large, the approximation produced will be greater than ϵ with probability 1− on(1) [33,
Lemma 3.8]. In addition, when the matrix is Hermitian, dimension m ≳ ϵ−1/2 is required to guarantee
ϵ error, a tight lower bound in this setting [33, Lemma 3.5]. Here, we show that for normal matrices
m ≳ ϵ−1 is required to obtain at most ϵ error, thus matching the bounds for Theorem 3.2. In fact, we
show this not just for Hausdorff distance, but for the distance between W (Hm) and ∂W (A), i.e., we
produce an instance where no extreme eigenvalue of A is approximated better than 1/m.

Proposition 3.3. Let k, n ∈ N, k < n. Then
∑n

j=1 j
k+1 < (n− 1

e+1 )
∑n

j=1 j
k.

Proof. We have

n
∑n

j=1 j
k −

∑n
j=1 j

k+1∑n
j=1 j

k
=

∑n
j=1(n− j)jk∑n

j=1 j
k

≥ (n− 1)k

nk + (n− 1)k
=

1(
1 + 1

n−1

)k
+ 1

>
1

e+ 1
.

□
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Proposition 3.4. Let V ∈ Cm×n satisfy V ∗V = I with m ≥ n, D ∈ Cm×m be diagonal with ∥D∥2 < 1,
and QH be the polar decomposition of (I +D)V . Then

∥V ∗AV −Q∗AQ∥2 ≤ 4∥A∥2∥D∥2
1− ∥D∥2

for all A ∈ Cm×m.

Proof. Because ∥D∥2 < 1, the matrix (I +D)V has full column rank, and so

Q = (I +D)V [V ∗(I +D∗)(I +D)V ]−1/2 ∈ Cm×n

in the polar decomposition of (I +D)V is unique [12, Theorem 7.3.1]. Letting E = V −Q,

∥V ∗AV −Q∗AQ∥2 = ∥E∗AV +Q∗AE∥2
≤ ∥E∥2∥A∥2∥V ∥2 + ∥Q∥2∥A∥2∥E∥2
= 2∥E∥2∥A∥2.

What remains is to bound ∥E∥2. Using a similar technique,

∥E∥2 = ∥ −DV + (I +D)V
(
I − [V ∗(I +D∗)(I +D)V ]−1/2

)
∥2

≤ ∥D∥2 + (1 + ∥D∥2)∥I − [V ∗(I +D∗)(I +D)V ]−1/2∥2.

The matrix [V ∗(I+D∗)(I+D)V ] has singular values in the interval [(1−∥D∥2)2, (1+ ∥D∥2)2], and so

∥I − [V ∗(I +D∗)(I +D)V ]−1/2∥2 ≤ 1

1− ∥D∥2
− 1 =

∥D∥2
1− ∥D∥2

.

Combining all these bounds, we obtain

∥V ∗AV −Q∗AQ∥2 ≤ 2∥A∥2
(
∥D∥2 +

(1 + ∥D∥2)∥D∥2
1− ∥D∥2

)
=

4∥A∥2∥D∥2
1− ∥D∥2

.

□

Theorem 3.5. Let n = ℓm2, ℓ,m ∈ N, m ≥ 15, ℓ ≥ 4800m2 lnm, 1 = (1, . . . , 1)T ∈ Cℓ, r =
1√
m
(
√
1,
√
2, . . . ,

√
m)T ∈ Cm, ω = exp

(
2πi
m

)
, θ = (ω, ω2, . . . , ωm)T ∈ Cm, and A = diag(r ⊗ θ ⊗ 1) ∈

Cn×n. If b ∼ Unif(Sn−1), then

P
[
d
(
W (Hm), ∂W (A)

)
diam(W (A))

≥ 1

60m

]
≥ 1− 2

m
.

Proof. Without loss of generality, we may take b ∼ NC(0, In) instead of b ∼ Unif(Sn−1). Let

Â = diag(r ⊗ θ) ∈ Cm2×m2

,

b̂ ∈ Rm2

be such that

b̂j =

√√√√ ℓ∑
k=1

|bj+(k−1)m2 |2,

and Ĥm = Q̂∗
mÂQ̂m ∈ Cm×m denote the orthogonal projection of Â onto Km(Â, b̂) in the basis of

Q̂m. We note that, because A and Â have m2 distinct eigenvalues and b ∼ NC(0, In), Km(A, b) and

Km(Â, b̂) both have dimension m with probability one, and so Q̂m is well-defined. By Equation 2,

Hm, the orthogonal projection of A onto Km(A, b), and Ĥm have the same Rayleigh quotient for each

polynomial p ∈ Pm−1, and so have the same numerical range. Therefore, we may work with Ĥm instead

of Hm. Note that two times the squared entries of b̂ are independent chi-squared variables with 2ℓ
degrees of freedom each.



ESTIMATING THE NUMERICAL RANGE WITH A KRYLOV SUBSPACE 11

Now, let b̃ =
√
ℓ1 ∈ Cm2

and H̃m = Q̃∗
mÂQ̃m be the orthogonal projection of Â onto Km(Â, b̃) (i.e.,

Ĥm is a “noisy” version of H̃m). The benefit of H̃m is that the vectors Âj b̃ are orthogonal and have
easily computable norms:

⟨Âj b̃, Âkb̃⟩ = ℓ

m∑
p=1

m∑
q=1

θj
pr

j
qθ

−k
p rkq

= ℓ

m∑
p=1

e2πi(j−k) p
m

m∑
q=1

( q

m

) j+k
2

=

{
ℓm
∑m

q=1

(
q
m

)j
if j = k

0 otherwise .

Therefore, [H̃m]jk = 0 for j ̸= k + 1, and, by Proposition 3.3,

H̃k+1,k =
∥Âkb̃∥

∥Âk−1b̃∥
=

( ∑m
q=1 q

k

m
∑m

q=1 q
k−1

)1/2

≤
(
1− 1

(e+ 1)m

)1/2

.

By Gershgorin’s Disk Theorem, the matrix (eiϕH̃m + e−iϕH̃∗
m)/2 has eigenvalues all bounded by

(
1−

1
(e+1)m

)1/2
in modulus for all ϕ ∈ [0, 2π), implying that the maximum modulus of an element ofW (H̃m)

is at most
(
1− 1

(e+1)m

)1/2
. Now, let us consider how different the situation can be for Ĥm. For b̂, we

note that the vectors Âj b̂, j = 0, . . . ,m− 1, have the same span as the columns of (I +D)Q̃m, where

D is diagonal with Djj =
b̂j√
ℓ
− 1. By Proposition 2.7 with t :=

√
12ℓ−1 lnm < 1 and a union bound,

P
[

max
j=1,...,m2

|2b̂2j − 2ℓ| ≥
√
48ℓ lnm

]
≤ 2

m
.

