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Abstract. The matrix p → q norm is a fundamental quantity appearing in a variety
of areas of mathematics. This quantity is known to be efficiently computable in only
a few special cases. The best known algorithms for approximately computing this
quantity with theoretical guarantees essentially consist of computing the p → q norm
for p, q where this quantity can be computed exactly or up to a constant, and applying
interpolation. We analyze the matrix 2 → q norm problem and provide an improved
approximation algorithm via a simple argument involving the rows of a given matrix.
For example, we improve the best-known 2 → 4 norm approximation from m1/8 to
m1/12. This insight for the 2 → q norm improves the best known p → q approximation
algorithm for the region p ≤ 2 ≤ q, and leads to an overall improvement in the best-

known approximation for p → q norms from m25/128 to m3−2
√
2.

1. Introduction

Given a matrix A ∈ Cm×n, the p → q norm of A, defined by

∥A∥p→q := max
x∈Cn

∥Ax∥q
∥x∥p

, p, q ∈ [1,∞),

where ∥ · ∥p is the ℓp-norm of a vector, is a measure of how large in magnitude a
vector of a given p-norm can become in q-norm from the application of A. The matrix
p → q norm is a fundamental quantity, appearing in a variety of areas of mathematics
and computer science. The spectral norm (p = q = 2) is perhaps the most used and
well-known instance of a p → q norm, and is equal to the largest singular value of a
matrix. More generally, matrix p → p norms (simply called p-norms) appear in relative
error estimates for linear systems Ax = b, as the p → p condition number of a matrix
governs the worst-case relative error for x in p-norm due to small perturbations to A
and b; see both [13, Chapter 2.6] and [18, Chapter 14] for details. The special case of
p = ∞ and q = 1 is the well-studied Grothendieck problem [14, 23]: maximize ⟨y, Ax⟩
subject to ∥x∥∞, ∥y∥∞ = 1, of which the max-cut problem in graph theory is a special
case [12]. The case of p = 2 and q = 4 is also of special significance. For instance,
distinguishing between entangled and separable states in quantum information theory
is known to be related to the computation of the 2 → 4 norm [15]. The 2 → q norm,
for any even q ≥ 4, is directly related to small-set expansion in graph theory and the
unique games conjecture in computational complexity [2]. More generally, norms in the
hyper-contractive region of p < q are closely related to mixing of Markov chains and a
variety of problems in theoretical computer science, see [25, 6] for details and further
examples. The most general setting of arbitrary p and q is also broadly applicable to
robust optimization, see [26, Section 1.1.2] and the examples and references contained
therein.
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One of our initial questions about ∥A∥p→q was whether techniques proving Lp to
Lq boundedness from analysis could be applied to improve approximation algorithms

for ∥A∥p→q. Consider, for example, the Fourier transform f̂(ξ) =
∫
Rn e

2πix·ξf(x)dx
of a function f : Rn → C. By the classical Hausdorff-Young inequality, Cp,q,n :=

sup∥f∥Lp=1 ∥f̂∥Lq is finite if and only if 1 ≤ p ≤ 2 and 1
p
+ 1

q
= 1. The optimal constant

Cp,q,n is achieved by Gaussian functions, which was proved by Babenko [1] for even q and
then Beckner [3] for all 2 ≤ q. In [9], Christ sharpened the Hausdorff-Young inequality
by proving that

∥f̂∥Lq ≤ [Cp,q,n − distp(f,G)]∥f∥Lp

for an appropriate distance function distp(f,G) of f to the set of Gaussians. One
basic idea we use in our approximation of ∥A∥p→q involves the following fundamental
maximization principle that Christ used in [9]. Suppose that ∥f∥Lp = 1 and that for

a small parameter δ > 0, Cp,q,n(1 − δ) ≤ ∥f̂∥Lq . If for another small parameter η > 0,
f = g + h is a disjointly supported decomposition of f with ∥h∥Lp ≤ η, then

Cp,q,n(1− δ) ≤ ∥f̂∥Lq ≤ ∥ĝ∥Lq + Cp,q,n∥h∥Lp ≤ ∥ĝ∥Lq + Cp,q,nη,

so Cp,q,n(1− δ − η)∥g∥Lp ≤ ∥ĝ∥Lq . The basic principle is that if f has close to maximal

ratio ∥f̂∥Lq/∥f∥Lp and g is a significant portion of the Lp mass of f , then g also has
close to maximal ratio ∥ĝ∥Lq/∥g∥Lp . We use this idea in the proof of the key lemma
(Lemma 2.1) below.

Computing the matrix p → q norm consists of maximizing a convex function over a
convex domain, and, unfortunately, is difficult in general. The matrix p → q norm is
only efficiently computable (up to arbitrary error) in three special cases: p = q = 2,
p = 1, and q = ∞. As previously mentioned, the spectral norm ∥A∥2→2 is equal to
the largest singular value σmax(A) of A and is achieved by any right singular vector v
corresponding to σmax(A). Let rj, j = 1, ...,m, denote the conjugate transpose of the
rows of A. When q = ∞, ∥A∥p→∞ = maxj∈{1,...,m} ∥rj∥p∗ , where 1/p + 1/p∗ = 1, and
this value is achieved by the vector v = (|rj(1)|p

∗−2rj(1), . . . , |rj(n)|p
∗−2rj(n)), where

rj = (rj(1), . . . , rj(n)) is a row vector with maximal p∗ norm. In fact, the case of p = 1
is mathematically equivalent to q = ∞, as

∥A∥p→q = max
∥x∥p=1,
∥y∥q∗=1

⟨y, Ax⟩ = ∥A∗∥q∗→p∗ , where
1

p
+

1

p∗
=

1

q
+

1

q∗
= 1.

