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Abstract. Analyzing nodal domains is a way to discern the structure of eigenvectors of
operators on a graph. We give a new definition extending the concept of nodal domains to
arbitrary signed graphs, and therefore to arbitrary symmetric matrices. We show that for an
arbitrary symmetric matrix, a positive fraction of eigenbases satisfy a generalized version of
known nodal bounds for un-signed (that is classical) graphs. We do this through an explicit
decomposition. Moreover, we show that with high probability, the number of nodal domains
of a bulk eigenvector of the adjacency matrix of a signed Erdős-Rényi graph is Ω(n/ logn)
and o(n).

1. Introduction

Courant’s nodal domain theorem states that the zero-level set (i.e., the set of points where the
eigenfunction equals zero) of the kth lowest energy eigenfunction of a Laplacian on a smooth
bounded domain in Rd with Dirichlet boundary conditions divides the domain into at most k
subdomains (see [18], and his text co-authored with Hilbert in the following year [19]). The
zero-level set is commonly referred to as the nodal set, the resulting subdomains are referred to
as the nodal domains, and the number of subdomains is referred to as the nodal count. Results
of this type have been of great interest in spectral geometry and mathematical physics (see, e.g.
[66]), with refinements in dimension two (e.g., Pleijel’s nodal domain theorem) [13, 52, 53],
and extensions to p-Laplacians [20, 26], Riemannian manifolds [51], and domains with low
regularity assumptions [1], among many others.

Courant’s theorem, and nodal domains in general, has also been studied in the discrete setting
of graphs. This setting poses a number of unique challenges, as eigenvectors may vanish (e.g.,
equal zero) at some entries, while in Courant’s setting the nodal set is of measure zero [16].
In this setting, a nodal domain of an eigenvector φ of the generalized Laplacian of a graph
is a maximal connected component on which the eigenvector entries do not change sign, e.g.
φ(i)φ(j) > 0 for all i ̸= j in the domain.

The earliest known result in this setting is due to Gantmacher and Krein, who studied the
sign properties of eigenvectors of generalized Laplacians of the path graph and proved a tight
estimate for the nodal count in this setting (see [33] for a revised English edition of the
original 1950 Russian text). Fiedler’s tree theorem proves exact nodal count estimates for
trees, generalizing the work of Gantmacher and Krein. Namely he showed that the number
of nodal domains of a non-vanishing eigenvector of a symmetric, acyclic, irreducible matrix
is exactly the index of the corresponding eigenvalue indexed in increasing order [29] (in fact,
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both Gantmacher and Krein’s result and Fiedler’s result extend to the signed case, described
below). These results can be thought of as a discrete version of Sturm’s oscillation theorem
for ordinary differential equations [59, 60], of which Courant’s theorem is a generalization.

For discrete generalized Laplacians, the nodal count of a non-vanishing eigenvector corre-
sponding to the kth eigenvalue is at most k. However, when an eigenvector vanishes on some
vertices, complications arise, as the vertex sets of nodal domains no longer forms a partition
of the vertex set. In this setting, there are a number of competing versions of nodal domains
and nodal theorems. Most notably, many authors have considered the concept of weak and
strong nodal domains: a strong nodal domain of an eigenvector φ of a symmetric matrix M
is simply a nodal domain as defined above, i.e., a maximally connected induced subgraph for
which φ(i)φ(j) > 0, and a weak nodal domain is a maximally connected induced subgraph
for which φ(i)φ(j) ≥ 0, see Figure 1.

Davies, Gladwell, Leydold, and Stadler proved a weak and strong nodal count theorem for
generalized Laplacians (e.g., unsigned graphs): given an eigenpair (λ,φ) of an irreducible
generalized Laplacian M , the weak and strong nodal count of φ are at most k and k +
r − 1, respectively, where k and r are the index (in increasing order) and multiplicity of
λ, respectively [11, 21, 22]. There are a number of other proofs of various versions of this
statement [23, 27, 30, 55, 63]; see [21, Sec. 2] for a discussion of the results (and the correctness
of some of the statements and associated proofs) in these works. In [62], the second author
of the current paper proved a decomposition version of the Davies-Gladwell-Leydold-Stadler
theorem, that for the kth eigenvalue of a symmetric generalized Laplacian of a discrete graph,
a positive proportion of eigenvectors φ in the corresponding eigenspace can be decomposed
into at most k signed nodal domains (i.e., there exists a signing ε satisfying ε(i) = sgn(φ(i))
whenever φ(i) ̸= 0 with classical nodal count at most k).

In addition to discrete versions of Courant’s nodal theorem, measuring the gap between the
actual nodal count and Courant’s bound has also been of interest. Most notably, Berkolaiko
showed that a non-vanishing eigenvector of an irreducible generalized Laplacian has nodal
count at least k − ν, where k is the index of the corresponding eigenvalue and ν is the cyclo-
matic number of the associated graph [8]1. This result is also a corollary of the more general
Berkolaiko-Colin de Verdière theorem, in which the nodal surplus is expressed as a Morse index
of a function of ν variables [9, 17]. Berkolaiko’s orginal result was later strengthened by Xu
and S.T. Yau, producing a lower bound for an arbitrary eigenvector φ of k+r−1−ν−|i0(φ)|,
where k and r are the index and multiplicity of the corresponding eigenvalue, ν is the cyclo-
matic number of the associated graph, and i0(φ) = {i |φ(i) = 0} [65]. The study of nodal
surplus (stemming from [9, 17]) is an active area of research, see [2, 3, 4, ?] for details.

In this work, we consider nodal count theorems for the generalized Laplacian of arbitrary
signed graphs, e.g., arbitrary symmetric matrices. Such estimates are important for a number
of reasons. First, when dealing with a finite element approximation of an elliptic operator,
the resulting stiffness matrix is not always a generalized Laplacian and Courant’s bound may
fail to hold (e.g., a 2D triangularization with some obtuse angles); see, for instance, [35] for
details. More generally, nodal domains give us an idea of relationship between the structure
of a matrix and that of its eigenvector, and signed graphs are used frequently in practice (e.g.,
Ising models, correlation clustering, etc). For instance, signed graphs played a role in the

1Berkolaiko stated a slightly weaker version of the aforementioned result, but the associated proof also proves
the aforementioned version.
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recent breakthroughs regarding equiangular lines with a fixed angle [42, 43], the sensitivity
conjecture [38], and Bilu-Linial lifts to construct infinite families of Ramanujan graphs [10, 47].

However, as the setting of discrete Laplacians added barriers (in the form of vanishing ver-
tices) to a direct version of the classical Courant nodal domain theorem, the extension from
generalized Laplacian matrices to arbitrary symmetric matrices brings unique challenges, and
ambiguity as to what constitutes a nodal domain in this setting. Path nodal domains for sym-
metric matrices have been studied by Mohammadian [49] and, recently, by Ge and Liu [34].
In this model, we count the number of connected components of the graph induced on “good”
edges, namely edges for which the product of eigenvector entries of vertices in the edge respects
the sign of the edge. Namely, given a symmetric irreducible matrix M ∈ Rn×n and an eigen-
vector φ corresponding to an eigenvalue of index k and multiplicity r, let G<

φ = ({1, ..., n}, E<
φ )

and G≤
φ = ({1, ..., n}\i0(φ), E≤

φ ), where E
<
φ = {(i, j) ∈ E(G) |Mijφ(i)φ(j) < 0} and E≤

φ =

{(i, j) ∈ E(G) |Mijφ(i)φ(j) ≤ 0} (with G≥
φ and G>

φ defined analogously). Let κ(·) be

the number of connected components of a graph. Mohammadian proved that κ(G≤
φ) ≤ k,

κ(G<
φ) ≤ k + (r − 1), and that, if i0(φ) = ∅, then κ(G<

φ) ≥ k − ν [49]. Ge and Liu expanded

upon the analysis of Mohammadian by proving lower bounds for κ(G<
φ) involving further pa-

rameters that depend on the eigenvector φ, and showing that κ(G<
φ) ≤ k for any eigenvector

of minimal support [34]. In addition, they produced an upper bound on a formulation of
weak nodal domain slightly different from G≤

φ, and proved a number of estimates for acyclic
matrices.

There is a peculiarity specific to the path nodal domain, in that it is possible that i, j in the
same nodal domain could satisfy Mijφ(i)φ(j) > 0, whereas this is impossible in un-signed
graphs. Namely, i and j could be identifiably negatively related, but still be a part of the
same nodal domain, if there is a path of good edges from i to j. Here, “bad” edges are treated
equivalently to as if there were no edge at all.

In order to incorporate the information from all edges into our decomposition, we take a
different approach from that of previous authors. Instead of studying walks with a classical
nodal-type property and ignoring bad edges (i.e. considering only Mijφ(i)φ(j) < 0), we
prove bounds for induced subgraphs (“nodal” subgraphs) with a nodal-type property, thus
producing subsets of the domain for which the eigenvector does not change sign and the
matrix, restricted to this subset, is a generalized Laplacian (both up to a sign transformation
M → DMD, φ→ Dφ, for some involutory diagonal matrix). We consider bounds involving
properties of the matrix itself, rather than quantities that depend on the specific choice of
eigenvector (see, for instance, Remark 2.2).

In this work, we focus on the minimal size of decompositions of the domain into nodal sub-
graphs (see Figure 1). This is a stricter definition than that of path nodal domains; therefore,
we expect more nodal domains in this case. In what follows, we prove upper bounds regarding
nodal decompositions of a symmetric matrix. In particular, we prove a natural analogue of
Courant’s nodal domain theorem for any matrix and eigenvector pair that depends only on the
energy level of the eigenvector and how “close” to a generalized Laplacian the given matrix is
(Theorem 1.3).

One large appeal of our formulation is in deducing the structure of eigenvectors of random
graphs. Studying the structure of eigenvectors of random graphs is a well known problem with
applications in both computer science and mathematical physics, see, for example, [46, 54].
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Figure 1. In both (unweighted) graphs, solid lines represent positive edges
and dashed lines represent negative edges. Moreover, red vertices represent
positive entries in the eigenvector, blue vertices are negative, and green is 0.
For the given eigenvector on the graph on the left, there are 2 weak nodal
domains but 3 strong nodal domains. For the eigenvector φ on the graph on
the right, there is 1 path nodal domain, but N(φ) = 2.

On dense Erdős-Rényi graphs, eigenvectors that do not correspond to the highest eigenvalue
have exactly two nodal domains [6, 25], which are approximately the same size [37], and all
vertices are on the boundary of their nodal domains [57]. This follows the general notion of
quantum ergodicity, that roughly, the distribution of entries in an eigenvector of these graphs
should be close to a joint Gaussian distribution with individual entries close to independent
[12].

All of these results show that Erdős-Rényi graphs have “trivial” eigenvector structure, in
that the graph is too dense for these nodal domain statistics to detect different structure
within the graph (this is not the case for random regular graphs, for which eigenvectors of
the most negative eigenvalues have many nodal domains [32]). In our setting, we consider
an Erdős-Rényi signed graph, denoted by G(n, p, q) for n ∈ N, 0 < p, q < 1. Here, we
randomly sample an n vertex graph, where each of the

(
n
2

)
possible edges has a p probability

of being a positive edge, a q probability of being a negative edge, and 1−p− q of not existing.
For an overview of the spectral theory of signed random graphs see [31]. Signed Erdős-
Rényi graphs are relevant in spin glass models, where positive and negative edges correspond
to ferromagnetic/antiferromagnetic bonds in the discrete Hamiltonian, [24]. Moreover, the
spectral theory signed Erdős-Rényi graphs is relevant for analyzing real world community
detection problems [48, 61].

Using the same argument as [25], with high probability, every eigenvector φ has κ(G<
φ) =

κ(G>
φ) = 1 (we prove this in Appendix A). However, as we show in Section 4, our stronger

notion of a nodal domain shows the nontrivial structure of the eigenvectors of a G(n, p, q),
as the number of nodal domains scales sublinearly. Specifically, we show that with high
probability, there are o(n) nodal domains in this signed random graph. A simple lower bound
of Ω(n/ log 1

1−(p∨q)
n) is given in Proposition 1.7, which follows from the size of the maximum

clique in a graph. These results are also towards a program proposed by Linial (described in
[37]) studying the geometry of nodal domains on graphs.

1.1. Definitions, Notation, and Results. LetM be an n×n symmetric, irreducible matrix
with eigenpair (λ,φ). We denote the index of λ (the number of eigenvalues strictly less than
λ, plus one) by k, and the multiplicity by r. We can associate with M a signed graph
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G = ([n], E, σ), where [n] := {1, ..., n}, E = {(i, j) |Mij ̸= 0, i ̸= j}, and σ : E → {±1} is
defined by σij = −sgn(Mij). Let G[S] be the induced subgraph of G on vertex set S ⊂ [n],
with corresponding edge set E[S]. We denote by ν the cyclomatic number (dimension of the
unsigned cycle space) of G. Given a subset of vertices S, we denote by MS the |S| × |S|
principal submatrix of M corresponding to S. Similarly, we write φ(S) as the subvector of

φ corresponding to S. We denote by
−→
1S the vector that equals one on S and zero elsewhere;

its dimension is always clear from context. For a vertex v ∈ V , we write φ(v) = φ({v}) and
−→
1v =

−−→
1{v}. For two vectors x, y of the same length, x ◦ y denotes the entrywise product of x

and y. Let p ∨ q = max{p, q} and p ∧ q = min{p, q}.

A key ingredient in the worst-case analysis that follows is a notion of how “far” a signed
graph is from being equivalent to an all positive graph, e.g., how far a matrix is from being a
generalized Laplacian. We make use of the notion of frustrated edges and frustration index.

Definition 1.1. Given a signed graph G = ([n], E, σ) and a state ε ∈ {±1}n, an edge
{i, j} ∈ E is said to be frustrated if σi,jε(i)ε(j) < 0. The frustration index f of G is the
minimum number of frustrated edges over all states ε ∈ {±1}n.