Therefore, for ℓ ≥ 4800m2 lnm,

∥D∥2 ≤ 1−

√
1−

√
12 lnm

ℓ
≤ 1−

√
1− 1

20m

with probability at least 1− 2/m. By Proposition 3.4, applied to Q̃m and (I +D)Q̃m (with V := Q̃m),

∥H̃m −Q∗ÂQ∥2 = ∥Q̃∗
mÂQ̃m −Q∗ÂQ∥2 ≤

4
(
1−

√
1− 1

20m

)
√
1− 1

20m

,

where Q ∈ Cm2×m is as in Proposition 3.4, i.e., Q is the matrix with orthonormal columns in the
polar decomposition of (I +D)Q̃m. This means that Q and Q̂m have the same column space, and so

Q = Q̂mU for some unitary matrix U ∈ Cm×m, and

∥H̃m −Q∗ÂQ∥2 = ∥H̃m − U∗Q̂∗
mÂQ̂mU∥2 = ∥H̃m − U∗ĤmU∥2.

Therefore, the largest modulus of an element of W (Ĥm) is at most

f(m) :=

(
1− 1

(e+ 1)m

)1/2

+
4
(
1−

√
1− 1

20m

)
√
1− 1

20m

.

The function (1−f(m))m is monotonically decreasing, with limit (4−e)/(10(1+e)) > 1/30 as m → ∞.
Therefore, f(m) < 1− 1/(30m), completing the proof. □
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(a) Zoomed in numerical range with

marked eigenvalues

(b) Error as m increases (c) Error normalized times m

(d) Zoomed in numerical range (e) Error as m increases (f) Error normalized times m2

Figure 3. Numerical range estimates of A from Theorem 3.5 (top row) and Theorem
3.7 (bottom row). Whereas n changes as a function of m to simplify the proof, the
essence of the statement holds for each matrix individually. Here we fix A ∈ Cn×n

with n = 10240 with eigenvalue multiplicity 10 and run Arnoldi for m up to 50.
In Subfigures (a) and (d), we plot part of the numerical range of A along with the
estimated numerical range for 10 random starting vectors b and m = 50. In Subfigures
(b) and (e), we plot the Hausdorff distance between the estimated and actual numerical
ranges as m increases. To better see the 1/m and 1/m2 behavior respectively, we
multiply the error by m in Subfigure (c) and by m2 in Subfigure (f).

Remark 3.6. The constants used in the lower bound of 1/m in Theorem 3.5 are of moderate size. A
similar theorem, with a lower bound of 1/m just for Hausdorff distance (instead of distance to boundary
∂W (A)), can be produced with much milder requirements on the size of n: essentially, just take the
same eigenvalues as in Theorem 3.5, give λ = 1 very high multiplicity, and apply the same technique
used in [33, Lemma 3.5]. However, we note that the requirements in Theorem 3.5 are purely for the
sake of producing a clean and concise mathematical proof; practice shows that this phenomenon actually
occurs for relatively small n. See Figure 3.

3.3. Spectrum on the Circle. Next, we consider the situation where the spectrum of A lies on the
complex unit circle S0. A common example of such matrices is the unitary group. We provide an

improved upper bound of the form ln2 n
m2 and a nearly matching lower bound of the form 1

m2 .

Theorem 3.7. Let m,n ∈ N, α > 0, and A ∈ Cn×n be normal, with its spectrum on S0 and an
orthonormal eigenbasis {φ(1), . . . ,φ(n)}. Then

dH
(
Re(eiθW (H2m+1),Re(e

iθW (A))
)
≤ 1

16m2
ln2
(

64em2∥b∥2

minj∈[n] |⟨b,φ(j)⟩|2

)
for all θ ∈ [0, 2π).
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In particular, if b ∼ Unif(Sn−1), then

P
[
dH
(
Re(eiθW (H2m+1),Re(e

iθW (A))
)
≤ (2 + α)2 ln2 n

16m2
for all θ ∈ [0, 2π)

]
≥ 1− 64e2m2

nα
.

Proof. Our general proof technique is as follows. First, we produce a bound on the difference between
the orthogonal projections of W (A) and W (H2m+1) onto an arbitrary line. Then, we lower bound the
magnitude of the orthogonal projection of our vector b onto eigenvectors.

Without loss of generality, consider the projection of W (Hm) onto the real line. Let Re(W (A)) =
[c1, c2], λ be an eigenvalue of A with largest real part, and φ be a corresponding eigenvector. Similar
to the proof of Lemma 3.1, we have

min
x∈K2m+1(A,b)

Re

(
x∗(c2I −A)x

(c2 − c1)x∗x

)
= min

P∈P2m

∑n
j=1 |αj |2|P (λj)|2Re(c2 − λj)

(c2 − c1)
∑n

j=1 |αj |2|P (λj)|2

≤ δ + min
P∈P2m

∑
Re(c2−λj)>δ(c2−c1)

|αj |2|P (λj)|2

|⟨b,φ⟩|2|P (λ)|2
.

Consider the choice P̂m,c1,c2,δ(z), defined in Proposition 2.3, with δ = 1
4m2 ln

2
(

64m2∥b∥2

|⟨b,φ⟩|2

)
. Then

δ + min
P∈P2m

∑
Re(c2−λi)>δ(c2−c1)

|αi|2|P (λi)|2

|⟨b,φ⟩|2|P (λ)|2
≤ δ +

∥b∥2

|⟨b,φ⟩|2 1
4e

4m
√
δ
≤ 1

16m2
ln2
(
64em2∥b∥2

|⟨b,φ⟩|2

)
.