More generally, by duality, it suffices to only consider ∥A∥p→q for 1/p + 1/q ≤ 1. For
this reason, our results focus on the regimes p, q ≥ 2 and 1 ≤ p ≤ 2 ≤ q, as 1 ≤ p, q ≤ 2
is mathematically equivalent to p, q ≥ 2. In the region 1 ≤ q ≤ 2 ≤ p, the matrix p → q
norm can be approximated up to a constant factor of at most π/2, this is often called
Nesterov’s π/2 Theorem, and the region 1 ≤ q ≤ 2 ≤ p is often called the Nesterov
region [22]. When the underlying matrix is non-negative, the matrix p → q norm can be
computed exactly when p ≥ q ≥ 1 (see [26, 4]), a setting with application to oblivious
routing in graph theory [11].

1.1. Hardness Results. Outside of these special cases, the majority of results for ma-
trix norms consists of algorithmic lower bounds. In [24], Rohn showed that computing
the ∞ → 1 norm is NP-hard, a result later expanded upon by Steinberg, who showed
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that computing the p → q norm for p > q is NP-hard [26]. Later, Hendrickx and Ol-
shevsky proved that computing the p → p norm for any rational p ̸= 1, 2 is NP-hard, and
that computing the ∞ → q norm to an arbitrary constant for any rational q is NP-hard
[16]. Bhaskara and Vijayaraghavan proved that it is NP-hard to compute the p → q
norm up to any constant factor for 2 < q ≤ p, and, under a reasonable assumption from
computational complexity, show that this norm cannot be approximated within a factor
of 2log

1−ϵ(n) for any constant ϵ > 0 [4]. Barak et al. treated the 2 → q norm problem,
and showed that the 2 → 4 norm is NP-hard to approximate up to inverse-polynomial
(in dimension) precision, and, assuming the exponential time hypothesis, better than

a factor of 2O(log1/2−ϵ n) [2]. Finally, Bhattiprolu et al. showed, under a reasonable as-
sumption from computational complexity, that it is NP-hard to approximate the p → q
norm for 2 < p < q within a factor of 2O(log1−ϵ n) [5].

1.2. Existing Algorithms. In terms of methods, in 1974 Boyd proposed a power
method type heuristic for computing the matrix p → q norm, with theoretical analy-
sis for the case of non-negative matrices, but without rigorous guarantees for arbitrary
matrices [7]. Higham later produced a modified power method using a well-chosen ini-
tial guess that performed well in practice for the p → p norm and had the theoretical
approximation guarantee of n1−1/p for p ≥ 2 [17]. Steinberg, by approximating norms
in the Nesterov region 1 ≤ q ≤ 2 ≤ p via semidefinite programming and using inter-

polation, produced a (π/2)
1
qm

q−2

q2 approximation approximation algorithm for p, q ≥ 2

and a m
2(q−2)(p−1)

pq2 n
(p−1)(2−p)

p2 algorithm for p ≤ 2 ≤ q, leading to a worst-case approxima-
tion of O(max{m,n}25/128) for an arbitrary p and q. For the p → p norm, Steinberg’s
algorithm has a stronger theoretical guarantee than that of Higham (e.g., m1/8 vs m1/4

for ∥A∥4→4), but this theoretical gap is offset by the practical difference in efficiency
of their two algorithms, as Steinberg’s estimate relies on the solution of a semidefinite
program. See [19] for a summary of the existing literature and best-known complexity
for cutting plane and interior point techniques for approximately solving a semidefinite
program. As previously mentioned, the 2 → q norm is of particular interest in theoret-
ical computer science. One interesting area of research for 2 → q norms is in producing
algorithms with bounded additive error. Barak et al. produced a 2O(log2(n)ϵ−2) time al-
gorithm that computes ∥A∥42→4 up to additive error ϵ∥A∥22→2∥A∥22→∞ [2], a result later
improved and extended to arbitrary q by Brandão and Harrow [8].

1.3. Our Results. In this work, we improve upon existing algorithms for computing
∥A∥p→q. We do so by producing superior estimates for the matrix 2 → q norm (Lemma
2.1) and extending these results using interpolation. Our simplest result for estimating
∥A∥2→q is recorded in the following theorem.

Theorem 1.1. Let A ∈ Cm×n, r1, ..., rm ∈ Cn denote the conjugate transpose of the m
rows of A, v ∈ Cn denote a right singular vector corresponding to the 2-norm of A, and
S = {v, r1, ..., rm}. Then

max
x∈S
x ̸=0

∥Ax∥q
∥x∥2

≥ (2m
1
q )−

q−2
2(q−1)∥A∥2→q for all q ≥ 2.