Computing the frustration index of a signed graph is NP-hard, via a reduction from the max-
cut problem; see [40] for a through discussion of the complexity of computing the frustration
index. In what follows, we often assume that the number of positive off-diagonal pairs of M
is exactly f; this can be done by performing an involutory diagonal transformation DMD
for a diagonal matrix D corresponding to a state ε ∈ {±1}n that achieves the frustration
index. When G is a forest, corresponding to the sparsity structure of an acyclic matrix, the
frustration index is exactly zero, as every symmetric acyclic matrix can be transformed to a
generalized Laplacian via an involutory diagonal matrix. Given a vector x, we denote by i0(x)
the set of indices where x equals zero, i.e., i0(x) := {j |x(j) = 0}.
Definition 1.2. Given a symmetric matrix M ∈ Rn×n and a non-vanishing vector x ∈ Rn

(i.e., i0(x) = ∅), we denote by N(x) the minimal quantity s for which there exists a partition
[n] = ⊔s

ℓ=1Vℓ with G[Vℓ] connected and Mijx(i)x(j) < 0 for all {i, j} ∈ E[Vℓ], ℓ = 1, ..., s, i.e.,
the minimal decomposition of the domain into nodal subgraphs.

Computing N(φ) is NP-hard (as is often the case for problems involving signed graphs), via
a reduction from the clique-cover problem (one of Karp’s original 21 NP-complete problems
[44]). We provide a brief sketch of a reduction. Given an instance H = ([n], E) of the clique-
cover problem, consider the signed clique G = ([n], E, σ), where σij = +1 if (i, j) ∈ E(H)
and σij = −1 if (i, j) ̸∈ E(H). Computing the smallest s such that there exists a partition
[n] = ⊔s

ℓ=1Vℓ with G[Vℓ] connected and σij = +1 for all (i, j) ∈ E[Vℓ], ℓ = 1, ..., s, is exactly
the smallest s such that the vertices of H can be partitioned into s parts, each of which is
a clique. Taking any matrix with sparsity structure G and considering a vector φ with all
entries positive implies that computing N(φ) is also NP-hard. This hardness holds not just
for adversarial φ, but for eigenvectors φ, as, for any signed graph G = ([n], E, σ), one can
always produce a matrix M with sparsity structure G and an eigenvector with constant sign.
We provide a short proof of the bounds

k + (r − 1)− ν ≤ N(φ) ≤ k + f (1.1)

for non-vanishing eigenvectors in Section 2 (Proposition 2.1). This follows quickly from Mo-
hammadian’s aforementioned results and an analysis of frustrated edges, but we provide a
short proof of independent interest. Let Ns(φ) be the minimal nodal decomposition of φ re-
stricted to non-vanishing entries (i.e., Ns(φ) = N(φ|φ(i) ̸=0)). We prove that for any symmetric
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matrixM there exists an orthonormal eigenbasis φ1, ...,φn ordered by increasing energy, such
that Ns(φk) ≤ k + f for all k (Proposition 2.4), extending a result of Gladwell and Zhu for
generalized Laplacians [35]. However, the restriction to non-vanishing entries leads to a num-
ber of limitations in the above result. For instance, the eigenbases satisfying the proposition
statement may be of measure zero. For this reason, we prove a more robust version of the
above statement, focusing on nodal decompositions of the entire domain. In particular, in
Section 3, we prove that there exists a subset of orthonormal eigenbases, of positive measure,
such that for every basis φ1, ...,φn in this subset ordered by increasing energy, there exist
corresponding signings ε1, ..., εn ∈ {±1}n satisfying εk(i) = sgn(φk(i)) whenever φk(i) ̸= 0
and N(εk) ≤ k + f for all k.

Theorem 1.3. Let M be an n × n symmetric, irreducible matrix, and let B be the set of
corresponding orthonormal eigenbases of Rn ordered by increasing energy, i.e.,

B = {Q ∈ O(n) |MQ = QΛ for diagonal Λ with Λ1,1 ≤ Λ2,2 ≤ ... ≤ Λn,n}.

Then there exists a subset Φ ⊂ B of co-dimension zero such that, for every (φ1, ...,φn) ∈ Φ,
there exists signings ε1, ..., εn ∈ {±1}n satisfying εk(i) = sgn(φk(i)) for all φk(i) ̸= 0, i, k ∈
[n], and

N(εk) ≤ k + f, k = 1, ..., n, (1.2)

where f is the frustration index of the signed graph of M .

Informally, the above theorem tells us that if we choose an arbitrary orthonormal eigenbasis,
there is a positive probability that there is a signing of vanishing entries of our eigenbasis so
that the resulting vectors satisfy the upper bounds of Inequality 1.1. This can be viewed as
a stronger version of “weak nodal bounds,” as vanishing vertices cannot be used to connect
both positively and negatively signed vertices. However, we can only hope for such a result
for a positive proportion of bases. The unsigned star graph is an illustrative example of this
limitation, see Figure 2.

The positive probability portion of the above theorem is quite important; this property forces
the resulting partitions in the basis to represent the “dynamics” of the eigenspace, e.g., the
theorem statement does not require the artificial vanishing of vertices (as in the proof of
Proposition 2.4). Our proof of Theorem 1.3 proceeds as follows:

(1) Characterize the structure of an eigenspace Eλ with eigenvectors that simultaneously
vanish, i.e., i0(λ) := {j |φ(j) = 0 for all φ ∈ Eλ} ̸= ∅, and parameterize Eλ using
eigenvectors of the connected components of M restricted to [n]\i0(λ).

(2) Algorithmically define the sign vector ε associated with any eigenvector φ that is non-
vanishing on [n]\i0(λ) and restrict the elements of the orthonormal basis φ1, ...,φr of
Eλ to certain half-spaces so that N(εs) ≤ k + (s− 1) + f.

(3) Prove that a positive proportion of orthonormal bases of Eλ are non-vanishing on
[n]\i0(λ) and satisfy the half-space conditions of Step (2).

It is possible to prove an analogue of Theorem 1.3 for the lower bound k − ν instead of the
upper bound k + f; the analysis is similar to (but simpler than) that of the stated theorem.
However, the more interesting statement regarding bases satisfying the lower and upper bounds
simultaneously (i.e., k − ν ≤ N(εk) ≤ k + f) does not follow directly from the techniques
presented, and may require a more detailed analysis. This possible extension is left to the
interested reader.
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Figure 2. The graph Laplacian of a star on n > 3 vertices has algebraic con-
nectivity one with corresponding eigenspace E1 = {x |

∑n
i=2 x(i) = 0, x(1) =

0}. In order for N(ε2) ≤ 2, φ2 ∈ E1 must have either exactly one positive entry
or exactly one negative entry, a property only an exponentially small fraction
(with respect to n) of the eigenvectors in E1 satisfy in respect to the Haar
measure over the eigenspace.

In Section 4, we analyze the nodal count of the adjacency operator of the Erdős-Rényi signed
graph. A lower bound is given by the combinatorial properties of a G(n, p, q), that a nodal
domain is similar to a clique, and that all cliques in a random graph are of size O(log n).
Therefore there are Ω(n/ log n) nodal domains (Proposition 1.7). An upper bound proves to
be a tougher challenge; however, we show the following in Section 4.

Theorem 1.4. For any 0 < ϵ, p, q < 1, there is some constant γ > 0 such that for any index
i ∈ [ϵn, (1 − ϵ)n], with probability 1 − O(n−γ), the ith eigenvector φ of the adjacency matrix
of G ∼ G(n, p, q) has N(φ) = o(n) nodal domains.

We do this by showing that for any fixed k, we can partition almost the entire graph into
nodal domains of size k. In order to show that there are many nodal domains in our graph
of size k, we use quantum ergodicity [39] to show that eigenvector statistics emulate those of
random Gaussians. Therefore, fix k, and consider φ the ith eigenvector of A, where A is the
adjacency matrix of the graph G ∼ G(n, p, q). We proceed as follows.

(1) For a set of vertices S, create a function fs(AS ,φ(S)), where AS is A restricted to the
set S, on the induced subgraph on S that confirms there is a nodal domain inside S.

(2) Approximate f with a finite degree polynomial ps of entries of the matrix and entries
of the eigenvector.

(3) Show that the matrix entries and eigenvector are close to independent in ps.
(4) Use quantum ergodicity to compare E(ps(AS ,φ)) with E(ps(AS ,g)), where g is a

multivariate standard normal Gaussian.
(5) Show that with Gaussian inputs there are many nodal domains.
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This general method was used in [37] to show the two nodal domains of an unsigned Erdős-
Rényi graph are approximately the same size in the bulk of the spectrum. However, there are
key challenges specific to our question. (i) Our function f does not rely solely on φ, but on
A as well. (ii) The polynomial approximation in [37] is found using the closure of univariate
polynomials in a specific Sobolev norm. Our function testing for nodal domains must be
multivariate, as we need to control the sign of

(
k
2

)
edges at once. (iii) We need to worry about

the overlap of different nodal domains. For example, merely checking the number of size k
nodal domains is not sufficient, as all of these could overlap on one vertex.

To solve (i), we have the added step of showing that A and φ are close to independent in
f . Because φ is delocalized with high probability, perturbing a small number of entries does
not significantly change φ or ps. We do this by Taylor expanding products of eigenvector
entries. For (ii) we use results concerning the density of univariate polynomials in Sobolev
norms of Rodŕıguez [56]. These results do not generalize to all multivariate polynomials, but
nevertheless, we can interpret our function f as a composition of univariate functions, and
show that approximation of each of these univariate functions is sufficient. For (iii), rather
than count the number of sets of size k that are nodal domains, we count the number of sets
of size s that contain a nodal domain, for s ≫ k. There is some delicacy needed in that we
require a set size s that is large enough such that almost all sets contain a nodal domain, but
small enough that when no sets of size s that have a nodal domain are left, there are only few
vertices left. This tightness is shown by Janson’s Inequality [41].

Results in quantum ergodicity concern finite degree polynomials. Therefore we must consider
constant k rather than k up to log n, where we would expect these results to remain true.
Moreover, the high probability statement is not strong enough to union bound over all indices
at once. We suspect that the eigenvector entries are independent enough such that N(φ) will
emulate the chromatic number of a G(n, p) graph and will be Θ(n/ log n).

Conjecture 1.5. Fix constants 0 < ϵ, p, q < 1. There are constants c1(ϵ, p, q), c2(ϵ, p, q) such
that with probability 1 − oN (1), for any index i ∈ [ϵn, (1 − ϵ)n], the ith eigenvector φ of a
randomly sampled G(n, p, q) satisfies c1n/ log n ≤ N(φ) ≤ c2n/ log n.

Note that we require our eigenvalue is in the “bulk” of the spectrum, in order to use quantum
ergodicity. In Appendix A, we compare this result to the path nodal domains of Mohammadian
and Ge and Liu and show that merely counting path nodal domains does not indicate a
nontrivial relationship between the eigenvector and the structure of the graph.

Proposition 1.6. For fixed 0 < p, q < 1, consider the adjacency matrix of the graph G ∼
G(n, p, q). With probability 1− n−ω(1), every eigenvector φ satisfies κ(G<

φ) = 1.

This follows using the same proof as [25], using more recent eigenvector delocalization results,
as is done in [57].

We finish this discussion by giving a proof of the lower bound for G(n, p, q).

Proposition 1.7. With high probability, for fixed 0 < p, q < 1, any eigenvector φ of the
adjacency matrix of a G ∼ G(n, p, q) has N(φ) = Ω(n/ log 1

1−(p∧q)
n).

Proof. Consider any set of vertices S of size k. We will show that typically, there is no signing
of eigenvectors that makes S a nodal domain. With high probability, φ is nonzero [50]. Take
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the signs of φ to be arbitrarily fixed. In order for a set of vertices S to be a nodal domain, we
must have Aijφ(i)φ(j) ≥ 0. Each edge satisfies this with probability at most ((1−p)∨(1−q)).
Therefore the probability that S forms a nodal domain is at most ((1−p)∨ (1− q))(

k
2). Union

bounding over all possible signings, if we assume without loss of generality that p ≥ q, the

probability that S forms a nodal domain is at most 2k(1− q)(
k
2) = exp(k log 2+

(
k
2

)
log(1− q)).

Therefore the probability that there exists any such set is at most(
n

k

)
exp

(
k log 2 +

(
k

2

)
log(1− q)

)
.

As
(
n
k

)
≤ nk, if, say, k = 3 log 1

1−q
n, then with probability n−Ω(logn) there are no nodal domains

of size k. As no nodal domain can have size k, there are at least Ω(n/ log 1
1−q

n) domains. The

desired result follows from a union bound over all φ. □

2. Classical Nodal Bounds

In this section, we provide tight upper and lower bounds on the nodal count of a non-vanishing
eigenvector of a symmetric matrix in terms of the corresponding eigenvalue index and multi-
plicity, and a number of graph invariants. In addition, for vanishing eigenvectors, we prove
the existence of orthonormal eigenbases with strong nodal count satisfying Courant-type nodal
upper bounds. Finally, we illustrate that the set of eigenbases satisfying such conditions may
be of measure zero.

2.1. Non-Vanishing Nodal Count. Here, we prove tight bounds on the nodal count of a
non-vanishing eigenvector. This result follows from [49] combined with an argument regarding
the number of additional domains created by frustrated edges. However, we provide a direct
proof by modifying a technique of Fiedler [29] and making use of known results regarding the
inertia of signed Laplacian matrices. We have the following result.

Proposition 2.1. Let M be a symmetric irreducible matrix and φ be a non-vanishing eigen-
vector corresponding to an eigenvalue of index k and multiplicity r. Then

k + (r − 1)− ν ≤ N(φ) ≤ k + f, (2.1)

where ν and f are the cyclomatic number and frustration index of the signed graph of M .

Proof. Consider a symmetric, irreducible n × n matrix M with eigenpair (λ,φ), where λ
has index k and multiplicity r, and φ is non-vanishing (φ(i) ̸= 0 for all i). The matrix
B = Dφ(M − λI)Dφ, where Dφ is a diagonal matrix with φ on the diagonal, is a signed
Laplacian matrix, and, by Sylvester’s law of inertia [36, Thm. 8.1.17], has n − k − r + 1
positive and k − 1 negative eigenvalues.

We make use of the following result regarding the inertia of a signed Laplacian: let κ+ and κ−
be the number of connected components of the graph of a n×n signed Laplacian L restricted
to positive and negative entries, respectively; then

κ+ − 1 ≤ λ+ ≤ n− κ− and κ− − 1 ≤ λ− ≤ n− κ+,

where λ+ and λ− are the number of positive and negative eigenvalues of L, respectively [14,
Thm. 2.10].
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Therefore, for B = Dφ(M − λI)Dφ, we have2

κ+ − 1 ≤ n− k − r + 1 and κ− − 1 ≤ k − 1.