By Proposition 2.8 with M = [φ(1) . . . φ(n)] and t = 64em2/nα, minj∈[n] |⟨b,φ(j)⟩|2 ≥ 64em2/n2+α

with probability at least 1 − 64e2m2/nα. Therefore, with probability at least 1 − 64e2m2n−α, the

relative difference in projection between W (A) and W (Hm) on any line is at most (2+α)2

16 m−2 ln2 n at
either endpoint. □

Remark 3.8. Note that the statement of Theorem 3.7 is reminiscent of arguably the most popular
technique for estimating the numerical range of a matrix, which consists of choosing angles θ1, . . . , θℓ,
and computing the largest and smallest eigenpairs of (eiθjA+e−iθjA∗)/2. This algorithm was proposed
by Johnson [15] and is implemented in the fv function in the Matrix Computation Toolbox [11] and
the fov function in Chebfun [5], using the QR algorithm to estimate extreme eigenvalues. In addition,
Braconnier and Higham created a variant using a version of the Lanczos method, which exploits the
fact that only the largest and smallest eigenpairs are needed [2]. As mentioned in the introduction,

using a Krylov subspace of dimension m, one could guarantee an approximation of the form ln2 n
m2 for

each angle. When Λ(A) ⊂ S0, Theorem 3.7 proves that computing the numerical range of Hm instead
provides this same approximation quality for every angle simultaneously (i.e., without having to build
a different Krylov subspace for each angle).

We note that the Hausdorff distance for a projection onto any line also immediately implies the
same bound for the Hausdorff distance in the plane.

Corollary 3.9. Let n ∈ N, and A ∈ Cn×n be normal with its spectrum on S0. Then

P
b∼Unif(Sn−1)

[
dH
(
W (H2m+1),W (A)

)
≤ (2 + α)2 ln2 n

16m2

]
≥ 1− 64e2m2

nα
.

Proof. By Proposition 2.2 and the inclusion W (H2m+1) ⊂ W (A), it suffices to show that, for any
extreme point λ of conv(Λ(A)), the desired bound holds. For an extreme point λ ∈ ∂W (A), consider
the line through λ and the closest point in W (H2m+1). By the convexity of W (H2m+1), the distance
between λ and W (H2m+1) is equal to the distance between the projection of both onto this line (this
follows from the standard proof of the hyperplane separation theorem, see [9, pg. 11]). Applying
Theorem 3.7 to this line completes the proof. □
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Theorem 3.10. Let n = k ℓ, k, ℓ,m ∈ N, k ≥ m ≥ 10, ℓ ≥ 8m4 ln k, 1 = (1, . . . , 1)T ∈ Cℓ,
ω = exp

(
2πi
k

)
, θ = (ω, ω2, . . . , ωk)T ∈ Ck, and A = diag(θ ⊗ 1) ∈ Cn×n. If b ∼ Unif(Sn−1), then

P
[
d
(
W (Hm), ∂W (A)

)
≥ 2

m2

]
≥ 1− 2

k
.

Proof. The proof technique here is nearly identical to that of Theorem 3.5. Without loss of generality,

let b ∼ NC(0, In) be a complex Gaussian vector. Let Â = diag(θ) ∈ Ck×k, b̂ ∈ Rk be such that

b̂j =

√√√√ ℓ∑
p=1

|bp+(j−1)ℓ|2,

and Ĥm be the orthogonal projection of Â onto Km(Â, b̂) (dim(Km(Â, b̂)) = m with probability one).

Again, by Equation 2, Hm and Ĥm have the same numerical range, and so we may instead work with

Ĥm and note that two times the squared entries of b̂ are independent chi-squared variables with 2ℓ
degrees of freedom each. Let b̃ =

√
ℓ1 ∈ Ck and H̃m = Q̃∗

mÂQ̃m be the orthogonal projection of Â

onto Km(Â, b̃). The vectors Âpb̃ are orthogonal, with constant norm

⟨Âpb̃, Âqb̃⟩ = ℓ

k∑
j=1

θ
(p−q)
j = ℓ

k∑
j=1

e2πi(p−q) j
k =

{
kℓ if p = q

0 otherwise ,

and so [H̃m]p+1,p = 1 and equals zero elsewhere. This matrix Hm has a well-known numerical range,

with radius cos(π/(m + 1)) [35]. Now, consider how different the situation can be for Ĥm. For b̂,

the vectors Âpb̂, p = 0, . . . ,m − 1, have the same span as
√
ℓ(I + D)Q̃m, where D is diagonal with

Dpp =
b̂p√
ℓ
− 1. By Proposition 2.7 with t := m−2 and noting that ℓ ≥ 8m4 ln k,

P
[

max
j=1,...,k

|2b̂2j − 2ℓ| ≥ 2ℓ

m2

]
≤ 2k exp

(
− 2ℓ

8m4

)
≤ 2

k
.

Therefore, ∥D∥2 ≤ 1 −
√
1−m−2 with probability at least 1 − 2/k. Again, similar to the proof of

Theorem 3.5, by Proposition 3.4 applied to Q̃m and (I +D)Q̃m,

∥H̃m − U∗ĤmU∥2 ≤
4
(
1−

√
1−m−2

)
√
1−m−2

,

for some unitary matrix U ∈ Cm×m. Therefore, the largest modulus of an element of W (Ĥm) is at
most

f(m) := cos

(
π

m+ 1

)
+

4
(
1−

√
1−m−2

)
√
1−m−2

.

The function (1− f(m))m2 is monotonically increasing, and so (1− f(m))m2 ≥ 100(1− f(10)) > 2 for
all m ≥ 10. Therefore, f(m) ≤ 1− 2/m2 for m ≥ 10. □

Again, similar to the lower bound of Theorem 3.5 (see Remark 3.6), the requirements on n relative
to m are quite pessimistic. See Figure 3 to observe this behavior numerically for relatively small n.

4. The Numerical Range and Extreme Eigenvalues of a Non-Normal Matrix

To this point, we have produced estimates for the approximation quality of W (Hm) for W (A) for
normal matrices through estimates for extreme eigenvalues of A. These estimates crucially rely on
the fact that, for a normal matrix, the numerical range equals the convex hull of the eigenvalues
W (A) = conv(Λ(A)). When A is non-normal, W (A) may be strictly larger than conv(Λ(A)). The
extent to which this can occur can be easily quantified in terms of the conditioning of V in the
eigendecomposition A = V ΛV −1.
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Lemma 4.1. Let A = V ΛV −1, with Λ diagonal and ∥Λ∥2 ≤ 1. Then

dH(conv(Λ(A)),W (A)) ≤ ∥V ∥2∥(V ∗V )−1/2 − I∥2 + ∥(V ∗V )1/2 − I∥2.