In §2.1, we show that Theorem 1.1 is the best approximation possible with the given
data. We also give examples to demonstrate the significantly improved bounds from
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Theorem 1.1 compared to Steinberg’s estimate using interpolation between the 2 → 2
and 2 → ∞ norms [26]. See Figure 1 for a comparison of the approximation exponents
for Steinberg’s interpolation approach and for Theorem 1.2. As an example, interpola-
tion gives an 3

√
2m1/12 approximation for the popular 2 → 4 norm, while interpolation

provides only a m1/8 approximation.
By also incorporating the 1 → q norm and interpolation, we use Theorem 1.1 to

improve p → q norm estimates for a range of p and q exponents, which leads to the
following generalization of Theorem 1.1.

Theorem 1.2. Let A ∈ Cm×n, r1, ..., rm ∈ Cn denote the conjugate transpose of the m
rows of A, v ∈ Cn denote a right singular vector corresponding to the 2-norm of A, and
y ∈ Cn achieve the 1 → q norm of A, and S = {v, r1, ..., rm}. Then

max
x∈S∪{y}

x ̸=0

∥Ax∥q
∥x∥p

≥
[
(2m

1
q )

q−2
q−1n

2−p
p

]− p−1
p ∥A∥p→q

for all
{
(p, q) | p ∈ [1,

√
2], q ∈

[
2

2−p
, p
p−1

]}
and

{
(p, q) | p ∈ [

√
2, 2], q ∈

[
p

p−1
, 2
2−p

]}
, and

max
x∈S
x ̸=0

∥Ax∥q
∥x∥p

≥
[
(2m

1
q )

q−2
q−1n

p−2
p

]− 1
2 ∥A∥p→q

for all p, q ∈ [2,∞).

We note that improved estimates for the regions not directly addressed in Theo-

rem 1.2 follow from duality, as p, q ∈ [1, 2],
{
(p, q) | q ∈

[ √
2√

2−1
,∞

)
, p ∈

[
q

q−1
, 2(q−1)

q

]}
,

and
{
(p, q) | q ∈

[
2,

√
2√

2−1

]
, p ∈

[2(q−1)
q

, q
q−1

]}
are dual to p, q ∈ [2,∞),

{
(p, q) | p ∈

[1,
√
2], q ∈

[
2

2−p
, p
p−1

]}
, and

{
(p, q) | p ∈ [

√
2, 2], q ∈

[
p

p−1
, 2
2−p

]}
, respectively. For the

region p, q ∈ [2,∞) (and, again, by duality, p, q ∈ [1, 2]), the worst-case estimates for
our simple estimator outperforms semidefinite programming-based interpolation esti-
mates for square matrices when p < 2q2(q − 1)/(q3 − 2q2 + 4q − 4). We give a visual
representation of these details, as well as a contour plot of the best approximation ex-
ponent with respect to p and q in Figure 1. Theorem 1.2 is a simplified version of our
main result that makes use of the worst-case Lipschitz bounds for norms. We prove a
tighter version of this result in Theorem 3.1, which has the same worst-case behavior,
but improved bounds for the majority of matrices A. Overall, Theorem 1.2 implies a

global O
(
max{m,n}3−2

√
2
)
approximation algorithm, as

max

{
(p− 1)(2− p)

p2
+

(p− 1)(q − 2)

pq(q − 1)

∣∣∣∣ 1 ≤ p ≤ 2 ≤ q,
1

p
+

1

q
≤ 1

}
= 3− 2

√
2,

achieved by p =
√
2 and q =

√
2√

2−1
. We note that the approximations provided by

Theorem 1.2 are not simply asymptotic theoretical bounds, but concrete estimates that
can be used in practice. In Table 1, we provide the worst-case approximation ratio for
the 2 → 4 norm and any p → q norm for matrices of dimension 103 to 109. Theorem 1.2
gives an approximation for any million by million matrix in any p → q norm within a
factor of 11.081, and within a factor of 3.985 for the 2 → 4 norm. This illustrates that,
while for sufficiently large matrices there is no hope for a polylogarithmic approximation
to the p → q norm, this asymptotic algorithmic lower bound does not apply to the sizes
of matrices typically seen in practice.
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(a) Best p → q norm approximation by region (b) Exponent of approximation for 2 → q norm

Figure 1. Figure (a) is a plot of the square (1/p, 1/q) ∈ [0, 1]2. Ef-
ficiently computable p, q are in dark blue and the Nesterov region com-
putable to a constant factor is in light blue. We note the regions of p, q for
which Theorem 1.2 improves upon the best-known approximation. The
worst approximation for any p, q is given by p =

√
2, q =

√
2/(

√
2 − 1),

marked in red. Figure (b) plots the worst-case approximation exponent
(e.g., the value α in a Cmα approximation) for Steinberg’s interpolation
approach and Theorem 1.2. For the popular 2 → 4 norm, interpolation
achieves an exponent of 1/8, while Theorem 1.2 achieves an exponent of
1/12, a 33.3̄% decrease in the exponent.