Let e+ and e− be the number of pairs of off-diagonal entries of B that are positive and negative,
respectively. Then κ+ ≥ n− e+ and κ− ≥ n− e−. Using the above inequalities and recalling
that ν = e− n+ 1 and e = e+ + e−, we obtain our desired lower bound

NM (φ) ≥ κ− ≥ n− e−

= n− e+ e+

≥ n− e+ n− κ+

≥ n− e+ n− (n− k − r + 2)

= n− e+ k + r − 2

= k + (r − 1)− ν.

Suppose (w.l.o.g.) that M has exactly f pairs of positive off-diagonal entries. Then, by
choosing a nodal decomposition [n] = ⊔s

ℓ=1Vℓ where entries i and j are in the same nodal
subgraph only if Mij ≤ 0 and s is as small as possible, we have NM (φ) ≤ s ≤ κ− + f ≤ k + f,
completing the proof. □

Remark 2.2. The proof of Proposition 2.1 actually produces a lower bound of k + (r − 1)−
ν + ν+ + ν−, where ν+ and ν− are the cyclomatic numbers of the graphs of M restricted to
entries where Mijφ(i)φ(j) > 0 and Mijφ(i)φ(j) < 0, respectively. However, in this work we
attempt to focus on bounds in terms of graph invariants rather than quantities depending on
the eigenvector itself.

Below we give a simple example illustrating the tightness of the bounds in Proposition 2.1 in
general.

Example 2.3. Let M be the negative adjacency matrix of the path on n vertices, where
n + 1 is an odd prime, with eigenpairs {(λk,φk)}nk=1. Consider B = M + ϵC, for some
ϵ < 2/(n+1)5 and symmetric matrix C with |Cij | ≤ 1, i, j ∈ [n]. The minimal eigenvalue gap
of M is bounded below by minλ,λ′∈Λ(M) |λ−λ′| ≥ 3π2/4(n+1)2, and, because n+1 is an odd
prime, every entry of each eigenvector of M is bounded away from zero, namely

|φk(i)| =
∣∣√2/n sin[ikπ/(n+ 1)]

∣∣ ≥ π/
√
2(n+ 1)3/2 for all i, k ∈ [n].

Let {(µk,ψk)}nk=1 be the eigenpairs of B. By [36, Cor. 8.1.6], |λk − µk| ≤ ϵn, and so the
spectrum of B is simple and interlaces with that of M . In addition, by [36, Thm. 8.1.12],

∥φk − ψk∥ < π/
√
2(n + 1)3/2, and so the eigenvectors of B are also non-vanishing and have

the same sign pattern as the eigenvectors of M . By Fielder’s tree theorem [29, Corollary 2.5],
NM(φk) = k. To illustrate the tightness of the lower bound, we note that, for any ν ≤ k − 2,
we may add ν edges to M (through the matrix C), connecting ν pairs of non-adjacent nodal
domains, and resulting in NB(ψk) = k− ν. For the upper bound, we note that when k, f ≪ n,
each nodal domain is large and we may add non-crossing frustrated edges (with respect to the
path ordering) within nodal domains, giving NB(ψk) = k + f.

2.2. Orthonormal Eigenbases with Classical Strong Nodal Count. When an eigen-
vector has some vanishing entries, the above bounds no longer hold in general. By slightly
modifying an argument of Mohammadian [49], it is not hard to show that an upper bound
of Ns(φ) ≤ k + (r − 1) + f holds and is tight in general. However, by using a well-chosen

2Note that κ+ and κ− of B in the proof of Proposition 2.1 are exactly the quantities G>
φ and G<

φ .



NODAL DECOMPOSITIONS OF A SYMMETRIC MATRIX 11

orthonormal eigenbasis, we can obtain improved upper bounds, using a variation on a well-
known technique (see [11, Sec. 3.2], a variation on Courant’s original technique [18, 19]).

Proposition 2.4. Let M be an n× n symmetric matrix. There exists an orthonormal eigen-
basis φ1, ...,φn ordered by increasing energy, satisfying

Ns(φk) ≤ k + f, k = 1, ..., n, (2.2)

where f is the frustration index of the signed graph of M .

Proof. It suffices to consider an n×n symmetric matrixM with an eigenvalue λ of index k and
multiplicity r, and produce an orthonormal basis φ1, ...,φr of the corresponding eigenspace
satisfying Ns(φℓ) ≤ k+(ℓ−1)+f for ℓ = 1, ..., r. In addition, suppose, without loss of generality,
that M is the matrix in the equivalence class {DMD |D involutory diagonal matrix} that
minimizes the number of positive off-diagonal entries, i.e., the number of positive off-diagonal
entries of M equals f.

We proceed by induction. Suppose that we have orthonormal eigenvectors φ1, ...,φℓ, ℓ < r,
satisfying our desired nodal count Ns(φτ ) ≤ k + (τ − 1) + f for τ = 1, ..., ℓ (if ℓ = 0, we have
no such vectors). Consider an arbitrary eigenvector φ orthogonal to φ1, ...,φℓ. Consider a
minimal nodal decomposition V1, ..., Vt of [n]\i0(φ) for which i and j are in the same nodal
domain only if Mij ≤ 0 (i.e., a nodal decomposition satisfying this condition of minimal size).
Suppose that t > k + ℓ+ f, otherwise we are already done. Let

xp(i) =

{
φ(i) i ∈ Vp

0 otherwise
, p = 1, ..., t

and consider the set of vectors xα =
∑t

p=1 αp xp in their span, parameterized by α1, ..., αt. By

the orthogonality of {x1, ...,xt}, this set is a subspace of Rn of dimension t. Let α(i) := αp

for i ∈ Vp, p = 1, ..., t. If xα is a unit vector, then

xT
αM xα = λ−

∑
(i,j)∈E

[
Mijφ(i)φ(j)

]
(α(i)−α(j))2. (2.3)

If vertices i and j are in the same nodal domain, then α(i) = α(j). So, the only pairs (i, j) ∈ E
for which

[
Mijφ(i)φ(j)

]
(α(i) − α(j))2 is strictly negative are those for which i and j are in

different nodal domains, say i ∈ Vp and j ∈ Vq, and there exists some i∗ ∈ Vp and j∗ ∈ Vq such
that Mi∗,j∗ > 0. There are f edges with Mi,j > 0, and so the subspace of vectors xα for which
α(i) = α(j) for all Mij > 0 is of dimension at least t− f > k+ ℓ. In addition, in this subspace,
the Rayleigh quotient of all vectors xα is at most λ. By restricting our xα further to be
orthogonal to φ1, ...,φℓ and the eigenspaces of the k − 1 eigenvalues strictly less than λ, we
are left with a subspace of dimension of at least t− f− (k− 1)− ℓ > 1, which consists solely of
eigenvectors of λ orthogonal to φ1, ...,φℓ. This implies that there exists an α̂ in this subspace
with α1 = ... = αt−f−k−ℓ = 0, and therefore xα̂ has Ns(xα̂) ≤ t− (t− f − k − ℓ) = k + ℓ+ f,
completing the proof. □

Finally, by simply analyzing the Laplacian of a star graph, we note that the eigenbases satis-
fying the above proposition may be of measure zero.

Example 2.5. Let M =
∑n

i=2(e1 − ei)(e1 − ei)T , e.g., the graph Laplacian of a star. This
matrix has eigenvalues 0, 1, and n, of multiplicity 1, n−2, and 1, respectively. The eigenvalue
λ = 1 has eigenspace E1 = {x |

∑n
i=2 x(i) = 0, x(1) = 0}. The x ∈ E1 satisfying Ns(x) ≤ 2

must have all but two entries equal to zero in an eigenspace of dimension n− 2.
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In the following section, we address this limitation by proving a more robust theorem regarding
signings of eigenvectors.

3. Orthonormal Eigenbases Satisfying Non-Vanishing Nodal Bounds

In this section, we prove Theorem 1.3, breaking our analysis into three parts (as detailed
in Section 1). First, we analyze the structure of repeated eigenvalues whose corresponding
eigenvectors all vanish on some set of coordinates, Then, we place sign restrictions on an
orthonormal basis of such an eigenspace so that, if such a basis exists, our desired nodal
counts will be satisfied. Finally, we show that such non-vanishing orthonormal bases do exist
and constitute a positive proportion of all orthonormal eigenbases. The proof of Theorem 1.3
is algorithmic in nature. For illustrative purpose, an example of this algorithm applied to a
small matrix is given in Appendix B.

3.1. Part I: Structure of Eigenspaces with Vanishing Entries. Let M be a symmetric,
irreducible n × n matrix with eigenvalue λ of index k and multiplicity r, and corresponding
eigenspace Eλ. Recall that i0(x) := {j ∈ [n] |x(j) = 0}, and let

i0(λ) = {j ∈ [n] | ∀φ ∈ Eλ, φ(j) = 0}.

We note that i0(φ) = i0(λ) for all but a set of positive co-dimension of φ ∈ Eλ. Sup-
pose G[i0(λ)] has connected components on p vertex sets X1, ..., Xp ⊂ i0(λ) and G

[
[n]\i0(λ)

]
has connected components on q vertex sets Y1, ..., Yq ⊂ [n]\i0(λ). Let us write the matrix
M and an arbitrary eigenvector φ ∈ Eλ in block notation with respect to the partition
X1, ..., Xp, Y1, ..., Yq:

M =

(
N A

AT M̂

)
, φ =

(
0
φ̂

)
,

where

N =


N (1) 0 . . . 0

0 N (2) . . .
...

...
. . .

. . . 0

0 . . . 0 N (p)

 , M̂ =


M (1) 0 . . . 0

0 M (2) . . .
...

...
. . .

. . . 0

0 . . . 0 M (q)

 ,

are block diagonal matrices, N (i) ∈ R|Xi|×|Xi| for i = 1, ..., p, and M (j) ∈ R|Yj |×|Yj | for j =
1, ..., q, and

A =

A
(1,1) . . . A(1,q)

...
. . .

...

A(p,1) . . . A(p,q)

 , φ̂ =

φ
(1)

...

φ(q)

 ,

A(i,j) ∈ R|Xi|×|Yj | for i = 1, ..., p, j = 1, ..., q, and φ(j) ∈ R|Yj | for j = 1, ..., q. Next, we
define H = (X,Y,EH) to be the bipartite graph, with bipartition X = {x1, ..., xp} and Y =
{y1, ..., yq}, representing the connectivity between the elements of {Xi}pi=1 and {Yj}qj=1, i.e.,

EH =
{
(xi, yj) |A(i,j) ̸= 0

}
. We note that H is connected, as it is an aggregation of the

connected graph G. Let us define

u(i) := smallest index j ∈ [q] such that xi ∼H yj ,

v(j) := smallest index i ∈ [p] such that xi ∼H yj .
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Figure 3. The signed graph G = ([16], E, σ) associated with the example
matrix M used in Appendix B, and the corresponding bipartite graph for the
eigenspace corresponding to λ = 0. The matrix has diagonal entries equal to −1
for i = 1, 2, 5, 10, 11, 12, has off-diagonal entries equal to +1 for dashed edges
and −1 for solid edges, and zeros otherwise. The vertices 6, 8, 9, 15, 16 vanish
on the eigenspace of λ = 0. See Appendix B for the full analysis associated
with this matrix.

We order the elements of X and Y so that, for any i1 > 1, dH(xi1 , xi2) = 2 for some i2 < i1,
and v(j1) ≤ v(j2) if j1 < j2. In addition, we suppose that our original ordering of vertex sets
X1, ..., Xp and Y1, ..., Yq corresponds to the aforementioned ordering of x1, ..., xp and y1, ..., yq
in H. See Figure 3 for an example of such a bipartite graph for a small matrix (a full example
illustrating our procedure for this matrix is provided in Appendix B.

From analysis of the eigenvalue-eigenvector equation, we note that Eλ can be equivalently
represented as the set of vectors φ(1), ...,φ(q) satisfying

q∑
j=1

A(i,j)φ(j) = 0, i = 1, ..., p, and M (j)φ(j) = λφ(j), j = 1, ..., q.

Let ψ
(j)
1 , ...,ψ

(j)
rj be a non-vanishing orthonormal basis for the orthogonal projection of Eλ to

the indices of Yj , j = 1, ..., q. This projection (restricted to the indices of Yj) is a subspace of

the eigenspace of the matrix M (j) and eigenvalue λ. Let Êλ = span{ψ(j)
σ }j=1,...,q

σ=1,...,rj
, k̂ be the

index of λ with respect to M̂ , and r̂ be the dimension of Êλ. By eigenvalue interlacing, k̂+ r̂ ≤
k + r. Each eigenvector φ ∈ Eλ can be represented uniquely in the basis

{
ψ

(j)
σ

}j=1,...,q

σ=1,...,rj
, say,

φ =
∑q

j=1

∑rj
σ=1 α

j
σψ

(j)
σ . In fact, we can associate Eλ with the subspace of {αj

σ}j=1,...,q
σ=1,...,rj

∼= Rr̂

satisfying
q∑

j=1

rj∑
σ=1

αj
σ

[
A(i,j)ψ(j)

σ

]
= 0, i = 1, ..., p,

or, by Gaussian elimination, γ := r̂ − r homogeneous equations

hℓ
[
{αj

σ}
j=1,...,q
σ=1,...,rj

]
=

q∑
j=1

rj∑
σ=1

cjℓ,σ α
j
σ = 0, ℓ = 1, ..., γ,
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for some constants cjℓ,σ ∈ R, ℓ = 1, ..., γ, j = 1, ..., q, σ = 1, ..., rj .

Recall our eigenspace Eλ corresponds to the subspace of {αj
σ}j=1,...,q

σ=1,...,rj
∼= Rr̂ satisfying the γ ho-

mogeneous equations hℓ
[
{αj

σ}j=1,...,q
σ=1,...,rj

]
= 0. Consider the matrix associated with these γ equa-

tions, where row i corresponds to the linear form hi, i = 1, ..., γ, and the columns {1, ..., r̂} cor-

respond to the variables {αj
σ}j=1,...,q

σ=1,...,rj
listed in reverse order: αq

rq , ..., α
q
1, α

q−1
rq−1 , ..., α

q−1
1 , ..., α1

r1 , ..., α
1
1

(e.g., column one corresponds to αq
rq , column r̂ to α1

1). Let us further suppose that the sys-

tem of equations hℓ
[
{αj

σ}j=1,...,q
σ=1,...,rj

]
= 0 is in reduced row echelon form with respect to the

aforementioned ordering of equations and variables. In this case, the pivot for hℓ[·] is given by

ηℓ, σℓ = argmaxj,σ(j + σ/rj)1{c(j)ℓ,σ ̸= 0}, ℓ = 1, ..., γ,

and we denote the set of pivots by Σ := {(ηℓ, σℓ) | ℓ = 1, ..., γ}. Let us fix the values of the

variables corresponding to the γ pivots so that the equations hℓ[{αj
σ}] = 0, ℓ = 1, ..., γ, are

satisfied:
αηℓ
σℓ

= −
∑

(j,σ)̸∈Σ

cjℓ,σ α
j
σ, ℓ = 1, ..., γ.