Proof. In order to bound the Hausdorff distance, it suffices to define Â = V (V ∗V )−1/2Λ(V ∗V )1/2V −1,

note that W (Â) = conv(Λ(A)), and bound the difference in Rayleigh quotient (itself bounded by the

two-norm) between A and Â for an arbitrary vector x. We have

∥A− Â∥2 ≤ ∥V ΛV −1 − V (V ∗V )−1/2Λ(V ∗V )1/2V −1∥2
≤ ∥(V ∗V )1/2Λ(V ∗V )−1/2 − Λ∥2
≤ ∥(V ∗V )1/2Λ(V ∗V )−1/2 − (V ∗V )1/2Λ∥2 + ∥(V ∗V )1/2Λ− Λ∥2
≤ ∥(V ∗V )1/2∥2∥(V ∗V )−1/2 − I∥2 + ∥(V ∗V )1/2 − I∥2.

□

When this distance is large, the techniques used in Section 3 are no longer sufficient to provide a
quantitative estimate on W (A) using W (Hm). Unfortunately, in the worst-case, this issue is inherent
to the problem. The following example illustrates that the bound in Lemma 4.1 is essentially tight in
the worst case, and that W (Hm) in some cases no loner provides a reasonable estimate of W (A) for
even moderately sized m.

Example 4.2. Consider the matrix A = Λ+ γe1e
T
n ∈ Rn×n, where γ > 0 and Λ is a diagonal matrix

with Λi = cos
( (i−1)π

n−1

)
for i = 1, . . . , n. A has all its eigenvalues in [−1, 1], numerical range

W (A) =

{
z ∈ C

∣∣∣∣ Re(z)2

1 + γ2/4
+

Im(z)2

γ2/4
≤ 1

}
,

and eigenvector condition number κV (A) =
√
1 + γ2/4. As γ increases, the distance between ∂W (A)

and [−1, 1] and the size of κV (A) both increase linearly. The numerical range of most Krylov subspaces
will contain [−1, 1] (the convex hull of the eigenvalues of A) relatively quickly, but will fail to approxi-
mate W (A) in a reasonable amount of time. See Figure 4 for an example with n = 1000, γ = 2, and
m = 100.

In this section, we present two main results. The first provides estimates on the Hausdorff distance
between W (Hm) and W (A) (Theorem 4.4 in Subsection 4.1). Unsurprisingly, in light of Example
4.2, these estimates degrade rather quickly once κ(V ) is larger than 1 + on(1). However, even though
W (Hm) may no longer approximateW (A) well once κ(V ) grows, as long as the eigenvectors still possess
repulsive behavior (quantified below in Subsection 4.2), precise statements regarding the approximation
that W (Hm) provides to conv(Λ(A)) can still be made, in some cases, for κ(V ) as large as n1/2−ϵ

(Theorem 4.10 in Subsection 4.2).

4.1. Estimating the Numerical Range for a Nearly Normal Matrix. First, we estimate the
approximation the W (Hm) provides to an arbitrary extreme eigenvalue λ of Λ(A). In the previous
section, we produced bounds on this approximation by using extremal polynomials from Subsection 2.4
applied to Equation 2. Here, we apply the same techniques, but must account for two key differences
between Equation 1 and Equation 2: the existence of the term V ∗V in both the numerator and
denominator, and that α = V −1b is no longer uniform on Sn−1. The former issue is treated by the
following lemma and the latter issue is treated using Proposition 2.8.

Lemma 4.3. Let V be invertible. Then∣∣∣∣x∗V ∗V Dx

x∗V ∗V x

∣∣∣∣ ≤ ∥V −1∥22
∣∣∣∣x∗Dx

x∗x

∣∣∣∣+ ∥D∥2∥V −1∥2∥V − (V −1)∗∥2.
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(a) W (A) and W (H100) for ten different b ∼ Unif(Sn−1) (b) dH(W (A),W (Hm)) for m = 1, . . . , 100 and
ten different b ∼ Unif(Sn−1)

Figure 4. The numerical range of Hm for A = diag(cos (j−1)π
n ) + 2e1e

T
n and ten

different b ∼ Unif(Sn−1), where n = 1000 and m = 100. The numerical range quickly
(approximately) contains [−1, 1] (the convex hull of eigenvalues of A) in all instances,
but fails to reasonably approximate the numerical range of A. In over half the cases,
W (H100) is barely bigger than [−1, 1], and in all cases the Hausdorff distance between
W (A) and W (H100) is still at least 1/2.

Proof. We have ∣∣∣∣x∗V ∗V Dx

x∗V ∗V x

∣∣∣∣ ≤ ∣∣∣∣ x∗Dx

x∗V ∗V x

∣∣∣∣+ ∣∣∣∣x∗(V ∗V − I)Dx

x∗V ∗V x

∣∣∣∣
=

∣∣∣∣x∗Dx

x∗x

∣∣∣∣ ∣∣∣∣ x∗x

x∗V ∗V x

∣∣∣∣+ ∣∣∣∣x∗V ∗(V − (V −1)∗)DV −1V x

x∗V ∗V x

∣∣∣∣
≤
∣∣∣∣x∗Dx

x∗x

∣∣∣∣ ∥V −1∥22 + ∥V − (V −1)∗∥2∥D∥2∥V −1∥2.

□

A fair amount is lost in the bound of Lemma 4.3 compared to what one may expect in practice. For
instance, this bound handles the worst case scenario for a vector x, but fails to exploit the potential
benefits of using a random b. However, this lemma is sufficient for the purposes of estimating W (A),
as when κV (A) is larger than 1 + on(1), there can be other barriers to accurate approximation (see
Example 4.2).

Combining Lemmas 4.1 and 4.3 and applying the same techniques used in the proofs of Lemma 3.1
and Theorem 3.7, we obtain the following result.

Theorem 4.4. Let m,n ∈ N, and A ∈ Cn×n be a diagonalizable matrix with eigendecomposition
A = V ΛV −1, where the columns of V have norm one. Then

dH
(
W (H6m+1),W (A)

)
≤
(
6κ2(V )

m
ln

(
em∥α∥22

6minj∈[n] |αj |2

)
+ 4κ(V )(κ(V )− 1)

)
diam(conv(Λ(A))).

In particular, if b ∼ Unif(Sn−1), then

P
[
dH
(
W (H6m+1),W (A)

)
diam(conv(Λ(A)))

≤ 6κ2(V )

m
ln
(
n2+ακ2(V )

)
+ 4κ(V )(κ(V )− 1)

]
≥ 1− 5m

4nα
.
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Proof. The proof of this result is quite similar to that of Lemma 3.1 and Theorem 3.2, with the
additional use of Proposition 2.8 and Lemmas 4.1 and 4.3. First, we estimate the distance between an
arbitrary extreme point λ ∈ Λ(A) and W (H6m+1).