max{m,n} = 103 104 105 106 107 108 109

2 → 4 norm 2.241 2.715 3.289 3.985 4.827 5.849 7.086
p → q norm 3.388 5.029 7.465 11.081 16.449 24.419 36.248

Table 1. The worst-case approximation ratio for the 2 → 4 norm and
the p → q norm (achieved by p =

√
2, q =

√
2/(

√
2 − 1)) for matrices

of varying sizes of m and n. Despite the non-existence of an efficient
polylogarithmic approximation algorithm for the matrix p → q norm
problem, the exponents in the polynomial factors of Theorem 1.2 grow
quite slowly. Indeed, the p → q norm of a million by million sized matrix
can be quickly approximated within a factor of ≈ 11, while ln(106) ≈ 13.8.
In the case of the 2 → 4 norm, a billion by billion sized matrix can be
approximated up to a factor of ≈ 7, while ln(109) ≈ 20.7.

The remainder of the paper is as follows. In Section 2, we study the matrix 2 → q
norm problem. We produce improved results by moving beyond standard interpolation
bounds and techniques and exploiting the information contained in each row of a matrix.
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We illustrate the tightness of our bounds using a variety of known matrices. In Section
3, we extend our results for 2 → q norms to arbitrary p → q norms, producing both a
proof of Theorem 1.2 and inspiring a practical algorithm for estimating p → q norms.
Finally, we perform numerical experiments illustrating the practical efficiency of the
theoretical results of this work.
Acknowledgements LG is supported by a Simons Investigator award. DM is sup-
ported by the National Science Foundation under Award No. 2103249.

2. Estimating the 2 → q Norm

The approximation algorithm of Steinberg approximates the 2 → q norm, q ≥ 2,
of a matrix by computing the 2 → 2 and 2 → ∞ norms and using interpolation.
This estimate depends on two vectors, a right singular vector corresponding to the
largest singular value and the conjugate transpose of a row with maximal 2-norm. In
this section, we prove that making use of all rows of the matrix leads to an improved
approximation algorithm. We present the following lemma.

Lemma 2.1. Let A ∈ Cm×n, r1, ..., rm ∈ Cn denote the conjugate transpose of the m
rows of A, v ∈ Cn denote a right singular vector corresponding to the 2-norm of A, and
S = {v, r1, ..., rm}. Then

max
x∈S
x ̸=0

∥Ax∥q
∥x∥2

≥

 1

2∥A∥2→∞
max
x∈S
x ̸=0

∥Ax∥q
∥x∥2


q−2

2(q−1) [
∥Av∥q
∥Av∥2

] 1
q−1

∥A∥2→q for all q ≥ 2.

Proof. Let w ∈ Cn, ∥w∥2 = 1, satisfy ∥Aw∥q = ∥A∥2→q, and consider the orthogonal
projection of w onto r1, ..., rm. If, for some λ > 0, |⟨w, ri⟩| ≤ λ∥A∥2→∞ for all i =
1, ...,m, then

∥Aw∥qq =
m∑
i=1

|⟨w, ri⟩|q ≤
[
λ∥A∥2→∞

]q−2
m∑
i=1

|⟨w, ri⟩|2 ≤
[
λ∥A∥2→∞

]q−2∥A∥22→2,

∥A∥2→q ≤ λ
q−2
q ∥A∥

q−2
q

2→∞∥A∥
2
q

2→2

= λ
q−2
q

[
min
x∈S
x ̸=0

∥Ax∥q
∥x∥2

∥x∥2∥A∥2→∞

∥Ax∥q

] q−2
q
[
∥Av∥q
∥v∥2

∥Av∥2
∥Av∥q

] 2
q

≤ λ
q−2
q

[
∥Av∥2
∥Av∥q

] 2
q
[
min
x∈S
x ̸=0

∥x∥2∥A∥2→∞

∥Ax∥q

] q−2
q

max
x∈S
x ̸=0

∥Ax∥q
∥x∥2

.

If there exists some rk such that |⟨w, rk⟩| > λ∥A∥2→∞, then we can upper bound ∥A∥2→q

by considering the orthogonal projection of w onto rk. We have∥∥∥∥w − ⟨w, rk⟩
∥rk∥22

rk

∥∥∥∥2

2

= ∥w∥22 −
|⟨w, rk⟩|2

∥rk∥22
= 1− |⟨w, rk⟩|2

∥rk∥22
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and

∥Aw∥q ≤
∥∥∥∥A[⟨w, rk⟩∥rk∥22

rk

]∥∥∥∥
q

+

∥∥∥∥A[w − ⟨w, rk⟩
∥rk∥22

rk

]∥∥∥∥
q

≤ |⟨w, rk⟩|
∥rk∥22

∥Ark∥q + ∥A∥2→q

∥∥∥∥w − ⟨w, rk⟩
∥rk∥22

rk

∥∥∥∥
2

=
|⟨w, rk⟩|
∥rk∥22

∥Ark∥q + ∥A∥2→q

[
1− |⟨w, rk⟩|2

∥rk∥22

]1/2
≤ |⟨w, rk⟩|

∥rk∥22
∥Ark∥q + ∥A∥2→q

[
1− |⟨w, rk⟩|2

2∥rk∥22

]
,

implying that

∥Ark∥q
∥rk∥2

≥ |⟨w, rk⟩|
2∥rk∥2

∥A∥2→q >
λ

2

∥A∥2→∞

∥rk∥2
∥A∥2→q ≥

λ

2
∥A∥2→q.