With the values of pivot variables fixed, our eigenspace Eλ is parameterized by the coefficients{
{αj

σ}j=1,...,q
σ=1,...,rj

\ {αηℓ
σℓ}

γ
ℓ=1

}
, and in what follows we work directly with this formulation:

Eλ = span

{
ψ(j)

σ −
γ∑

ℓ=1

cjℓ,σψ
(ηℓ)
σℓ

∣∣∣∣ (j, σ) ̸= Σ

}
.

Finally, we note that, for two eigenvectors φ1,φ2 ∈ Eλ with coefficients {1αj
σ} and {2αj

σ},
respectively,

⟨φ1,φ2⟩ =
∑

(j,σ)̸∈Σ
1α

j
σ

[
2α

j
σ +

∑
(ι,ω) ̸∈Σ

2α
ι
ω

γ∑
ℓ=1

cjℓ,σc
ι
ℓ,ω

]
. (3.1)

3.2. Part II: Restrictions That Produce Classical Nodal Bounds. Now that we have
sufficiently characterized the structure of an eigenspace with vanishing entries, we are now
prepared to restrict the choices of an orthonormal basis φ1, ...,φr of Eλ and the choices of
signings of vanishing vertices (given by ε1, ..., εr) so that N(εs) ≤ k+(s−1)+ f for s = 1, ..., r,
where k is the index of λ and f is the frustration index of the signed graph of M .

Here we make use of the notation introduced in Subsection 3.1, and we assume M minimizes
the number of pairs of positive off-diagonal entries over the set

{DMD |D involutory diagonal matrix }.
Therefore there are exactly f positive off-diagonal entries. Let us define:

f̂ = number of pairs of positive off-diagonal entries of M̂,

f̃ = number of pairs of positive off-diagonal entries {Ma,b,Mb,a}
where a ∈ Xi for some i and b ∈ Xi ∪ Yu(i).

By applying Proposition 2.1 to each of the q connected components of G[[n]\i0(λ)] and using

the inequality k̂+ r̂ ≤ k+r, any non-vanishing eigenvector of φ̂ ∈ Êλ satisfies (for an arbitrary
integer s ≥ 0)

N(φ̂) ≤ k̂ + (q − 1) + f̂ ≤ k + (s− 1) + f +
[
q − γ − s− (f − f̂)

]
. (3.2)
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Furthermore, as noted in the proof of Proposition 2.1, each eigenvector φ̂ has a nodal decom-
position satisfying (3.2) where vertices i and j are in the same nodal subgraph only ifMij ≤ 0.
In what follows, we always assume that any nodal decomposition of φ̂ under consideration
also satisfies this property. Let us denote the coefficients corresponding to the eigenvector φs

by sα
j
σ. For each (φs, εs), we aim to fix the signs εs(j) of vanishing entries j ∈ i0(λ) and

restrict the values of the elements sα
j
σ so that the original nodal count is decreased by at least

q− γ− s− (f− f̂) (using q− γ− s+1 elements) and φs is orthogonal to φt for all t < s (using
s− 1 elements).

First, we describe our signing of i0(λ) for each vector. Consider an arbitrary non-vanishing

vector φ̂ ∈ Êλ. We restrict our signing so that ε is constant over each Xi, i = 1, ..., p. In
particular, we set:

ε(a) = sgn(φ(b)) for all a ∈ Xi and some fixed b ∈ Yu(i) in the neighborhood of Xi.

Ignoring edges between X and Y that are not between Xi and Yu(i) for some i (i.e., each Xi

is connected to only one Yj), the above signing of i0(λ) increases the nodal count by at most

f̃, already giving the bound

N(ε) ≤ N(φ̂) + f̃ ≤ k + (s− 1) + f +
[
q − γ − s− (f − f̂ − f̃)

]
. (3.3)

Next we will choose the signs of some of our coefficients sα
j
σ so that the nodal count decreases

further by using edges between X and Y that are not between Xi and Yu(i) for some i. In

particular, we restrict our basis coefficients sα
j
σ so that the nodal count of the sth eigenvector

is at least q− γ − s− (f − f̃ − f̂) less than the bound of Inequality 3.3. We need only consider

s < q − γ, otherwise our desired bound already holds. Let us partition the variables sα
j
σ into

four sets, based on their function in the analysis that follows:

Πs
E = variables fully restricted so that φs ∈ Eλ,

Πs
S = variables restricted in sign so that N(εs) ≤ k + (s− 1) + f,

Πs
O = variables fully restricted so that ⟨φs,φt⟩ = 0 for all t < s,

Πs
F = unrestricted variables.

Let Ŷ = {yj | j ̸= ηℓ, ℓ = 1, ..., γ}. We note that |Ŷ | ≥ q − γ, and denote the indices of the

first q − γ elements of Y in Ŷ by j1 < ... < jq−γ . For s < q − γ, we can set

Πs
E =

{
sα

j
σ | (j, σ) ∈ Σ

}
,

Πs
S =

{
sα

jm
σ |m = 2, ..., q − γ − s+ 1, σ = 1, ..., rjm

}
,

Πs
O =

{
sα

jm
rjm

|m = q − γ − s+ 2, ..., q − γ
}
,

Πs
F = {sαj

σ}
j=1,...,q
σ=1,...,rj

\
[
Πs

E ⊔Πs
S ⊔Πs

O

]
.

By definition, when s = 1, Πs
O = ∅. We aim to show that the nodal count is at least[

q − γ − s − (f − f̃ − f̂)
]
less than Inequality 3.3 for each εs by traversing the elements

yj1 , ..., yjq−γ , and restricting the signs of the variables in Πs
S in some way.

For each pair jm, v(jm), m = 2, ..., q − γ, let am, bm ∈ [n] be a pair of vertices satisfying

am ∈ Yjm , bm ∈ Xv(jm), and am ∼G bm. For every
{
sα

jm
σ

}rjm
σ=1

⊂ Πs
S , we require

sgn

( rjm∑
σ=1

sα
jm
σ ψ

(jm)
σ (am)

)
= εs(bm),
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resulting in am and bm being in the same nodal domain if there is no frustrated edge between
Yjm and Xv(jm). We claim that these restrictions are consistent (e.g., there exist vectors
simultaneously satisfying all conditions), and sufficient to produce our desired nodal bounds.

Claim 3.1. Suppose an eigenvector φ =
∑

(j,σ)̸=Σ α
j
σ

[
ψ

(j)
σ −

∑γ
ℓ=1 c

j
ℓ,σψ

(ηℓ)
σℓ

]
∈ Eλ and signing

ε ∈ {±1}n satisfy

(1) ε(i) = sgn(φ(i)) for all φ(i) ̸= 0, i ∈ [n],
(2) φ(i) ̸= 0 for all i ∈ [n]\i0(λ),
(3) ε(a) = sgn(φ(b)) for all a ∈ Xi and some fixed b ∈ Yu(i) in the neighborhood of Xi,

(4) sgn
(∑rjm

σ=1 α
jm
σ ψ

(jm)
σ (am)

)
= ε(bm) for m = 2, ..., q − γ − s+ 1, for some s > 0.

Then N
(
ε
)
≤ k + (s − 1) + f. Furthermore, there exists some (φ, ε) satisfying the above

conditions for s = 1.

Proof. We break our proof of the desired claim into two parts: first, we show the existence
of (φ, ε) satisfying the conditions of the claim for s = 1, and then we show that satisfying
Properties (1)-(4) for an arbitrary s implies N

(
ε
)
≤ k + (s− 1) + f.

We first aim to show that Properties (3) and (4) are consistent with each other, e.g., we can

choose αj
σ, (j, σ) ∈ Σ, and ε so that both properties simultaneously hold. By the construction

of our pivots, any αηℓ
σℓ is a linear function of variables of lower index, e.g., variables αj

σ with

j ≤ ηℓ, and, if j = ηℓ, then σ < σℓ. Therefore, ε|Xi is a function of αj
σ with j ≤ u(i). Property

(4) is a sign restriction on the variables {αjm
σ }rjmσ=1 corresponding to Yjm , depending on the

quantity ε|Xv(jm)
, which depends only on αj

σ with j ≤ u(v(jm)). Therefore, it suffices to show

that jm > u(v(jm)) for m > 1.

Recall that dH(xi1 , xi2) = 2 for all i1 > 1 and some i2 < i1, and that v(j1) ≤ v(j2) if
j1 < j2. Because m > 1, we may consider jm−1 < jm, and note that v(jm−1) ≤ v(jm). If
v(jm−1) = v(jm), then u(v(jm)) ≤ jm−1 < jm, proving the desired result. If v(jm−1) < v(jm),
then v(jm) ̸= 1, and so there exists some i < v(jm) with dH(xi, xv(jm)) = 2. This implies that
there is some j with yj ∼H xi and yj ∼H xv(jm), giving v(j) ≤ i < v(jm), implying j < jm

and so u(v(jm)) ≤ j < jm. Therefore, we may indeed choose αj
σ, (j, σ) ∈ Σ, and ε so that

both Properties (3) and (4) simultaneously hold.

What remains is to formally choose φ so that Properties (2) and (4) hold. Each entry φ(i),
i ̸∈ i0(λ), is a non-trivial linear function in α:

φ(i) =
∑

(j,σ)̸=Σ

αj
σ

[
ψ(j)

σ (i)−
γ∑

ℓ=1

cjℓ,σψ
(ηℓ)
σℓ

(i)

]
,

and has a lexicographically largest pair (j, σ) for which the coefficient corresponding to αj
σ

is non-zero. If αj
σ is not this variable for any i ̸∈ i0(λ), then we simply set αj

σ = 0. We

set the values of the remaining αj
σ iteratively, starting with the smallest values of j (and,

conditional on j, the smallest values of σ). Consider some αj
σ not yet set, with all variables

corresponding to smaller pairs (j′, σ′) already set to some fixed value. If σ = rj and j = jm
for some 1 < m < q − γ, then αj

σ is restricted to the half-line defined by Property (4). Let

us consider the set of linear functions φ(i) only in αj
σ and variables corresponding to smaller
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pairs (j′, σ′). With all variables of lower index set to fixed values, each function is a non-trivial

linear function of only αj
σ. By avoiding the at most n − |i0(λ)| choices of αj

σ for which any

of these linear functions can be zero (also choosing αj
σ to satisfy Property (4) if σ = rj and

j = jm for some 1 < m < q − γ), and recursing, we have constructed a pair (φ, ε) satisfying
the conditions of the claim.

What remains is to show that Properties (1)-(4) (for s arbitrary) implies that N
(
ε
)
≤ k+(s−

1) + f. Recall, by Proposition 2.1 and eigenvalue interlacing, that

N
(
ε|[n]\i0(λ)

)
= N

(
φ|[n]\i0(λ)

)
≤ k + (s− 1) + f +

[
q − γ − s− (f − f̂)

]
. (3.4)

Because ε is constant on each Xi (by Property (3)), N
(
ε|Xi

)
is at most one plus the number

of positive pairs of off-diagonal entries of M on the indices of Xi. In addition, because ε|Xi

has the same sign as φ(b) for some b ∈ Yu(i) in the neighborhood of Xi (again, by Property
(3)), either b is in the same nodal domain as some a ∈ Xi, or there is a positive edge between
Xi and Yu(i). Let G

′ = ([n], E′) be the subgraph of G with

E′ = E \
{
(a, b) ∈ E | a ∈ Xi, b ∈ Yj , j ̸= u(i)

}
.

The subgraph of H corresponding to G′, denoted by H ′, is a forest consisting of trees, each
with root in Y and some number of leaves in X. Recall that f̃ equals the number of pairs of
positive off-diagonal entries either within some Xi or between some Xi and Yu(i). The nodal

count NG′(ε) is then at most N
(
ε|[n]\i0(λ)

)
+ f̃, as N

(
ε|Xi

)
is at most one plus the number of

positive pairs of off-diagonal entries within Xi, and either some vertex of Xi is in the same
nodal domain as a vertex of Yu(i), or there is a positive off-diagonal entry between Xi and
Yu(i). Combining this observation with Inequality 3.4 gives

NG′(ε) ≤ N
(
ε|[n]\i0(λ)

)
+ f̃ ≤ k + (s− 1) + f +

[
q − γ − s− (f − f̂ − f̃)

]
.