Without loss of generality, let λ = 0 be the extreme point, diam(W (A)) = 1, and W (A) ⊂ D0, the
half disk. By Equation 1 and Lemma 4.3,

min
x∈K6m+1(A,b)

∣∣∣∣x∗Ax

x∗x

∣∣∣∣ ≤ ∥V −1∥22 min
p∈P6m

∣∣∣∣α∗p(Λ)∗Λp(Λ)α

α∗p(Λ)∗p(Λ)α

∣∣∣∣+ ∥V − (V −1)∗∥2∥V −1∥2.

We have ∥V −1∥2 ≤ κ(V ) and

∥V − (V −1)∗∥2 ≤ max
j∈[n]

σj(V )− σj(V )−1 ≤ 2(κ(V )− I).

Let δ > 0 and Sδ = {Λj ∈ Λ(A) | |Λj | > δ}. Then

min
p∈P6m

∣∣∣∣α∗p(Λ)∗Λp(Λ)α

α∗p(Λ)∗p(Λ)α

∣∣∣∣ ≤ min
p∈P6m

∣∣∣∣∣
∑

Λj∈Sδ
|αj |2|p(Λj)|2Λj∑n

j=1 |αj |2|p(Λj)|2

∣∣∣∣∣+
∣∣∣∣∣
∑

Λj ̸∈Sδ
|αj |2|p(Λj)|2Λj∑n

j=1 |αj |2|p(Λj)|2

∣∣∣∣∣
≤ min

p∈P6m

∑
Λj∈Sδ

|αj |2|p(Λj)|2

minj∈[n] |αj |2|p(0)|2
+ δ.

Now, consider the choice p(z) = P̃m,δ(z), as defined in Proposition 2.5. By Inequality 4,∑
Λj∈Sδ

|αj |2|P̃m,δ(Λj)|2

minj∈[n] |αj |2|P̃m,δ(0)|2
≤ ∥α∥22

minj∈[n] |αj |2
exp

(
−mδ

6

)
.

Setting δ = 6m−1 ln
( m∥α∥2

2

6minj∈[n] |αj |2
)
(if δ > 1, the result is trivially true), we have

min
p∈P6m

∣∣∣∣α∗p(Λ)∗Λp(Λ)α

α∗p(Λ)∗p(Λ)α

∣∣∣∣ ≤ ∥α∥22
minj∈[n] |αj |2

exp

(
−mδ

6

)
+ δ ≤ 6

m

(
1 + ln

(
m∥α∥22

6minj∈[n] |αj |2

))
.

Altogether, this implies that

min
x∈K6m+1(A,b)

∣∣∣∣x∗Ax

x∗x

∣∣∣∣ ≤ 6κ2(V )

m
ln

(
em∥α∥22

6minj∈[n] |αj |2

)
+ 2κ(V )(κ(V )− 1).

By Proposition 2.2, a bound for all extreme eigenvalues of A immediately implies a bound for the
Hausdorff distance between conv(Λ(A)) and W (H6m+1). Combining this with Lemma 4.1, we obtain

dH(W (H6m+1),W (A)) ≤ dH(W (H6m+1), conv(Λ(A))) + dH(conv(Λ(A)),W (A))

≤ 6κ2(V )

m
ln

(
em∥α∥22

6minj∈[n] |αj |2

)
+ 4κ(V )(κ(V )− 1).

Now, suppose that b ∼ Unif(Sn−1). By Proposition 2.8 with M = V −1, t = em/(6nα), we have

P
[
minj∈[n] |[V −1b]j |2

∥V −1b∥2
≥ em

6n2+ακ2(V )

]
≥ 1− e2m

6nα
≥ 1− 5m

4nα
,

completing the proof. □

An analogous statement to Theorem 4.4 for Λ(A) ⊂ S0 can also be made by combining the above
proof with the proofs of Theorem 3.7 and Corollary 3.9.

Remark 4.5. In Figure 4, despite a constant condition number, W (Hm) approximately encloses
conv(Λ(A)). This can be easily explained in the following way. When restricted to the subspace of
Cn×n with first and last component equal to zero, A is normal, and, when m > 2, Km(A, b) contains a
vector in this subspace. Therefore, W (Hm) must provide a very good estimate of conv

(
Λ(A)\{Λ1,Λn}

)
,

which in this case is nearly identical to conv(Λ(A)). In Subsection 4.2, we consider a general class
of matrices whose eigenvector condition number is of moderate size, yet still W (Hm) approximately
encloses conv(Λ(A)), due to relatively well-behaved eigenvectors.
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(a) W (A), Λ(A) and W (H30) for ten
different b ∼ Unif(Sn−1)

(b) d̃H(conv(Λ(A)),W (Hm)) for
m = 1, . . . , 50 and ten different

b ∼ Unif(Sn−1)

(c) m × d̃H(conv(Λ(A)),W (Hm)) for
m = 1, . . . , 50 and ten different

b ∼ Unif(Sn−1)

Figure 5. W (Hm) for A in Example 4.6. Here we let n = 2560, m = 16, and l = 10.

4.2. Bounding the Eigenvalues of a Non-Normal Matrix with Repulsive Eigenvectors.
While Subsection 4.1 illustrates that estimates of the numerical range break down as the eigenvector
condition number increases, we can still obtain a reasonable estimate for the convex hull of eigenvalues
when the eigenvectors are relatively well-behaved. Consider the following example:

Example 4.6. Let A = V ΛV −1 ∈ Cn×n, with V ∗V = (1 − n−2/3)I + n−2/311T and Λ as defined in
Theorem 3.5. Figure 5 demonstrates that conv(Λ(A)) can be approximated with order 1/m convergence,
as the condition |[V ∗V ]jk| ≤ n−2/3 prevents the eigenvectors from clustering.

The following definition parameterizes our notion of eigenvector repulsion, preventing eigenvectors
from adversarially combining in any single direction.

Definition 4.7. We say a matrix V ∈ Cn×n is β-normal for some β > 0 if its columns have norm
one and, for V = [v1 . . . vn] and (V −1)∗ = [w1 . . . wn],∑

ℓ∈[n]\k

|v∗
kvℓ|(|w∗

ℓwj |+ |w∗
kwj |) ≤ n−β∥wj∥2 for all j, k ∈ [n]. (5)

When this β-normal condition holds, we can effectively treat the additional difficulty introduced by
the term V ∗V in the numerator and denominator of Equation 1.