Altogether, we have that

max
x∈S
x̸=0

∥Ax∥q
∥x∥2

≥ min

{
λ

2
,

1

λ
q−2
q

[
∥Av∥q
∥Av∥2

] 2
q
[
max
x∈S
x̸=0

∥Ax∥q
∥x∥2∥A∥2→∞

] q−2
q

}
∥A∥2→q.

The quantity min

{
λ

2
,

1

λ
q−2
q

[
∥Av∥q
∥Av∥2

] 2
q
[
max
x∈S
x ̸=0

∥Ax∥q
∥x∥2∥A∥2→∞

] q−2
q

}
is maximized when

λ = 2
q

2(q−1)

[
∥Av∥q
∥Av∥2

] 1
q−1

max
x∈S
x ̸=0

∥Ax∥q
∥x∥2∥A∥2→∞


q−2

2(q−1)

,

implying our desired result. □

We note that the bound of Lemma 2.1 has a constant term approaching
√
2 as q tends

to infinity. This lemma is clearly not tight for q = ∞, giving an estimate of
√
2 instead

of 1. However, this is not an artifact of the bounding procedure, but the technique
itself, as, for any fixed q < ∞, this factor is unavoidable for matrices whose optimal λ
is a function of m.
Theorem 1.1 follows as a corollary to Lemma 2.1. Although the estimate in Theorem

1.1 is simpler, for a particular matrix A, the bounds from Lemma 2.1 can be tighter.

Proof of Theorem 1.1. First observe that

1

2∥A∥2→∞
max
x∈S
x ̸=0

∥Ax∥q
∥x∥2

≥ ∥Arj∥q
2∥Arj∥∞

.

It remains to note that
∥Arj∥q
2∥Arj∥∞ ≥ 1

2
and ∥Av∥q

∥Av∥2 ≥ m− q−2
2q , which follows from Hölder’s

inequality. □

2.1. Examples . We give examples comparing the bounds from Lemma 2.1 with the
interpolation bounds. We show that Lemma 2.1 is essentially the best approximation
possible given our inputs. We also demonstrate the dependence of Lemma 2.1 on the
choice of witness v of the spectral norm.
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2.1.1. Tightness of Lemma 2.1 and comparison with interpolation. We begin by recalling
the classical interpolation estimates for ∥A∥2→q which are recorded in [26]. Since 2 ≤
q ≤ ∞, the matrix norm ∥A∥2→q is controlled by ∥A∥2→2 and ∥A∥2,∞ by interpolation.
Indeed, if w ∈ Cn satisfies ∥A∥2→q = ∥Aw∥q and ∥w∥2 = 1, then

∥Aw∥qq =
m∑
i=1

|⟨w, ri⟩|q ≤ max
1≤k≤m

|⟨w, rk⟩|q−2

m∑
i=1

|⟨w, ri⟩|2 ≤ ∥A∥q−2
2→∞∥A∥22→2,

where we use the same notation as in Lemma 2.1. Let rj ∈ Rn be a row of A with

maximal ∥rj∥2 and let v ∈ Rn satisfy ∥A∥2→2 =
∥Av∥2
∥v∥2 . Then the interpolation inequality

is

max
(∥Arj∥q

∥rj∥2
,
∥Av∥q
∥v∥2

)
≤ ∥A∥2→q ≤

[
∥Arj∥∞
∥rj∥2

] q−2
q

[
∥Av∥2
∥v∥2

] 2
q

. (1)

Since it is straightforward to compute rj and to approximate v, (1) gives a polynomial

time approximation of ∥A∥2→q with a multiplicative error bounded by
[
∥Arj∥∞
∥Arj∥q

] q−2
q

[
∥Av∥2
∥Av∥q

] 2
q
.

The bounds in Lemma 2.1 involve more calculations: we require ∥Av∥q/∥v∥2 and
∥Ari∥q/∥ri∥2 for each i = 1, . . . ,m. Using Lemma 2.1, we approximate ∥A∥2,q by

max
x∈S
x ̸=0

∥Ax∥q
∥x∥2

≤ ∥A∥2→q ≤

max
x∈S
x ̸=0

∥Ax∥q
2∥A∥2→∞∥x∥2

− q−2
2(q−1) [

∥Av∥q
∥Av∥2

]− 1
q−1

max
x∈S
x ̸=0

∥Ax∥q
∥x∥2

. (2)

We will give examples of m × m matrices B and D which have identical data as
inputs for both (1) and (2). For these examples, the range for the 2 → q norms given

by interpolation is a factor of m
(q−2)2

2q2(q−1) larger than the range given by Lemma 2.1.
Furthermore, the 2 → q norms of B and D take values in the opposite ends of the range
given by Lemma 2.1, which demonstrates that the approximation is the best possible
with the given data. In this section, the notation ∼ and ≲ means within a factor of 10.
Let n = m+2. Let ei ∈ Rn be the standard basis vectors with a 1 in the ith coordinate

and 0 otherwise. Define the rows of the m×n matrix B by rBi = (1−m− 2
q )

1
2 ei+m− 1

q en
for i = 1, . . . ,m. Thus B has the form

 [1−m− 2
q ]1/2Im

0 m− 1
q

...
...