We have jm > u(v(jm)) for m > 1, and so jm and v(jm) are in different trees of H ′. Let H ′
t be

the graph resulting from the addition of edges {(jm, v(jm)) |m = 2, ...t} to H ′. More generally,
jt+1 and v(jt+1) are in different connected components of H ′

t for any t = 2, ..., q− γ− s. Now,
let us consider the effect of the addition of each of the edges (jm, v(jm)), m = 2, ..., q −
γ − s + 1, on our nodal bound (e.g., consider the nodal count of the sequence of graphs
H ′, H ′

2, ....,H
′
q−γ+s−1). Property (4) implies that, for m = 2, ..., q − γ − s + 1, either am and

bm are in the same nodal domain (implying that H ′
m has one less nodal domain than H ′

m−1),
or there is a frustrated edge of M between Yjm and Xv(jm), and so

NG(ε) ≤ NG′(ε)−
[
q − γ − s− (f − f̂ − f̃)

]
≤ k + (s− 1) + f,

completing the proof. □

3.3. Part III: Many Orthonormal Bases Satisfy the Conditions of Part II. Claim
3.1 shows that the conditions for our eigenvectors φ1, ...,φr (and corresponding signings) are
satisfiable and, if these conditions are satisfied, then the desired nodal bound is achieved.
What’s left is to show that the eigenvectors can simultaneously satisfy the conditions of Claim
3.1 and be orthogonal to each other, and that there is a set of co-dimension zero of such
orthonormal bases. We break the remainder of the argument into two parts: First, we show
that we can build orthogonal eigenvectors φ1, ...,φq−γ−1 so that, for φs, the conditions of
Claim 3.1 are satisfied for vertices ⊔i≤v(jq−γ−s+1)Xi and ⊔j≤jq−γ−s+1Yj , but possibly not for

the remaining vertices (Claim 3.2). Then, we show that such a set of orthogonal eigenvectors
can be extended to an orthonormal basis, rotated so that the conditions of Claim 3.1 hold for
all vertices, and that these conditions are maintained under sufficiently small rotations of the
orthonormal basis (Claim 3.3).
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Claim 3.2. There exists eigenvectors φ1, ...,φq−γ−1, φs =
∑

(j,σ)̸=Σ sα
j
σ

[
ψ

(j)
σ −

∑γ
ℓ=1 c

j
ℓ,σψ

(ηℓ)
σℓ

]
∈

Eλ, and signings ε1, ..., εq−γ−1 ∈ {±1}n such that (φ1, ε1) satisfy the conditions of Claim 3.1
for s = 1, and (φs, εs), s = 2, ..., q − γ − 1, satisfy

(1) εs(i) = sgn(φs(i)) for all φs(i) ̸= 0, i ∈ [n],
(2) φs(i) ̸= 0 for all i ∈ ⊔j≤jq−γ−s+1Yj,
(3) εs(a) = sgn(φs(b)) for all a ∈ Xi and some fixed b ∈ Yu(i) in the neighborhood of Xi,

i = 1, ..., v(jq−γ−s+1),

(4) sgn
(∑rjm

σ=1 α
jm
σ ψ

(jm)
σ (am)

)
= ε(bm) for m = 2, ..., q − γ − s+ 1,

(5) ⟨φs,φt⟩ = 0 for all t < s.

Proof. Claim 3.1 guarantees the existence of our desired pair (φ1, ε1). To prove this claim,
we repeat a version of the proof of Claim 3.1 in which the eigenvector φs needs only satisfy

half-space and non-vanishing conditions for Yj , j ≤ jq−γ−s+1, has α
j
σ = 0 for all elements of

Πs
F with j > jq−γ−s+1, and coefficients in Πs

O chosen so that φs is orthogonal to φt, t < s.

We proceed by induction on the invertibility of the matrices associated with this orthogo-
nalization procedure. In particular, given φ1, ...,φs−1, and some fixed choice of values for

sα
j
σ ̸∈ Πs

O ∪Πs
E , orthogonality of φs to φt, t < s, is equivalent (by Equation 3.1) to the s− 1

elements sα
j
σ ∈ Πs

O satisfying the s− 1 linear equations

q−γ∑
m=q−γ−s+2

sα
jm
rjm

[
tα

jm
rjm

+
∑

(ι,ω)̸∈Σ
tα

ι
ω

γ∑
ℓ=1

cjmℓ,rjm
cιℓ,ω

]
= −

∑
sα

j
σ ̸∈Πs

O∪Πs
E

sα
j
σ

[
tα

j
σ+

∑
(ι,ω)̸∈Σ

tα
ι
ω

γ∑
ℓ=1

cjℓ,σc
ι
ℓ,ω

]

for t = 1, ..., s− 1.

If the restrictions of φ1, ...,φs−1 to Πs
O are linearly independent, then the above system has

a solution, as this restriction is a basis on Πs
O, and so we may choose φs

∣∣
Πs

O
so that each

⟨φt

∣∣
Πs

O
,φs

∣∣
Πs

O
⟩, t < s, is equal to any quantity we desire.

Therefore, it suffices to show that, at each step, the eigenvectors φ1, ...,φs−1 restricted to Πs
O

are linearly independent. We begin with our base case of s = 2. Our matrix is a scalar; we
simply require that

1α
jq−γ
rjq−γ

+
∑

(ι,ω)̸∈Σ
1α

ι
ω

γ∑
ℓ=1

c
jq−γ

ℓ,rjq−γ
cιℓ,ω ̸= 0,

and note that the coefficient corresponding to 1α
jq−γ
rjq−γ

in the above linear function must be

positive, as the eigenvector with α
jq−γ
rjq−γ

= 1 and all other variables zero must have non-zero

norm. By adding this single linear constraint to φ1, we have satisfied our base case of s = 2.

Now consider an arbitrary s > 2. After selecting φs−1, if φ1, ...,φs−1 restricted to Πs
O are

linearly independent, then we simply choose our coefficients for φs as in the proof of Claim 3.1
for Yj , j ≤ jq−γ−s+1, and choose Πs

O to satisfy the above system. If the eigenvectors are linearly
dependent, then, by induction φ1

∣∣
Πs

O
, ...,φs−2

∣∣
Πs

O
are linearly independent, and so φs−1

∣∣
Πs

O
is

in the span of the other vectors. Let x ∈ Eλ be a vector orthogonal to φ1, ...,φs−2 such that
x
∣∣
Πs

O
̸∈ span{φ1

∣∣
Πs

O
, ...,φs−2

∣∣
Πs

O
}. Then, for a sufficiently small choice of δ, sgn

(
φs−1 + δx

)
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equals sgn
(
φs−1

)
on Yj , j ≤ jq−γ−s+1. By simply replacing φs−1 by φs−1 + δx, we now have

our desired property, while maintaining all sign conditions. □

Claim 3.3. Let Bλ be the set of orthonormal bases of Eλ. Then there exists a manifold
Φλ ⊂ Bλ of co-dimension zero, an ordering of basis elements {φ1, ...,φr} ∈ Φλ, and signings
ε1, ..., εr ∈ {±1}n satisfying εs(i) = sgn(φs(i)) for all φs(i) ̸= 0, i ∈ [n], s = 1, ..., r, such that

N(εs) ≤ k + (s− 1) + f, s = 1, ..., r.

Proof. By Claim 3.2, there are eigenvectors φ1, ...,φq−γ−1 that almost satisfy the conditions
of Claim 3.1, but may vanish on

[n]\
[
i0(λ)

⊔
⊔j≤jq−γ−s+1Yj

]
.

Consider an arbitrary extension and re-normalization of φ1, ...,φq−γ−1 to an orthonormal
basis for Eλ: φ1, ...,φr. The vector φ1 is non-vanishing on [n]\i0(λ), and using small rotations
involving this vector, we may make every eigenvector in the basis non-vanishing on [n]\i0(λ)
without changing the sign of any non-zero entry.

To do so, we make use of Givens rotations Gi,j(θ) ∈ Rn×n, e.g., the orthogonal matrix with
non-zero entries

[
Gi,j(θ)

]
kk

= 1 for k ̸= i, j,
[
Gi,j(θ)

]
kk

= cos θ for k = i, j, and
[
Gi,j(θ)

]
ij
=

−
[
Gi,j(θ)

]
ji
= sin θ. Let ρ be the magnitude of the smallest non-zero entry of φ1, ...,φr, and

consider the following sequence of Givens rotations:[
φ′

1 ...φ
′
r

]
=

[ r∏
i=2

G1,i(ρ/2
r)

][
φ1 ...φr

]
.

Any non-zero entry φs(j) has the same sign as φ′
s(j), as∣∣|φ′

s(j)| − |φs(j)|
∣∣ ≤ |φs(j)|

(
1− cosr−1(ρ/2r)

)
+ (r − 1) sin(ρ/2r)

≤
(
1− (1− (ρ/2r)2/2)r−1

)
+ (r − 1)(ρ/2r)

≤ 2r−1(ρ/2r)2 + (r − 1)(ρ/2r) < ρ,

and any zero entry φs(j), j ̸∈ i0(λ) results in a non-zero φ′
s(j), as each s ̸= 1 has only one

Givens rotation applied to it, and every entry φ1(j), j ̸∈ i0(λ), is non-vanishing and remains
so after each rotation.

Therefore, there exists a choice of {φ1, ...,φr} ∈ Bλ and a compatible set of signings ε1, ..., εr ∈
{±1}n such that each eigenvector vanishes only on i0(λ), and (φs, εs), s < q − γ, satisfy the
conditions of Claim 3.2. Again, we recall that, for s ≥ q−γ, by simply setting ε(a) = sgn(φ(b))
for all a ∈ Xi and some fixed b ∈ Yu(i) in the neighborhood of Xi, i = 1, ..., p, we automatically
have

N(εs) ≤ k − γ + q − 1 + f ≤ k + (s− 1) + f.

For s < q − γ, (φs, εs), satisfying the conditions of Claim 3.2 and not vanishing on [n]\i0(λ)
implies, by Claim 3.1, that N(εs) ≤ k + (s− 1) + f in this case as well.

To complete the proof, we simply expand the point
{
φ1, ...,φr

}
∈ Bλ using rotations of

arbitrarily small angle. In particular, we set

Φλ =

{[ (r2)∏
i=1

Gpi,qi(θi)

][
φ1 ...φr

] ∣∣∣∣ pi, qi ∈ [r], θi ∈ [−υ, υ], i = 1, ..., r

}
,
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where

υ < 2−(
r
2) min

s∈1,...,r
j∈[n]\i0(λ)

|φs(j)|.

Considering an arbitrary entry φs(j) > 0, we note that the composition of
(
r
2

)
Givens rotations

with angles in [−υ, υ] can change this entry by at most

∣∣φs(j)−
[
cos(

r
2)(υ)φs(j)−

(r2)∑
i=1

sin(υ) cosi−1(υ)
]∣∣ ≤ |φs(j)|(1− cos(

r
2)(υ)) +

(
r
2

)
sin(υ)

≤ |φs(j)|(1− (1− υ2/2)(
r
2)) +

(
r
2

)
υ

≤ 2(
r
2)υ2 +

(
r
2

)
υ < φs(j),

and so every basis in Φλ has the same sign pattern as {φ1, ...,φr}, and, therefore, the same
ε1, ..., εr. This completes the proof. □

4. Nodal Count of Signed Erdős-Rényi Graphs

In this section, we prove Theorem 1.4. We consider an Erdős-Rényi random signed graph
G(n, p, q), with 0 < p, q < 1 fixed constants. We give φ the index i. We prove the following.

Theorem 4.1 (Specific version of Theorem 1.4). For any 0 < ϵ, p, q < 1, there is a constant
γ > 0 such that for every α > 0, there is some N such that for n > N , index i ∈ [ϵn, (1− ϵ)n]
and the ith eigenvector φ of the adjacency matrix of G ∼ G(n, p, q), the probability that
N(φ) < αn is at least 1− n−γ.

Therefore, by taking an infinite decreasing sequence of α, the number of nodal domains is o(n)
with probability 1−O(n−γ).

In order to be consistent with the literature and reason about the spectrum, we work with
both the adjacency matrix A and a normalized version Ã := 1√

(p+q)n
A, so that E(Ã2

u,v = 1/n).

We proceed with the steps as listed in the introduction.

4.1. Part I: Function Definition. In order to count nodal domains, we choose some s such
that almost all sets of s vertices contain a nodal domain of size k for k > 0. We set

s := (p ∧ q)−k (4.1)

and will show this is sufficient. To quantify whether a set |S| = s contains a nodal domain of

size k, we consider the function fs : R(
s+1
2 ) → R, defined as

fs(AS ,
√
nφ(S)) := 1>0

 ∑
B∈(Sk)

∏
(u,v)∈(B2)

1>0(nφ(u)φ(v)Auv)

 .

Therefore fs asks whether S contains a nodal domain that is a clique. We call these clique
domains. This is more specific than a general nodal domain, but is analytically easier to deal
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with. Moreover, we expect these form a constant portion of all nodal domains, so our asymp-
totic result does not change. Similar analysis would work with a slightly more complicated
function that counts nodal domains of any type, namely

1>0

 ∑
B∈(Sk)

 ∑
T∈TB

∏
uv∈T

A2
uv

 ∏
(u,v)∈(B2)

1≥0(nφ(u)φ(v)Auv)


where TB is the set of spanning trees of S.

Note that we have renormalized fs so that, typically, its eigenvector inputs are Θ(1).

4.2. Part II: Polynomial Approximation. We approximate fs with a finite degree poly-
nomial. We localize the distribution of A to AS by defining M ⊂ Matsym(s) as the set of
feasible assignments of AS . Specifically, M is the set of matrices M such that for any pair of
indices u, v

Muv ∈
{

{0} u = v
{0,±1} u ̸= v.

We equip M with the distribution of AS . For M ∈ M we will write M̃ := 1√
(p+q)n

M . From

now on, we denote by g a length s vector of i.i.d. standard normal Gaussians of length s.
Abusing notation, we will also denote the s dimensional probability measure of g by g.

Lemma 4.2. For any 0 < δ < 1, C > 1, there is a finite degree polynomial ps : R(
s+1
2 ) → R,

such that the following are true. We consider y ∈ Rs to stand in for the contribution of φ.
Then

(1) For any M ∈ M, ps satisfies the following bounds.

|ps(M,y)− fs(M,y)| ≤ δ y : ∀u, v ∈
(
[s]
2

)
, yuyv ∈ [−C,−δ] ∪ [δ, C] (4.2)

|ps(M,y)| ≤ 1 + δ y : ∀u, v ∈
(
[s]
2

)
, yuyv ∈ [−C,C] (4.3)

(2) For any M ∈ M, ps(M,y) is even in y and

E
[
ps(M,g)2

]
≤ 2. (4.4)

Before we prove this lemma, we give an idea of the method. We will work in a weighted
Sobolev normed space. Our weight function µ is a probability measure on R defined as

dµ(x) :=
1

2
e−|x|. (4.5)

We then define the Sobolev norm as for any function f : R → R,

∥f∥Wk,p =

(∫ ∞

−∞

k∑
i=0

|f(x)(i)|pdµ(x)

)1/p

.

The key fact is that under this norm, fs can be approximated by polynomials. This, by a
result of Rodŕıguez, is implied by the fact that polynomials are dense in Lp(R, µ) (see [45]
Page 170).

Lemma 4.3. [[56] Proposition 4.2] For µ defined in (4.5), k ∈ N and 1 ≤ p <∞, polynomials
are dense in W k,p among all functions that have bounded W k,p norm.
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Bounding our Sobolev norm also bounds the infinity norm on intervals, as we can embedW 1,p

into the space of functions bounded on [−C,C]. The following is implied by ([15] 4.1 Lemma
1).