Lemma 4.8. Let n ≥ 2 and β > 2 ln(2 ln(en))/ ln(n), V ∈ Cn×n be β-normal (see Definition 4.7),
and D,P ∈ Cn×n be diagonal with ∥D∥2 ≤ 1. Then, for b ∼ Unif(Sn−1(C)) and ε = 2n−β/2 ln(en),

P
[∣∣∣∣ [PV −1b]∗V ∗V D[PV −1b]

[PV −1b]∗V ∗V [PV −1b]

∣∣∣∣ ≥ ( 1

1− ε

)(∣∣∣∣ [PV −1b]∗D[PV −1b]

[PV −1b]∗[PV −1b]

∣∣∣∣+ ε

)]
≤ en−β/2+2n−1/2+4n−1/4.

Proof. For simplicity, let W = (V −1)∗, and, without loss of generality, suppose that |Pj | ≤ |Pk| for
j < k. We first treat the denominator ∥V PW ∗b∥2; the numerator will be bounded in a similar
manner. For the desired denominator ∥PW ∗b∥2, let ϕ := E[∥PW ∗b∥2] denote its expectation. Then,
by Proposition 2.9,

ϕ = E[∥PW ∗b∥2] = trace(WP ∗PW ∗) = trace(P ∗PW ∗W ) =

n∑
j=1

|Pj |2∥wj∥2.

The expectation of ∥V PW ∗b∥2 is given by

E[∥V PW ∗b∥2] = trace(WP ∗V ∗V PW ∗) = trace(V ∗V PW ∗WP ∗) =

n∑
j=1

n∑
k=1

v∗
jvkPkw

∗
kwjPj .
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By the ordering |Pj | ≤ |Pk| for j < k and Inequality 5 (with j = k),

E[∥V PW ∗b∥2] =
n∑

j=1

|Pj |2∥wj∥2 + 2

n∑
j=1

j−1∑
k=1

Re(PkPj v
∗
jvk w

∗
kwj)

≥
n∑

j=1

|Pj |2∥wj∥2 − 2

n∑
j=1

|Pj |2
j−1∑
k=1

|v∗
jvk||w∗

kwj |

≥ (1− 2n−β)ϕ.

Now, let M = WP ∗(V ∗V − I)PW ∗, and consider the error term ∥V PW ∗b∥2−∥PW ∗b∥2 = b∗Mb. By
Proposition 2.9, its variance is given by

∥M∥2F = trace(([WP ∗][V ∗V − I][PW ∗])2)

= trace(([V ∗V − I][PW ∗][WP ∗])2)

=

n∑
j=1

n∑
k=1

( ∑
ℓ∈[n]\j

v∗
jvℓ PℓPk w

∗
ℓwk

)( ∑
m∈[n]\k

v∗
kvm PmPj w

∗
mwj

)
.

Rearranging the index pairs j, ℓ and k,m, and applying Inequality 5, we obtain

∥M∥2F =

n∑
j=1

n∑
k=1

(
j−1∑
ℓ=1

v∗
jvℓ PℓPk w

∗
ℓwk + v∗

ℓvj PjPk w
∗
jwk

)

·

(
k−1∑
m=1

v∗
kvm PmPj w

∗
mwj + v∗

mvk PkPj w
∗
kwj

)

≤
n∑

j=1

n∑
k=1

|Pj |2|Pk|2
(

j−1∑
ℓ=1

|v∗
jvℓ|

(
|w∗

ℓwk|+ |w∗
jwk|

))( k−1∑
m=1

|v∗
kvm|

(
|w∗

mwj |+ |w∗
kwj |

))

≤ n−2β
n∑

j=1

n∑
k=1

|Pj |2|Pk|2∥wk∥2∥wj∥2

≤ n−2βϕ2.

Now, let X = ∥PW ∗b∥2, Y = ∥V PW ∗b∥2, and t ≥ 1. By Proposition 2.10 (using the inequality
∥M∥2 ≤ ∥M∥F ) and Proposition 2.12,

P
[
Y ≤ (1− 2n−β/2t)X

]
= P

[
X − Y ≥ 2n−β/2tX

]
≤ P

[
X ≤ n−β/2ϕ

]
+ P

[
X − Y ≥ 2n−βtϕ

]
≤ en−β/2 + 2 exp

(
− t−1

2

)
.

Now we turn to the numerator. Assume, without loss of generality, that ∥P∥2 ≤ 1, and let Z =
[PV −1b]∗(V ∗V − I)D[PV −1b] equal the difference in numerators. Its expectation is given by

E[Z] = trace(DPW ∗WP ∗(V ∗V − I)) =

n∑
j=1

DjPj

∑
k∈[n]\j

w∗
jwk Pk v

∗
kvj .

Using Inequality 5 and the property |Pj | ≤ |Pk| for j < k, |E[Z]| can be bounded as follows:

∣∣E[Z]
∣∣ ≤ n∑

j=1

∑
k∈[n]\j

|Pj ||Pk||w∗
jwk| |v∗

kvj | ≤ 2

n∑
j=1

|Pj |2
j−1∑
k=1

|w∗
jwk| |v∗

kvj | ≤ 2n−βϕ.
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Bounding the variance is slightly more difficult, since N := [PV −1]∗(V ∗V − I)D[PV −1] is not neces-
sarily normal. Instead, we bound ∥N +N∗∥2F and ∥N −N∗∥2F separately and make use of Corollary

2.11. The procedure is very similar to that of the denominator, save for the term maxj,k |Dj +Dk| ≤ 2.
We sketch the estimate for ∥N +N∗∥2F (∥N −N∗∥2F is nearly identical):

∥N +N∗∥2F = trace
(
([D∗(V ∗V − I) + (V ∗V − I)D]PW ∗WP ∗)2

)
=

n∑
j=1

n∑
k=1

( ∑
ℓ∈[n]\j

(Dj +Dℓ)v
∗
jvℓ PℓPk w

∗
ℓwk

)( ∑
m∈[n]\k

(Dk +Dm)v∗
kvm PmPj w

∗
mwj

)

≤ 4

n∑
j=1

n∑
k=1

( ∑
ℓ∈[n]\j

|Pℓ||Pk| |v∗
jvℓ| |w∗

ℓwk|

)( ∑
m∈[n]\k

|Pm||Pj | |v∗
kvm| |w∗

mwj |

)

≤ 4

n∑
j=1

n∑
k=1

|Pj |2|Pk|2
(

j−1∑
ℓ=1

|v∗
jvℓ|

(
|w∗

ℓwk|+ |w∗
jwk|

))( k−1∑
m=1

|v∗
kvm|

(
|w∗

mwj |+ |w∗
kwj |

))

≤ 4n−2β
n∑

j=1

n∑
k=1

|Pj |2|Pk|2∥wk∥2∥wj∥2

≤ 4n−2βϕ2.