0 m− 1
q


in which Im is the m×m identity.

Define the rows of the m × n matrix D by rDi = m− 1
q e1 +m− q−2

2q(q−1) e2 + [1 −m− 2
q −

m− q−2
q(q−1) ]1/2ei+2 if 1 ≤ i ≤ ⌊m

q−2
q−1 ⌋ and rDi = m− 1

q e1 + [1−m− 2
q ]1/2ei+2 if ⌊m

q−2
q−1 ⌋+ 1 ≤
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i ≤ m. This gives the matrix D the form

m− 1
q m− q−2

2q(q−1)

...
...

m− 1
q m− q−2

2q(q−1)

[1−m− 2
q −m− q−2

q(q−1) ]1/2I
⌊m

q−2
q−1 ⌋

0

m− 1
q 0

...
...

m− 1
q 0

0 [1−m− 2
q ]1/2I

m−⌊m
q−2
q−1 ⌋


.

The data that is the same for both B and D is the following:

(1) ∥rBi ∥2 = ∥rDi ∥2 = 1 for all i = 1, . . . ,m,

(2) ∥B∥2→∞ = ∥D∥2→∞ = 1 and ∥B∥2→2 ∼ ∥D∥2→2 ∼ m
q−2
2q ,

(3) ∥BrBi ∥q ∼ ∥BrBi ∥∞ ∼ 1 and ∥DrDi ∥q ∼ ∥DrDi ∥∞ ∼ 1 for all i = 1, . . . ,m.

Approximate witnesses of the spectral norms of B and D are vB = m
1
q
−1∑m

j=1 rj
and vD = e1, respectively. For these choices of approximate witnesses, write SB =
{rB1 , . . . , rBm, vB} and SD = {rD1 , . . . , rDm, vD}. We have

max
x∈SB
x ̸=0

∥Bx∥q
∥x∥2

∼ max
x∈SD
x ̸=0

∥Dx∥q
∥x∥2

∼ 1.

We also note that ∥BvB∥2 ∼ ∥DvD∥2 ∼ m
1
2
− 1

q and ∥BvB∥q ∼ ∥DvD∥q ∼ 1.
Plugging all of this data into (1) and (2) leads to the following ranges for the 2 → q

norms:

∥B∥2→q, ∥D∥2,q ∈ [
1

10
, 10m

q−2

q2 ] using interpolation, and

∥B∥2→q, ∥D∥2,q ∈ [
1

10
, 10m

q−2
2q(q−1) ] using Lemma 2.1.

Furthermore, ∥B∥2→q ∼ ∥Be1∥q ∼ 1, demonstrating the sharpness of the lower bound

from Lemma 2.1. For D, we have ∥D∥2→q ∼ ∥De2∥q ∼ m
q−2

2q(q−1) , which shows that the
upper bound from Lemma 2.1 is sharp.

Finally, we note the dependence of (2) on the choice of witness for the spectral norm.

The vector wD = e2 also approximately achieves the spectral norm ∥D∥2→2 ∼ m
q−2
2q .

Using wD in place of vD in (2), we have

m
q−2

2q(q−1) ≲ ∥D∥2→q ≲ m
(q−2)2

4q(q−1)2m
q−2

2q(q−1) ,

which is sharp in the lower bound.

3. Improved Matrix p → q Estimation

3.1. From 2 → q to p → q. Using Lemma 2.1 and interpolation, we obtain improved
estimates for the p → q norm. We have the following theorem.

Theorem 3.1. Let A ∈ Cm×n, r1, ..., rm ∈ Cn denote the conjugate transpose of the
m rows of A, rj be the vector with the largest 2-norm, v ∈ Cn denote a right singular
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vector corresponding to the 2-norm of A, y ∈ Cn achieve the 1 → q norm of A, and
S = {v, r1, ..., rm}. Then

max
x∈S∪{y}

x ̸=0

∥Ax∥q
∥x∥p

≥
[
∥y∥1
∥y∥p

] 2−p
p

([
∥Arj∥q
2∥Arj∥∞

] q−2
2(q−1)

[
∥Av∥q
∥Av∥2

] 1
q−1

min
x∈S
x ̸=0

∥x∥2
∥x∥p

) 2(p−1)
p

∥A∥p→q

for all 1 ≤ p ≤ 2 ≤ q, and

max
x∈S
x ̸=0

∥Ax∥q
∥x∥p

≥ n
2−p
2p

([
∥Arj∥q
2∥Arj∥∞

] q−2
2(q−1)

[
∥Av∥q
∥Av∥2

] 1
q−1

min
x∈S
x ̸=0

∥x∥2
∥x∥p

)
∥A∥p→q

for all p, q ≥ 2.