Lemma 4.4. For µ defined in (4.5) and ∥F∥W 1,p ≤ ϵ, there is some constant c(C) such that

∥F1[−C,C]∥∞ ≤ c · ϵ.

Proof of Lemma 4.2. We first approximate fs(M,y) with a differentiable version. Therefore
define the function ηδ : R → R

ηδ(x) =

 0 x ≤ 0
3x2/δ2 − 2x3/δ3 x ∈ [0, δ]

1 x ≥ δ
.

From now on, we write r :=
(
s
k

)
. Our differentiable approximation of fs(M,y) is

η1/2

∑
α∈[r]

∏
uv∈(α2)

ηδ(Muvyuyv)

 .

The outer function receives parameter 1/2, considering we just want it to distinguish 0 from
1 or more. The inner function needs parameter δ, as it takes the Gaussian input.

We approximate η1/2 and ηδ separately with polynomials P and Q. We take our outer approx-

imation first. Consider C2 := 2
(
s
k

)
. We approximate η1/2 on the compact interval [−C2, C2]

with a polynomial P so that ∥(P − η1/2)1[−C2,C2]∥∞ ≤ ϵ for some ϵ to be determined.

We denote by d the degree of P . We choose Q by having it approximate ηδ in W 1,p for
p :=

(
k
2

)
4d. Using Lemma 4.3 and Lemma 4.4, we can approximate ηδ to such accuracy that

∥(Q− ηδ)1[−2C,2C]∥∞ ≤ ϵ, ∥Q∥Lp ≤ 1. (4.6)

for some ϵ to be determined. This second inequality is possible as ∥ηδ∥Lp < 2
− 1

p .

We can now show the properties of P (
∑

i∈[r]Q(xi)). Denote by 1C the event that gugv ∈
[−C,C] for each pair of vertices u, v ∈ S. For the infinity norm, we consider∥∥∥∥∥∥∥

η1/2
∑

α∈[r]

∏
uv∈(α2)

ηδ(Muvgugv)

− P

∑
α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


1C

∥∥∥∥∥∥∥
∞

. (4.7)

By (4.6), and the fact that ∥ηδ∥∞ ≤ 1, we have that under 1C , |
(∑

α∈[r]
∏

uv∈(α2)
ηδ

)
−(∑

α∈[r]
∏

uv∈(α2)
Q
)
| ≤ r

(
(1 + ϵ)(

k
2) − 1

)
. Using the approximation (1 + ϵ)(

k
2) − 1 ≤ k2ϵ for

small ϵ,

(4.7) ≤ max
x∈[0,r]

|x−y|≤ϵk2r

|η1/2(x)− P (y)|

≤ max
x∈[0,r]

|x−y|≤ϵk2r

|η1/2(y)− P (y)|+ |η1/2(x)− η1/2(y)|

≤ ϵ+ 3ϵk2r.
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For sufficiently small ϵ, this satisfies (4.2) and (4.3). Now we will show (4.4). We start with

E

P
∑

α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


2 ≤ E

P
∑

α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


2

1C



+ E

P
∑

α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


2

1C

 .
For the first term on the right, we have by the infinity norm bound,

∫
P

∑
α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


2

1Cdg ≤ ϵ+ 3ϵk2r

For the other term, we use

E

P
∑

α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


2

1C

 ≤ E

P
∑

α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


4

1/2

Pr(1C)
1/2

We can write

P (x)4 =
4d∑

m=0

cmx
m.

This gives

∫
Rs

P

∑
α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


4

dg =
4d∑

m=0

∫
Rs

cm

∑
α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


m

dg

≤
4d∑

m=0

|cm|rm−1
∑
α∈[r]

∫
Rs

∏
uv∈(α2)

|Q(Muvgugv)|mdg

≤
(
k

2

)−1 4d∑
m=0

|cm|rm−1
∑
α∈[r]

∑
uv∈(α2)

∫
Rs

|Q(gugv)|m(
k
2)dg.

where at the last line we use the AM GM inequality and the symmetry of the measure.

Recall that the product of two i.i.d. standard normal Gaussians has the tail bound Pr(|gugv| ≥
t) ≤ 2e−t (see [64, Lemma 2.7.7]). Therefore,∫

R
|Q(gugv)|m(

k
2)dg ≤ 4

∫ ∞

−∞
|Q(x)|m(

k
2)dµ

≤ 4

∫ ∞

−∞
max{1, |Q(x)|p}dµ ≤ 4(1 + 1)

by (4.6). As Pr(1C) ≤ 2re−|C|, for sufficiently large C,∥∥∥∥∥∥∥P
∑

α∈[r]

∏
uv∈(α2)

Q(Muvgugv)


∥∥∥∥∥∥∥
L2(g)

≤ 1 + ϵ+ Pr(1C)
1/2

(
8
∑
m

|cm|rm
)

≤ 2.
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□

4.3. Part III: Independence. We use the following structural laws concerning the spectrum
and eigenvectors. These structural results are a combination of [39, Equation 4.11], [12,
Proposition 4.3], and [28, Corollary 3.2].

Lemma 4.5. For i as defined in Theorem 1.4, we consider eigenvalue λi of Ã with eigenvector
φ.

(1) For any fixed unit vector w ⊥ −→
1[n] and any c > 0 there is a constant γ > 0 such that

with probability 1−O(n−γ), ∑
j ̸=i

1

|λj − λi|
≤ n1+c (4.8)

and for every eigenvector φj of Ã,

|⟨w,φj⟩| ≤ n−1/2+c. (4.9)

(2) With probability 1− n−ω(1)

∥φ∥∞ ≤ log4 n/
√
n. (4.10)

We define Ω4.5 to be the high probability event that (4.8),(4.9),(4.10) are true for index i,
c < 1/20 and a finite set of vectors w to be determined throughout the course of the proof.

We wish to use these delocalization results to control the change in φ(S) while changing AS .
Therefore, consider the normalized block adjacency matrix of the G(n, p, q) graph

Ã =

[
ÃS ÃS,S

ÃS,S ÃS

]
.

Fixing the rest of Ã, we can replace ÃS with M̃ to create a new adjacency matrix. Namely,

given Ã, we define a function ψÃ(M̃) : Matsym(s) → Rs, where ψÃ(M̃) = φM̃ (S), for φM̃ the
ith eigenvector of [

ÃS ÃS,S

ÃS,S M̃

]
.

Note that ψÃ(ÃS) = φ(S). We can now decouple the dependence of A and φ. Generally
speaking, because the eigenvector is delocalized, we can bound the change in the eigenvector
from a perturbation to a small submatrix.

Lemma 4.6. Assume Ω4.5. Then for any finite degree even polynomial F : Rs → R and
M ∈ M,

|F (
√
nψÃ(M̃))− F (

√
nφ(S))| = O(n−1+3c).

Proof. We track the change in φ(u)φ(v) for u, v ∈ S. Therefore we consider the function

ψÃ
uv(x) : R(

s
2) → R defined as

ψÃ
uv(M) := [ψÃ(M)](u)[ψÃ(M)](v).
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ForM,M ′ ∈ M, ∥M̃ ′−M̃∥1→∞ ≤ 2√
(p+q)n

. Therefore taking the Taylor expansion at x = AS ,

|ψÃ
uv(M)−φ(u)φ(v)| ≤

∞∑
k=1

(
2√

(p+ q)n

)k ∑
x1,...xk∈[(s2)]

1

k1!k2! · · · k(s2)!

∣∣∣∣[ ∂k

∂x1, . . . xk
ψÃ
uv

]
(AS)

∣∣∣∣ .
(4.11)

where km is the number of times the mth edge is chosen.

In order to calculate the partial derivative, we proceed as per [12, Section 4]. Define Vx to
be the matrix with 1’s in the off-diagonal coordinates corresponding to x, but 0’s elsewhere.
Moreover, we denote the Green’s function by G(z) := (A − z)−1. For a vector w, taking a
contour integral around only the ith eigenvalue gives, by the Cauchy residue formula,

⟨w,φ⟩2 = 1

2πi

∮
⟨w,G(z)w⟩dz.

Therefore, by the Cauchy residue formula again,

∂k

∂x1, . . . xk
⟨w,φ⟩2 =

(−1)kk!

2πi

∮
⟨w,

∏
ℓ∈[k]

(G(z)Vxℓ
)G(z)w⟩dz

= k(−1)kk!
∑

j∈([n]\{i})k

⟨w,φj1⟩⟨w,φ⟩(φT
jk
Vxk
φ)
∏

ℓ∈[k−1](φ
T
jℓ
Vxℓ
φjℓ+1

)∏
ℓ∈[k](λjℓ − λi)

.

Therefore, assuming Ω4.5, we have that for unit w ⊥ −→
1[n] and ignoring a coefficient only de-

pending on k,

|∂(k)ab ⟨w,φ⟩2| ≤ k(k!)

∣∣∣∣∣∣
∑

j∈([n]\{i})k

⟨w,φj1⟩⟨w,φ⟩(φT
jk
Vφ)

∏
ℓ∈[k−1](φ

T
jℓ
Vφjℓ+1

)∏
ℓ∈[k](λjℓ − λi)

.

∣∣∣∣∣∣
≤ k(k!)2k(log n)8kn−k−1+2c

 ∑
j∈[n]\{i}

1

|λj − λi|

k

≤ k(k!)2k(log n)8kn−1+2c+kc.

Here we use the three assumptions of Ω4.5. Notice that it is key that c < 1/2, which means
we cannot consider all bulk eigenvectors at once. In order to use this on φ(u)φ(v), we write

φ(u)φ(v) = 1
2

(
⟨−→1u +

−→
1v ,φ⟩2 − ⟨−→1u,φ⟩2 − ⟨−→1v ,φ⟩2

)
. Therefore we orthogonalize each of these

to
−→
1[n] with the three vectors

w1 =
1√

2 + 4
n−2

(
−→
1u +

−→
1v −

2

n− 2

−→
1 [n]\{u,v})

w2 =
1√

1 + 1
n−1

(
−→
1u − 1

n− 1

−→
1 [n]\{u})

w3 =
1√

1 + 1
n−1

(
−→
1v −

1

n− 1

−→
1 [n]\{v}).



26 NODAL DECOMPOSITIONS OF A SYMMETRIC MATRIX

We denote the target vectors 1√
2
(
−→
1u +

−→
1v),

−→
1u,

−→
1v by v1, v2, v3. We have for i = 1, 2, 3,

⟨vi,φ⟩2 − ⟨wi,φ⟩2 = ⟨vi + wi,φ⟩ · ⟨vi − wi,φ⟩
= ⟨(vi − wi) + 2wi,φ⟩ · ⟨vi − wi,φ⟩.

Therefore, if we define yi(φ) = ⟨(vi − wi) + 2wi,φ⟩ · ⟨(vi − wi),φ⟩, then

φ(u)φ(v) =
1

2

(
2⟨w1,φ⟩2 − ⟨w2,φ⟩2 − ⟨w3,φ⟩2

)
+

1

2
(2y1(φ)− y2(φ)− y3(φ)). (4.12)

Similar to before, we can write,

k(k!)|∂(k)ab yi(φ)| =

∣∣∣∣∣∣
∑

j∈([n]\{i})k

⟨vi − wi,φj1⟩⟨(vi − wi) + 2wi,φ⟩(φT
jk
Vφ)

∏
ℓ∈[k−1](φ

T
jℓ
Vφjℓ+1

)∏
ℓ∈[k](λjℓ − λi)

∣∣∣∣∣∣ .
Under the assumption of Ω4.5, and the fact that ∥vi − wi∥ = O(n−1/2),

⟨(vi − wi) + 2wi,φ⟩ · ⟨(vi − wi),φj1⟩ = O(n−1+c).

Therefore, by the same argument as before,

|∂(k)ab yi(φ)| ≤ k(k!)2k(log n)8kn−1+2c+kc.

By (4.12) and the previous derivative bounds,

|ψÃ
uv(M̃)−φ(u)φ(v)| ≤ 4

∞∑
k=1

(
2√

(p+ q)n
)k

∑
x1,...,xk∈[(s2)]

1

k1!k2! · · · k(s2)!

∣∣∣∣[ ∂k

∂x1, . . . xk
ψÃ
uv

]
(ÃS)

∣∣∣∣
≤ 4

(
s

2

)
n−1+2c

∞∑
k=1

(
2√

(p+ q)n
)kk2k(log n)8knck

∑
x1,...,xk∈[(s2)]

k!

k1!k2! · · · k(s2)!

≤ 4

(
s

2

)
n−1+2c

∞∑
k=1

(
2√

(p+ q)n
)kk2k(log n)8knck

(
s

2

)k

as we are summing over all multinomials. Therefore, we have

|ψÃ
uv(M̃)−φ(u)φ(v)| = O(n−3/2+3c)

As F is a polynomial, assuming Ω4.5, |(∂kF )(AS ,
√
nφ(S)))| ≤ logC n for some fixed constant

C and any direction. Therefore, assuming Ω4.5, we can once again expand according to the
partial derivatives in the direction ψuv.

∣∣∣F (AS ,
√
nψÃ(M̃))− F (AS ,

√
nφ(S))

∣∣∣ ≤ deg(F )∑
k=1

∣∣∂(k)(F (AS ,
√
nφ(S)))

∣∣nk/2|ψÃ
uv(M̃)−φ(u)φ(v)|k

k!

= O(n−1+3c).

□
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4.4. Part IV: Quantum Unique Ergodicity. In this section, we utilize the powerful quan-
tum ergodicity theorem to reduce our problem to one on polynomials of Gaussians. To do
this, we introduce some new notation.

Definition 4.7. We consider the following different expectations.

(1) EA refers to the expectation across the choice of the random adjacency matrix A.
(2) ES refers to the conditional expectation given a matrix A over a randomly selected

s× s principal submatrix of A, for s constant.
(3) EM refers to the conditional expectation given a matrix A and a subset of vertices

S ⊂ V , over replacing AS with M ∈ M, according to the distribution of M.
(4) Eg refers to the expectation over some function of g.

Here, we present a reduced form of the quantum unique ergodicity theorem for eigenvectors.

Lemma 4.8. [[12] Theorem 1.5] Fix ϵ > 0 and a finite degree polynomial F : R → R. There

is a constant ν > 0 such that for any unit vector w ⊥ −→
1[n] and eigenvector φ of A of index

i ∈ [ϵn, (1− ϵ)n],

|EA[F (n⟨φ, w⟩2)]− Eg(F (g
2))| = O(n−ν)

where g2 is a vector of squared normalized independent Gaussians.