Hence, Var[Z] ≤ 2n−2βϕ2 and, by Corollary 2.11,

P
[
|Z| ≥ 2n−βtϕ

]
≤ P

[
|Z − E[Z]| ≥ 2n−β(t− 1)ϕ

]
≤ 4 exp

(
− t−1

4

)
.

To complete the proof, we union bound the cases that the denominator is too small and the numerator
too big. Let Zx = [PV −1b]∗D[PV −1b] and Zy = [PV −1b]∗V ∗V D[PV −1b]. Setting t = 1 + lnn (note

that 2n−β/2t < 1 for β > 2 ln(2 ln(en))/ ln(n)), we have

P
[
|Zy|
Y

≥ 1

1− 2n−β/2t

(
|Zx|
X

+
2t

nβ/2

)]
≤ P

[
Y ≤ (1− 2n−β/2t)X

]
+ P

[
|Zx| − |Zy| ≥ 2n−β/2tX

]
≤ P

[
X ≤ n−β/2ϕ

]
+ P

[
X − Y ≥ 2n−βtϕ

]
+ P

[
|Z| ≥ 2n−βtϕ

]
≤ en−β/2 + 2 exp

(
− t−1

2

)
+ 4 exp

(
− t−1

4

)
= en−β/2 + 2n−1/2 + 4n−1/4.

□

The above lemma immediately implies an upper bound for estimating extremal eigenvalues.

Corollary 4.9. Let n ≥ 2 and β > 2 ln(2 ln(en))/ ln(n), A ∈ Cn×n be diagonalizable with eigendecom-
position A = V ΛV −1, where V is β-normal (see Definition 4.7), and Λk ∈ Λ(A) be an extreme point
of conv(Λ(A)). Then, for b ∼ Unif(Sn−1),

P

 d(Λk,W (H6m+1))

diam(conv(Λ(A)))
≥

6
m ln

(
em∥V −1b∥2

2

6|[V −1b]k|2

)
+ 2 ln(en)

nβ/2

1− 2 ln(en)
nβ/2

 ≤ en−β/2 + 2n−1/2 + 4n−1/4.

Proof. By the proof of Lemma 3.1, there exists a polynomial p ∈ P6m such that∣∣∣∣Λk − [p(Λ)V −1b]∗Λ[p(Λ)V −1b]

[p(Λ)V −1b]∗[p(Λ)V −1b]

∣∣∣∣ ≤ 6

m
ln

(
em∥V −1b∥22
6|[V −1b]k|2

)
diam(conv(Λ(A)).

Applying Lemma 4.8 with D = (ΛkI − Λ) and P = p(Λ) completes the proof. □

Combining the above estimate for a single extremal eigenvalue with Proposition 2.1, we can produce
an estimate on the one-sided Hausdorff distance between conv(Λ(A)) and W (Hm).
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Theorem 4.10. Let n ≥ 2 and β > 2 ln(2 ln(en))/ ln(n), A ∈ Cn×n be diagonalizable with eigende-
composition A = V ΛV −1, where V is β-normal (see Definition 4.7). Then, for b ∼ Unif(Sn−1) and
any 0 < γ < min{β/2, 1/4}, the one-sided Hausdorff distance between conv(Λ(A)) and W (H6m+1) is
bounded by

d̃H(conv(Λ(A)),W (H6m+1))

diam(conv(Λ(A)))
≤

6
m ln(n2+ακ2(V )) + 2 ln(en)

nβ/2

1− 2 ln(en)
nβ/2

+
π

nγ
tan

2π

nγ

with probability at least

1− e2m

6nα
− e

nβ/2−γ
− 2

n1/2−γ
− 4

n1/4−γ
.

Proof. Let U = conv(Λ(A)), and L = π diam(U). By Proposition 2.1, we can pick nγ/2 vertices S to
create an interior polytope V = conv(S) approximating the convex hull with error at most L

nγ tan 2π
nγ .

The optimal polytope V must have each element of S on the boundary of U . For each s ∈ S, let
λs, µs ∈ Λ(A) be the endpoints of the boundary segment containing s. Let W =

⋃
s∈S{λs, µs} and

W = conv(W ). Since V ⊆ W ⊆ U , W approximates U at least as well as V.
By Corollary 4.9 applied to the eigenvalues in W and Proposition 2.2,

P

 d̃H(U ,W (H6m+1))

diam(conv(Λ(A)))
≥

6
m ln

(
em∥V −1b∥2

2

6mink |[V −1b]k|2

)
+ 2 ln(en)

nβ/2

1− 2 ln(en)
nβ/2

+
π

nγ
tan

2π

nγ

 ≤ e

nβ/2−γ
+

2

n1/2−γ
+

4

n1/4−γ
.

By Proposition 2.8 with M = V −1 and t = em/(6nα), we have

P
[
mink∈[n] |[V −1b]k|2

∥V −1b∥2
≤ em

6n2+ακ2(V )

]
≤ e2m

6nα
,

completing the proof. □
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Appendix A. A Remez-Type Polynomial for the Half Annulus

Here we provide a proof of Proposition 2.5. Recall that

Dδ = {z ∈ C | δ ≤ |z| ≤ 1,Re(z) ≤ 0}

and

Rϵ = {z ∈ C
∣∣ |z| ≤ 1, arg z ∈ [ϵ, π − ϵ] ∪ [π + ϵ, 2π − ϵ]} ∪ {z ∈ C

∣∣ |z| ≤ 1− ϵ/8}.
Given Proposition 2.4, in order to prove Proposition 2.5, it suffices to prove that P (0) = 1 and

P (Dδ) ⊂ R 2
3 δ

for P (z) = (1 − δ
4 )z

2 + (1 − δ
8 )z + 1. Clearly, the former is true. The latter is proved

below.

Proposition A.1. Let 0 < δ < 1 and P (z) = (1− δ
4 )z

2 + (1− δ
8 )z + 1. Then P (Dδ) ⊂ R 2

3 δ
.