Proof. Using the bound ∥A∥p→q ≤ ∥A∥
2−p
p

1→q∥A∥
2(p−1)

p

2→q and the results of Lemma 2.1, our
estimates for ∥A∥p→q, 1 ≤ p ≤ 2 ≤ q, follow relatively quickly:

∥A∥p→q ≤ ∥A∥
2−p
p

1→q∥A∥
2(p−1)

p

2→q

≤
[
∥Ay∥q
∥y∥1

] 2−p
p
([

2∥Arj∥∞
∥Arj∥q

] q−2
2(q−1)

[
∥Av∥2
∥Av∥q

] 1
q−1

max
x∈S
x ̸=0

∥Ax∥q
∥x∥2

) 2(p−1)
p

=

[
∥y∥p
∥y∥1

∥Ay∥q
∥y∥p

] 2−p
p
([

2∥Arj∥∞
∥Arj∥q

] q−2
2(q−1)

[
∥Av∥2
∥Av∥q

] 1
q−1

max
x∈S
x ̸=0

∥x∥p
∥x∥2

∥Ax∥q
∥x∥p

) 2(p−1)
p

≤
[
∥y∥p
∥y∥1

] 2−p
p
([

2∥Arj∥∞
∥Arj∥q

] q−2
2(q−1)

[
∥Av∥2
∥Av∥q

] 1
q−1

max
x∈S
x ̸=0

∥x∥p
∥x∥2

) 2(p−1)
p

max
x∈S∪{y}

x ̸=0

∥Ax∥q
∥x∥p

.

The regime of p, q ≥ 2 is also straightforward, and follows from the bound ∥A∥p→q ≤
n1/2−1/p∥A∥2→q:

∥A∥p→q ≤ n
p−2
2p ∥A∥2→q

≤ n
p−2
2p

[
2∥Arj∥∞
∥Arj∥q

] q−2
2(q−1)

[
∥Av∥2
∥Av∥q

] 1
q−1

max
x∈S
x ̸=0

∥Ax∥q
∥x∥2

≤ n
p−2
2p

[
2∥Arj∥∞
∥Arj∥q

] q−2
2(q−1)

[
∥Av∥2
∥Av∥q

] 1
q−1

max
x∈S
x ̸=0

∥x∥p
∥x∥2

max
x∈S
x ̸=0

∥Ax∥q
∥x∥p

.

□

Theorem 1.2 follows immediately from the above theorem and the basic p-norm in-
equality ∥x∥q ≤ ∥x∥p ≤ n1/p−1/q∥x∥q for all x ∈ Cn and p ≤ q.

3.2. From Theory to Practice. To this point, our analysis has consisted entirely of
the worst-case theoretical behavior. Theorem 3.1 gives a theoretical improvement over
previous techniques. Here, we focus on how the theoretical results of this work influence
the practical implementation of algorithms in practice. In terms of complexity, comput-
ing the largest singular value up to a relative accuracy of order ϵ with high probability
requires at most O(log(n/ϵ)/ϵ1/2) matrix vector products using Krylov subspace meth-
ods (see [21, 27, 20] and references therein for details). The ratio of ∥Arj∥q/∥rj∥p for all
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Adj. Mat. A Norm. Adj. A
graph n degavg αapx αimp Mimp αapx αimp Mimp

144 144,649 14.86 2.11 0.5%† 2.8% 3.30 22.1% 0.0%
598a 110,971 13.37 2.60 12.3% 0.0% 3.20 21.0% 0.0%
auto 448,695 14.77 2.23 5.2% 0.0% 3.40 25.1% 5.1%
ca-AstroPh 18,772 21.10 1.91 0.0% 0.0% 1.84 0.0% 0.0%
ca-HepPh 12,008 19.74 1.43 0.0% 0.0% 1.92 0.0% 0.0%
coPapersCiteseer 434,102 73.88 1.33 13.1% 0.0% 2.94 17.6% 0.0%
coPapersDBLP 540,486 56.41 1.88 9.9% 0.0% 3.51 24.5% 0.0%
data 2,851 10.59 2.10 3.8% 2.9% 2.33 8.9% 3.2%
fe rotor 99,617 13.30 1.65 0.0% 0.0% 3.13 21.0% 2.2%
fe tooth 78,136 11.58 2.58 11.6% 0.0% 3.10 19.7% 0.0%
m14b 214,765 15.64 2.43 9.4% 0.0% 3.26 21.7% 0.0%
mycielskian16 49,151 679.18 2.38 11.3% 6.8% 2.47 10.4% 0.6%
wing nodal 10,937 13.80 2.42 9.1% 0.0% 2.65 14.1% 2.4%