The following is an application of this lemma as vectors supported on a small subset S are

close to orthogonal to
−→
1[n].

Lemma 4.9. [[37] Lemma 2.1] For any finite degree even polynomial F : Rs → R, and finite
set of vertices S, there is a constant ν1 > 0 such that

|EA(F (
√
nφ(S)))− Eg(F (g))| = O(n−ν1). (4.13)

Here, F does not take AS as an input. However, because of the near independence of AS and
φ(S) in ps shown in Lemma 4.6, we can translate this into a similar bound on ps(AS ,φ(S)).

Lemma 4.10. For any C, δ > 0 we consider ps defined in Lemma 4.2 with parameters C, δ.
For i as previously defined, there is a constant ν > 0 such that with probability 1 − O(n−ν),
for m ∈ {1, 2},

|ES(ps(AS ,φ(S))
m)− Eg(EM (ps(M,g)m))| = O(n−ν).

Proof of Lemma 4.10. Assume that m = 1. The proof for m = 2 is identical. We claim that in
fact it is enough to show that there is some constant ν ′ such that with probability 1−O(n−ν′),

ES(ps(AS ,φ(S))) = EA [EM (pS(M,φ(S)))] +O(n−ν′). (4.14)

To see why this is sufficient, assuming (4.14), then by Lemma 4.9 with F = EM (ps(M,
√
nφ(S))),

with probability 1−O(n−ν′∧ν1),

ES(ps(AS ,φ(S))) = Eg(EM (ps(M,g))) +O(n−ν′∧ν1)

as desired.
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We will prove (4.14) through a Chebyshev inequality. Therefore we need to calculate the
expectation and variance. First, for M ∈ M, we define

XM := ES(ps(AS ,φ(S))1(AS =M)). (4.15)

By Lemma 4.6, under Ω4.5, ps(AS ,φ(S)) = EM1(ps(AS , ψ
Ã(M1))) + O(n−1+3c), for M1 dis-

tributed according to M. Therefore,

EA (XM1Ω4.5
) = EA([ES(ps(AS ,φ(S))1(AS =M))]1Ω4.5

)

= Pr(AS =M)
(
EA

(
ES(EM1(ps(AS , ψ

Ã(M1)))1Ω4.5

)
+O(n−1+3c)

)
= Pr(AS =M)

(
EA (ES(EM1(ps(M1,φ(S))))1Ω4.5

) +O(n−1+3c)
)

= Pr(AS =M)
(
EA (EM1(ps(M1,φ(S)))1Ω4.5

) +O(n−1+3c)
)

for any fixed S. Therefore, summing over all M gives∑
M∈M

EA (XM1Ω4.5
) = EA (EM1(ps(M1,φ(S)))1Ω4.5

) +O(n−1+3c). (4.16)

Next we will deal with the second moment. We once again shift ps according to Lemma 4.6,

EA((
∑

M∈M
XM )21Ω4.5

) =
∑

M,M ′∈M
EA(ES [ps(M,φ(S))1(AS =M)]ES [ps(M

′,φ(S))1(AS =M ′)]1Ω4.5
)

=
∑

M,M ′∈M
EA

 1(
n
s

)2 ∑
S1,S2∈([n]

s )

(ps(M,φ(S1))(ps(M
′,φ(S2))1(AS1 =M,AS2 =M ′))1Ω4.5


=

∑
M,M ′∈M

EA

(
1(
n
s

)2 ∑
S1,S2∈([n]

s )

(
EM1,M2(ps(M,ψÃ(M1))ps(M

′, ψÃ(M2))) +O(n−1+3c)
)

×Pr(AS1 =M,AS2 =M ′)1Ω4.5

)

We have Pr(AS1 = M,AS2 = M ′) = Pr(AS1 = M)Pr(AS2 = M ′) if S1 ∩ S2 = ∅. There are
at most

(
n
s

)
s
(

n
s−1

)
sets S1, S2 such that S1 ∩ S2 ̸= ∅. By (4.10), assuming Ω4.5, ps(M,φ(S)) =

(log n)O(1). Therefore

EA((
∑

M∈M
XM )21Ω4.5

) =
∑

M,M ′∈M
EA

(
1(
n
s

)2 ∑
S1,S2∈([n]

s )

(EM1,M2(ps(M1,φ(S1))ps(M2,φ(S2))))

× Pr(AS1 =M)Pr(AS2 =M ′)1Ω4.5

)
+O(n−1+3c).

which is

EA [EM (pS(M,φ(S)))]2 +O(n−1+3c). (4.17)

Combining (4.16) and (4.17) gives a Chebyshev inequality,

Pr(|ES(ps(AS ,φ(S)))− EA [ES(EM (pS(M,φ(S))))1Ω4.5
]| ≥ n−c) = O(n−((1+c)∧γ)). (4.18)
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We are almost done; we just need to remove the dependence on Ω4.5 on the right hand side of
(4.18). Therefore, we use (4.13) for F := EM [ps(M,φ(S))2] to obtain that for some constant
ν2,

|EA

[
EM (pS(M,φ(S)))1Ω4.5

]
| ≤ |EA

[
EM (pS(M,φ(S)))2

]
|1/2Pr(1Ω4.5

)1/2

≤ |EA

[
EM (pS(M,φ(S))2)

]
|1/2Pr(1Ω4.5

)1/2

≤ |Eg(EM (ps(M,g)2))|1/2(1 +O(n−ν2))Pr(1Ω4.5
)1/2

= O(n−γ/2) (4.19)

where the second to last line follows from Lemma 4.9 and the last line follows from (4.4) and
Lemma 4.5. (4.14) follows from combining (4.18) and (4.19). □

4.5. Part V: Counting Domains. We are now ready to think more directly about counting
domains. We will show in this section, that with Gaussian inputs, the expectation is large.
First, we show that Eg(EA[fs(AS ,g)]) is large.

Lemma 4.11. For any set |S| = (p ∧ q)−k,

E[EA(fs(AS ,g))] ≥ 1− exp(−(p ∧ q)−k2(1/2−ok(1))).

Proof. Without loss of generality, assume that p ≥ q. Fix some set S. Define Iα to be the event
that the set of k vertices α forms a k-clique nodal domain. We then define X :=

∑
α∈([S]

k )
Iα.

In order to quantify the dependence across different α, we define

∆ := EM (X) +
∑
α∼β

EM (IαIβ),

where α ∼ β if EM (IαIβ) > EM (Iα)EM (Iβ). By Janson’s inequality, ([41], see [5] Theorem
8.1.2)

Pr(X = 0) ≤ exp(−EM (X)2/∆). (4.20)

In order to utilize this, we compute the overlap,∑
α∼β

∑
β∼α

EM (IαIβ) ≤
∑
α∼β

k∑
r=2

(
k

r

)(
s− k

k − r

)
q−(

r
2)EM (Iα)

2

≤ 2
∑

α∈(Sk)

(
k

2

)(
s− k

k − 2

)
q−1EM (Iα)

2

= ok(1)EM (X)2.

Therefore by (4.20),

Pr(X = 0) ≤ exp [−(1− ok(1))EM (X)] . (4.21)

In order to calculate EM (X), consider a specific α ∈
([S]
k

)
. For a vertex pair (u, v) ∈ α,

Pr(Auvgugv > 0) ≥ q. Therefore, the probability that all edges in α are positive is at least

q(
k
2), giving

EM (X) ≥ q(
k
2)
(
s

k

)
.
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Plugging this into (4.21) gives

Pr(X = 0) ≤ exp

[
−(1− ok(1))q

(k2)
(
s

k

)]
.

We chose s = q−k in (4.1). By then using the approximation
(
m
j

)
≥ mj

jj
, we have

Pr(X = 0) ≤ exp(−q−k2(1/2−ok(1)))

and therefore

Eg(EM (fs(g))) ≥ 1− exp(−q−k2(1/2−ok(1))).

□

Before we prove Theorem 1.4, we need one more eigenvector structure result.

Lemma 4.12 ([58] Theorem 1.5). There is some constant c2 such that for any ϵ > 0, with

probability 1− n−ω(1), every eigenvector of A satisfies

∥v(I)∥2 ≥ (ϵ · e−c2/
√
ϵ)7∥v∥2.

for all I ⊂ [n], |I| ≥ ϵn.

Note that this implies that with probability 1− n−ω(1), for some constant c > 0,∣∣∣∣∣
{
v : |φ(v)| ≤

√
δ

n

}∣∣∣∣∣ ≤ c

(log 1
δ )

2
n. (4.22)

Proof of Theorem 1.4. Throughout this proof, when we write ps(·), namely with one input,
we mean the function ps : Rs → R defined as ps(x) := EM (ps(M,x)).

Given the statement of Lemma 4.11 concerning EA(fs(AS ,g)), we translate this to a bound on
the polynomial ps. For fixed C, δ > 0, define the event FC,δ as the event that ∀u, v ∈ S, gugv ∈
[−C, 0] ∪ [δ, C]. We then have the decomposition

|Eg(ps(g))− Eg(fs(g))| ≤
∣∣Eg(ps(g)1FC,δ

)− Eg(fs(g)1FC,δ
)
∣∣+ ∣∣Eg(ps(g)1FC,δ

)
∣∣+ ∣∣Eg(fs(g)1FC ,δ)

∣∣ .
By (4.2), ∣∣Eg(ps(g)1FC,δ

)− Eg(fs(g)1FC,δ
)
∣∣ ≤ δ.

For the next term, we use (4.3). To bound the probability of FC,δ, note the maximum of the

PDF of the univariate standard normal is 1√
2π
, Therefore, by (4.4),

∣∣Eg(ps(g)1FC,δ
)
∣∣ ≤ Eg(ps(g)

2)1/2Pr(FC,δ)
1/2 ≤

√
2(s

√
δ

2π
+ 2s2e−C)1/2.

The last error term is ∣∣Eg(fs(g)1FC,δ
)
∣∣ ≤ s2e−C .

Combining this estimation with Lemma 4.10 and Lemma 4.11 gives that, for sufficiently small
δ and sufficiently large C, there is some ν > 0 such that with probability 1−O(n−ν),

ES(ps(AS ,φ(S))) ≥ 1− δ − exp(−q−k2(1/2− ok(1))).
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Now, we want to limit the contribution of the bad sets in φ(S). Here, we set FC,δ(φS) to
be the event that for each pair of vertices u, v ∈ S, nφ(u)φ(v) ∈ ([−C,−δ] ∪ [δ, C]). To give
an lower bound on this probability, we use (4.22) and the trivial bound that the number of

vertices of value at least
√
C/n is at most n/C. By Lemma 4.10,

|ES(ps(AS ,φ(S))1FC,δ(φS))| ≤ |ES(ps(AS ,φ(S))
2)|1/2Pr(FC,δ(φS))

1/2

≤ (1 +O(n−ν))|Eg(EM (ps(M,g)2)|1/2Pr(FC,δ(φS))
1/2

≤ (1 +O(n−ν))(1 + δ)(
c

(log 1
δ )

2
+

1

C
)1/2.

for some constant c.

Therefore, for sufficiently large C,

|ES(ps(AS ,φ(S))1FC,δ
)| ≥ 1− ϵ

for

ϵ := δ + exp(−q−k2(1/2−ok(1))) +
c2

(log 1
δ )

(4.23)

where c2 is some constant.

We set δ such that the second term is the dominant term. Specifically,

δ ≤ exp
[
− exp(q−k2)

]
suffices.

We now interpret ps on the set FC,δ. By 4.2, if S has a k-clique domain, then ps ≤ 1 + δ, and
if S does not, ps ≤ δ. Therefore, the fraction of S that contains a clique domain is at least ζ,
where ζ satisfies (1 + δ)ζ + (1− ζ)δ = 1− ϵ. This gives ζ = 1− δ − ϵ ≥ 1− 2ϵ. Therefore, in
our graph, at least (1− 2ϵ)

(
n
s

)
of all sets of size s contain a k clique nodal domain.

In order to show that we can partition our graph into 2n/k nodal domains, we proceed greedily.
We start with our entire vertex set [n]. We arbitrarily select an s-set S in our vertex set that
contains a clique domain. We remove an arbitrary k-clique domain inside S from the vertex
set. We repeat this process with our new vertex set, and continue until there are no sets s
that contain a clique domain.

As at least (1− 2ϵ)
(
n
s

)
s-sets contain a k-clique domain, this continues until there are at most

r vertices left, for (
r

s

)
≤ 2ϵ

(
n

s

)
.

Once again using the approximation mj

jj
≤
(
m
j

)
≤ mjej

jj
, we have that

rs ≤ 2ϵnses. (4.24)

By our definition of ϵ in (4.23) and s in (4.1),

r ≤ n exp(−q−k2(1/2−ok(1)/s+ 1) ≤ n exp(−q−k2(1/2−ok(1)+k + 1).

Therefore, by this process, for large k we have at most
n

k
+ neϵ1/s ≤ 2n/k

nodal domains.
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Appendix A. Path nodal domains of signed Erdős-Rényi graphs

Consider an Erdős-Rényi signed graph G(n, p, q), with 0 < p, q < 1 fixed, and its associated
adjacency matrix A, e.g., A is a n × n symmetric matrix with diagonal entries equal to zero
and i.i.d. off-diagonal pairs, each equal to +1 with probability p, −1 with probability q, and
0 with probability 1− p− q. We prove the following:

Proposition A.1. Let 0 < p, q < 1 be constant, and A be the adjacency matrix of an Erdős-
Rényi signed graph G(n, p, q). Then, with probability 1−n−ω(1), κ(G>

φ) = 1 for all eigenvectors
φ of A.

As mentioned in Section 1, in the study of nodal counts of adjacency matrices, it is standard
convention to consider domains whereAijφ(i)φ(j) > 0, as the negative of the adjacency matrix
is a generalized Laplacian, which we follow below. Given that both p and q are constant and
the result is independent of eigenvalue indexing, this convention has no impact on the result
(e.g., the same result holds for κ(G<

φ)).

We first recall a number of known results from random matrix theory.

Lemma A.2. Let A be the adjacency matrix of G(n, p, q), where 0 < p, q < 1 are fixed. The
following are true.