Proof. By the open mapping theorem, it suffices to show that P (∂Dδ) ⊂ R 2
3 δ
. We do so by considering

the following three portions of ∂Dδ separately:

(1) z = eiθ, θ ∈ [π2 ,
3π
2 ],

(2) z = ci, δ ≤ |c| ≤ 1,
(3) z = δeiθ, θ ∈ [π2 ,

3π
2 ].

First, consider z = eiθ, θ ∈ [π2 ,
3π
2 ]. We have∣∣P (eiθ)

∣∣2 =
∣∣(1− δ

4 )e
2iθ + (1− δ

8 )e
iθ + 1

∣∣2
= 1− δ

4 + 5δ2

64 + 4(1− δ
8 )

2 cos θ + 4(1− δ
4 ) cos

2 θ.∣∣P (eiθ)
∣∣2 is a convex function of cos θ for θ ∈ [π2 , π], and so it achieves its maximum at one of the

endpoints. Therefore, ∣∣P (eiθ)
∣∣2 ≤ 1− δ

4 + 5δ2

64 + 4max{(1− δ
4 )− (1− δ

8 )
2, 0}

≤ 1− δ
4 + 5δ2

64 .

The right hand side is bounded above by (1− 1
12δ)

2 for δ ∈ [0, 1], and so P (eθi) ⊂ R 2
3 δ

for θ ∈ [π2 ,
3π
2 ].

Next, consider z = ci for δ ≤ |c| ≤ 1. We have

P (ci) = 1− (1− δ
4 )c

2 + (1− δ
8 )ci.

Note that the real part of P (ci) is positive. Without loss of generality, let c > 0. It suffices to show
that

arg(P (ci)) = arctan
(1− δ

8 )c

1− (1− δ
4 )c

2
≥ 2

3δ,

or, equivalently, that

tan( 23δ)(1−
δ
4 )c

2 + (1− δ
8 )c− tan( 23δ) ≥ 0.

The left hand side is increasing with respect to c for c > 0, and so

tan( 23δ)(1−
δ
4 )c

2 + (1− δ
8 )c− tan( 23δ) ≥ tan( 23δ)(1−

δ
4 )δ

2 + (1− δ
8 )δ − tan( 23δ).

The derivative of the right hand side is bounded below by 3
10 on [0, 1], and so its minimum is achieved

at δ = 0 and given by zero. Therefore, P (ci) ⊂ R 2
3 δ

for δ ≤ |c| ≤ 1. Finally, consider z = δeiθ for

θ ∈ [π2 ,
3π
2 ]. We have∣∣P (δeiθ)
∣∣2 =

∣∣(1− δ
4 )δ

2e2iθ + (1− δ
8 )δe

iθ + 1
∣∣2

= 1− δ2 + 1
4δ

3 + 65
64δ

4 − 1
2δ

5 + 1
16δ

6 + δ(2− 1
4δ + 2δ2 − 3

4δ
3 + 1

16δ
4) cos θ + δ2(2− 1

2δ) cos
2 θ
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and

arg(P (δeiθ)) = arctan
(1− δ

8 )δ sin(θ) + (1− δ
4 )δ

2 sin(2θ)

1 + (1− δ
8 )δ cos(θ) + (1− δ

4 )δ
2 cos(2θ)

.

We break our analysis of z = δeiθ for θ ∈ [π2 ,
3π
2 ] into three cases, depending on the size of δ and

value of θ. Let us first consider the size of
∣∣P (δeiθ)

∣∣2. This quantity is a convex function of cos θ for
θ ∈ [π2 , π], and so it achieves its maximum at one of the endpoints. Therefore,∣∣P (δeiθ)

∣∣2 ≤ 1− δ2 + 1
4δ

3 + 65
64δ

4 − 1
2δ

5 + 1
16δ

6 + δmax{−(2− 9
4δ +

5
2δ

2 − 3
4δ

3 + 1
16δ

4), 0}
= 1− δ2 + 1

4δ
3 + 65

64δ
4 − 1

2δ
5 + 1

16δ
6.

This quantity is strictly less than (1 − 1
12δ)

2 for δ ∈ [ 9
50 , 1], so we may now restrict our attention to

δ < 9
50 . If cos θ ≤ − 1

12 , then∣∣P (δeiθ)
∣∣2 ≤ 1− δ2 + 1

4δ
3 + 65

64δ
4 − 1

2δ
5 + 1

16δ
6

+ δmax{−(2− 9
4δ +

5
2δ

2 − 3
4δ

3 + 1
16δ

4),− 1
12 (2−

1
4δ + 2δ2 − 3

4δ
3 + 1

16δ
4) + 1

144δ(2−
1
2δ)}

= 1− 1
6δ −

139
144δ

2 + 23
288δ

3 + 69
64δ

4 − 97
192δ

5 + 1
16δ

6,

and the right hand side is bounded above by (1− 1
12δ)

2. All that remains is to consider the case where

δ < 9
50 and − 1

12 < cos θ ≤ 0. When δ and cos θ are this small in magnitude,

Re(P (δeiθ)) = 1 + (1− δ
8 )δ cos(θ) + (1− δ

4 )δ
2 cos(2θ) > 0.

Suppose, without loss of generality, that θ ∈ [π2 , π]. We aim to show that, in this regime, arg(P (δeiθ)) ≥
2
3δ, or, equivalently, that

(1− δ
8 )δ sin(θ) + (1− δ

4 )δ
2 sin(2θ) ≥

(
1 + (1− δ

8 )δ cos(θ) + (1− δ
4 )δ

2 cos(2θ)
)
tan( 23δ).

We note that cos θ and cos(2θ) are negative, sin θ > 99
100 , and sin(2θ) > − 1

5 for θ ∈ [π2 , arccos(−
1
12 )].

Combining these bounds with the inequality tan(x) ≤ x+ 1
2x

3 for 0 ≤ x ≤ 1/2, it suffices to show that

99
100 (1−

δ
8 )δ −

1
5 (1−

δ
4 )δ

2 − ( 23δ +
4
27δ

3) = δ( 97
300 − 259

800δ −
53
540δ

2) ≥ 0.

By inspection, this is indeed the case for δ < 9
50 . Therefore, P (δeθi) ⊂ R 2

3 δ
for θ ∈ [π2 ,

3π
2 ]. This

completes the analysis of the third and final portion of ∂Dδ, and so P (∂Dδ) ⊂ R 2
3 δ
, completing the

proof. □