Table 2. We consider the matrix 2 → 4 norm for a variety of graphs
taken from application. This table contains experiments for every undi-
rected graph in the SuiteSparse Matrix Collection [10] with between 1, 000
and 1, 000, 000 vertices and average degree degavg at least 10. For ei-
ther the adjacency matrix A or the normalized adjacency matrix A,
we define a number of parameters. The quantity αapx is the approxi-
mation produced by Lemma 2.1, e.g., Lemma 2.1 produces a vector x
and a number αapx such that ∥Ax∥4/∥x∥2 ≥ αapx∥A∥2→4. The quan-
tity αimp is the percent decrease in the approximation between Lemma
2.1 and standard interpolation bounds applied to the vectors v and r
achieving the 2 → 2 and 2 → ∞ norms, respectively (e.g., the quantity
[∥Ar∥∞∥Av∥2/(∥Ar∥4∥Av∥4)]1/2. The quantity Mimp is the percent in-
crease in largest computed ∥Ax∥4/∥x∥2 between Lemma 2.1 and the test
vectors v and r produced by interpolation. The additional computation
of ∥Ax∥4/∥x∥2 for the rows of A led to an improvement in the best-known
vector approximation over 30% of the time. However, even when the com-
putation did not produce an improved vector approximation, it provided
an improved guarantee (e.g., approximation ratio) of the quality of the
existing vector approximation over 80% of the time.

j = 1, ...,m can be computed in matrix multiplication time, and for a matrix A ∈ Cm×n

with at most k non-zeros per row, in O(k2n) time, making our results particularly at-
tractive for sparse matrices. In addition, we note that the vector with largest p → q
norm produced by Theorem 3.1 is a strong initial guess for the matrix p → q norm, but
would certainly benefit from the application of a modified power method in the spirit
of Boyd and Higham [7, 17], or a general non-linear solver.

Here we consider the practical effectiveness of Lemma 2.1 for estimating the 2 → 4
norm of the adjacency matrix of sparse graphs. This is a natural choice, given the
connection between the 2 → 4 norm and small set expansion in graph theory [2]. Let
G = (V,E), n = |V |, be an undirected graph. We denote by deg(i) the degree of vertex i,
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i.e., the number of edges containing vertex i. The adjacency matrix A ∈ Rn×n of a graph
G has entries A(i, j) = 1 if there is an edge between vertex i and vertex j, and A(i, j) = 0
otherwise. The normalized adjacency matrix A has entries A(i, j) = 1/[deg(i)deg(j)]1/2

if there is an edge between vertex i and vertex j, and A(i, j) = 0 otherwise. A graph
is said to be d-regular if deg(i) = d for all vertices i. In this setting, we note that
A = A/d. We compare the performance of our results (Lemma 2.1) to interpolation in
two different settings.

First, we consider d-regular graphs, a setting for which Lemma 2.1 will clearly out-
perform interpolation techniques. Because each row contains exactly d entries equal to
one and all other entries zero, the row norm contains no information save for the de-
gree d. In addition, by the Perron-Frobenius Theorem, the top singular value is always
d and the constant vector is always a corresponding right singular vector. Therefore,
interpolation techniques cannot reliably discern any structure from a d-regular graph,
save for the fact that it is d-regular. In contrast, using the rows as test vectors gives
further information.

Next, we consider large real-world graphs with non-uniform degree structure, taken
from the SuiteSparse matrix collection (formerly referred to as the University of Florida
Sparse Matrix Collection) [10]. This collection contains graphs from a variety of ap-
plications, including structural finite element meshes, social networks, collaboration
networks, road networks, and many other real-world examples. We consider every undi-
rected graph from this collection with between 1, 000 and 1, 000, 000 vertices and average
degree at least 10. We analyze both the adjacency and normalized adjacency matrices
of these graphs, and report the performance of Lemma 2.1. In a number of cases, a
row without maximum 2-norm provides the best approximation. More generally, ex-
perimentally we note that even if the testing of the rows of a matrix do not improve
the estimate of ∥A∥2→4 itself, it often still improves the approximation guarantee – an
equally important parameter that verifies the quality of the estimate. We provide the
details of these experiments in Table 2.

References

[1] K. I. Babenko. An inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSSR Ser. Mat.,
25:531–542, 1961.

[2] Boaz Barak, Fernando GSL Brandao, Aram W Harrow, Jonathan Kelner, David Steurer, and
Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In Proceedings of
the forty-fourth annual ACM symposium on Theory of computing, pages 307–326, 2012.

[3] William Beckner. Inequalities in Fourier analysis. Ann. of Math. (2), 102(1):159–182, 1975.
[4] Aditya Bhaskara and Aravindan Vijayaraghavan. Approximating matrix p-norms. In Proceed-

ings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 497–511.
SIAM, 2011.

[5] Vijay Bhattiprolu, Mrinal Kanti Ghosh, Venkatesan Guruswami, Euiwoong Lee, and Madhur
Tulsiani. Inapproximability of matrix norms. SIAM Journal on Computing, 52(1):132–155, 2023.

[6] Punyashloka Biswal. Hypercontractivity and its applications. arXiv preprint arXiv:1101.2913,
2011.

[7] David W Boyd. The power method for lp norms. Linear Algebra and its Applications, 9:95–101,
1974.

[8] Fernando GSL Brandao and Aram W Harrow. Estimating operator norms using covering nets.
arXiv preprint arXiv:1509.05065, 2015.

[9] Michael Christ. A sharpened hausdorff-young inequality, 2014.
[10] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Trans-

actions on Mathematical Software (TOMS), 38(1):1–25, 2011.



ESTIMATING THE MATRIX p → q NORM 13
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