(1) (Nonzero vector [50]) With probability 1− n−ω(1), every eigenvector φ is nonzero

(2) (Combination of Lemma 4.12 and (4.10)) For any fixed c, with probability 1 − nω(1),
every unit eigenvector φ is such that any set of vertices of size |S| ≥ cn satisfies∑

u∈S
|φ(u)| ≥

√
n

log5 n
. (A.1)

(3) (Bai Yin Theorem [7], see [64, Theorem 4.4.5]) With probability 1− nω(1), ∥A− (p−
q)11T ∥ ≤

(
2 + on(1)

)√
(p+ q)n.

To prove the desired result, we start with two weaker statements.

Lemma A.3. With probability 1 − n−ω(1), every eigenvector φ of the adjacency matrix has
κ(G>

φ) ≤ 3 log 1
1−p∨q

n.
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Proof. Suppose κ(G>
φ) ≥ k. We denote by S an arbitrary set of vertices with exactly one vertex

taken from each connected component of G>
φ. The induced subgraph on S cannot contain an

edge (u, v) satisfying Auvφ(u)φ(v) < 0. We now “re-sign” the vertices, by multiplying A on
the left and the right by a diagonal matrix D, which has diagonal entry 1 in all entries that are
not a vertex in S, and sgn(φ(u)) for vertices in S. According to this signing, (DAD)i,j ≤ 0,
for all vertices u, v ∈ S.

For fixed D and random A, the probability that (DAD)u,v has the correct sign is at most
(1− p ∨ q). Therefore, by union bounding over all possible D and sets of vertices S, we have
the probability of κ(G>

φ) ≥ k is at most(
n

k

)
2k(1− p ∨ q)(

k
2)

This probability is n−ω(1) for k ≥ 3 log 1
1−p∨q

n. □

Lemma A.4. With probability 1 − n−ω(1), the second largest connected component of G>
φ is

at most one vertex.

Proof. Denote by U the vertex set of the largest connected component of G>
φ, which, by the

previous lemma, must be of size at least n/(3 log 1
1−p∨q

n). Any connected component V ̸= U

of size k must have all edges (u, v) ⊂ U × V satisfy Auvφ(u)φ(v) ≤ 0.

We now consider a different re-signing, by multiplying A on the left and the right by a diagonal
matrix D, which has diagonal entry 1 in all entries that are not in V , and sgn(φ(v)) for v ∈ V .
For u ∈ U and v ∈ V , we have sgn(Auvφ(u)φ(v)) = sgn((DAD)uvφ(u)) ≤ 0.

Assume that |V | ≥ 2. For u ∈ U and v1, v2 ∈ V , if (u, v1), (u, v2) are edges, then

sgn((DAD)uv1) = sgn((DAD)uv2). (A.2)

With probability 1 − nω(1), the number of vertices in U in the shared neighborhood of v1, v2
is (1 + on(1))(p+ q)2|U |. For any fixed signing D, the probability of (u, v1), (u, v2) having the
same sign is at most p2 + q2. Set k = |V |. Considering |U | ≥ n/(3 log 1

1−p∨q
n), if we union

bound over all
(
n
k

)
possible sets V and 2k signings, the probability of there being a signing D

that satisfies (A.2) is at most(
n

k

)
2k(p2 + q2)(p+q)2n/(3 log1/(1−p∨q) n)(

k
2).

For k ≥ 2, this probability is n−ω(1). □

We are now prepared to prove Proposition A.1.

Proof of Proposition A.1. We break our analysis into two cases, treating the spectral radius
separately from the rest of the spectrum.

Suppose φ is a unit eigenvector corresponding to the spectral radius of A. By Fact (3) of

Lemma A.2, with probability 1 − n−ω(1), A has one eigenvalue equal to
(
1 + on(1)

)
(p − q)n
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and all other eigenvalues of magnitude at most
(
2 + on(1)

)√
(p+ q)n. Furthermore, with

probability 1− n−ω(1),

−→
1[n]

TA
−→
1[n] =

n∑
i,j=1

Aij =
(
1 + on(1)

)
(p− q)n(n− 1).

Now, let us consider the representation of
−→
1[n] in the eigenbasis of A. We have∣∣−→1[n]TA−→

1[n]
∣∣ ≤ (1 + on(1)

)
|p− q|n (−→1[n]Tφi)

2 +
(
2 + on(1)

)√
(p+ q)n

(
n− (

−→
1[n]

Tφi)
2
)
.

Therefore, with probability 1− n−ω(1), (
−→
1[n]

Tφ)2 =
(
1− on(1)

)
n, and so

∥φ− sgn(
−→
1[n]

Tφ)
−→
1[n]/

√
n∥ = on(1).

This implies that φ has constant sign, say φ(u) > 0, on
(
1 − on(1)

)
n of its vertices. Now,

consider an isolated vertex v in G>
φ. With probability 1−n−ω(1), v has edges to (1+ on(1))pn

different vertices u satisfying φ(u) > 0, Au,v = +1 and Au,vφ(u)φ(v) < 0, and edges to
(1 + on(1))qn different vertices w satisfying φ(w) > 0, Aw,v = −1 and Aw,vφ(w)φ(v) < 0, a

contradiction. Therefore, κ(G>
φ) > 1 with probability n−ω(1).

Now, consider an arbitrary unit eigenvector φ corresponding to an eigenvalue in the rest of the
spectrum. Suppose there is a v that is an isolated vertex in G>

φ. With probability 1− n−ω(1),
v has edges to (1 + on(1))(p+ q)n different vertices, u, all of which satisfy Au,vφ(u)φ(v) < 0.
The eigenvector equation at v gives

λφ(v) =
∑
u∼v

Auvφ(u).

Therefore, by the eigenvector equation at v and noting that Au,vφ(u)φ(v) < 0 for u ∼ v, we
have

|λφ(v)| =
∣∣∣∑
u∼v

Auvφ(u)
∣∣∣ =∑

u∼v

|φ(u)|. (A.3)

Plugging this into (A.1),

|λφ(v)| ≥
√
n

log5 n
.

However, considering the infinity norm bound on the eigenvector from (4.10) and the Bai Yin

theorem (Fact (3) of Lemma A.2), this happens with probability at most n−ω(1). □

Appendix B. An illustrative example

Consider the 16 by 16 symmetric matrix M with

Mii =

{
−1 for i = 1, 2, 5, 10, 11, 12

0 otherwise
,

Mij =



1 for {i, j} = {6, 9}, {15, 16}
−1 for {i, j} = {1, 2}, {1, 5}, {2, 5}, {3, 8}, {4, 8}, {5, 6}, {5, 9}, {6, 7}, {6, 11},

{8, 11}, {9, 10}, {9, 13}, {9, 14}, {10, 11}, {10, 12}, {10, 15},
{10, 16}, {11, 12}, {11, 15}, {11, 16}, {12, 15}, {12, 16}

0 otherwise
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for i ̸= j. See Figure 3 for the signed sparsity graph G = ([16], E, σ) of M . Consider the
eigenvalue λ = 0 of M , with index k = 7, multiplicity r = 6, and corresponding eigenspace

Eλ =


φ

∣∣∣∣∣∣∣∣∣∣∣∣

0 = φ(6) = φ(8) = φ(9) = φ(15) = φ(16)
= φ(1) +φ(2) +φ(5)
= φ(5) +φ(7) +φ(11)
= φ(5) +φ(10) +φ(13) +φ(14)
= φ(10) +φ(11) +φ(12)
= φ(3) +φ(4) +φ(11)


We have X1 = {6, 9}, X2 = {15, 16}, X3 = {8}, Y1 = {1, 2, 5}, Y2 = {7}, Y3 = {13},
Y4 = {14}, Y5 = {10, 11, 12}, Y6 = {3}, and Y7 = {4}. The corresponding bipartite graph H
on vertices X = {x1, x2, x3} and Y = {y1, y2, y3, y4, y5, y6, y7} is in Figure 3.

Consider the following non-vanishing orthogonal3 bases for the orthogonal projections of Eλ

onto Y1, Y2, Y3, Y4, Y5, Y6 and Y7:

{
ψ

(1)
1

∣∣
Y1
,ψ

(1)
2

∣∣
Y1

}
=
{
ψ

(5)
1

∣∣
Y5
,ψ

(5)
2

∣∣
Y5

}
=


 1

2
−3

 ,

−5
4
1

 ,

{
ψ

(2)
1

∣∣
Y2

}
=
{
ψ

(3)
1

∣∣
Y3

}
=
{
ψ

(4)
1

∣∣
Y4

}
=
{
ψ

(6)
1

∣∣
Y6

}
=
{
ψ

(7)
1

∣∣
Y7

}
=
{
(1)
}
,

and let us consider a vector in their span:

φ = α1
1ψ

(1)
1 + α1

2ψ
(1)
2 + α2

1ψ
(2)
1 + α3

1ψ
(3)
1 + α4

1ψ
(4)
1 + α5

1ψ
(5)
1 + α5

2ψ
(5)
2 + α6

1ψ
(6)
1 + α7

1ψ
(7)
1 .

The vector φ ∈ Eλ if and only if

φ(5) +φ(7) +φ(11) = φ(5) +φ(10) +φ(13) +φ(14) = φ(3) +φ(4) +φ(11) = 0,

which, in terms of α’s, produces our γ = 3 homogeneous equations:

−3α1
1 + α1

2 + α2
1 + 2α5

1 + 4α5
2 = 0,

−3α1
1 + α1

2 + α3
1 + α4

1 + α5
1 − 5α5

2 = 0,

2α5
1 + 4α5

2 + α6
1 + α7

1 = 0.

Performing Gaussian elimination, and solving for the pivots, we obtain:

α7
1 = −α6

1 + α2
1 + α1

2 − 3α1
1

α5
2 = (1/7)α4

1 + (1/7)α3
1 − (1/14)α2

1 + (1/14)α1
2 − (3/14)α1

1,

α5
1 = −(2/7)α4

1 − (2/7)α3
1 − (5/14)α2

1 − (9/14)α1
2 + (27/14)α1

1,

so Σ = {(η1, σ1), (η2, σ2), (η3, σ3)} = {(5, 1), (5, 2), (7, 1)}, Ŷ = {y1, y2, y3, y4, y6}, q − γ =
7 − 3 = 4, and ji = i for i = 1, ..., q − γ. Each φ(i), i ̸∈ i0(λ), is a linear function of{
{αj

σ}j=1,...,q
σ=1,...,rj

\ {αηℓ
σℓ}

γ
ℓ=1

}
. For i ∈ Yj for some yj ∈ Ŷ , the linear function is obvious. We

write the explicit function for each i ∈ Y5 ∪ Y7 below:

φ(4) = α7
1 = −α6

1 + α2
1 + α1

2 − 3α1
1,

φ(10) = α5
1 − 5α5

2 = −α4
1 − α3

1 − α1
2 + 3α1

1,

φ(11) = 2α5
1 + 4α5

2 = −α2
1 − α1

2 + 3α1
1,

φ(12) = −3α5
1 + α5

2 = α4
1 + α3

1 + α2
1 + 2α1

2 − 6α1
1.

3For simplicity in this example, we use an orthogonal basis rather than an orthonormal one. However, as a
result, Equation 3.1 does not apply, and the norms of eigenvectors must be taken into account.
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We are now prepared to produce an eigenbasis {φ1,φ2,φ3,φ4,φ5,φ6} and corresponding
signings {ε1, ε2, ε3, ε4, ε5, ε6} of Eλ satisfying Theorem 1.3.

For i0(λ), we set εs(6) = εs(9) = sgn
(
φs(5)

)
, εs(15) = εs(16) = sgn

(
φs(10)

)
, and εs(8) =

sgn
(
φs(11)

)
, s = 1, 2, 3, 4, 5, 6. We need only consider φs, s < q−γ; an arbitrary non-vanishing

extension suffices for φ4,φ5,φ6. We have

φ1 : Π
1
E = {1α5

1, 1α
5
2, 1α

7
1}, Π1

S = {1α2
1, 1α

3
1, 1α

4
1}, Π1

O = ∅, Π1
F = {1α1

1, 1α
1
2, 1α

6
1},

φ2 : Π
2
E = {2α5

1, 2α
5
2, 2α

7
1}, Π2

S = {2α2
1, 2α

3
1}, Π2

O = {2α4
1}, Π2

F = {2α1
1, 2α

1
2, 2α

6
1},

φ3 : Π
3
E = {3α5

1, 3α
5
2, 3α

7
1}, Π3

S = {3α2
1}, Π3

O = {3α3
1, 3α

4
1}, Π3

F = {3α1
1, 3α

1
2, 3α

6
1}.

We begin with φ1, and follow the proof of Claim 3.1. We set 1α
1
1 = 0. The variable 1α

1
2 cannot

be zero, but is otherwise unconstrained. We set 1α
1
2 = 1, and so ε1(6) = ε1(9) = sgn(φ1(5)) =

sgn(1) = +1. The variable 1α
2
1 cannot be zero, and must satisfy

sgn(1α
2
1ψ

(2)
1 (7)) = sgn(1α

2
1) = ε1(6) = +1 and φ1(11) = −1α

2
1 − 1 ̸= 0.

We set 1α
2
1 = 1, implying that sgn(φ1(11)) = −1, and so ε1(8) = −1. The variable 1α

3
1 cannot

be zero, and must satisfy sgn(1α
3
1ψ

(3)
1 (13)) = sgn(1α

3
1) = ε1(9) = +1. We set 1α

3
1 = 1. As in

the previous two cases, 1α
4
1 must be positive, but must also satisfy

φ1(10) = −1α
4
1 − 1− 1 ̸= 0 and φ1(12) = 1α

4
1 + 1 + 1 + 2 ̸= 0.

We set 1α
4
1 = 1, implying that sgn(φ1(10)) = −1, and so ε1(15) = ε1(16) = −1. All that

remains is to set 1α
6
1. It must satisfy φ1(4) = −1α

6
1 + 1 + 1 ̸= 0. We set 1α

6
1 = 1, giving

φ1 = (−5, 4, 1, 1, 1, 0, 1, 0, 0,−3,−2, 5, 1, 1, 0, 0)T ,

ε1 = (−1,+1,+1,+1,+1,+1,+1,−1,+1,−1,−1,+1,+1,+1,−1,−1)T .

Next, we consider φ2, and follow the proof of Claim 3.2. Here, we are only concerned with
half-space and orthogonality conditions, as vanishing entries can be addressed using φ1 and
an appropriate Givens rotation (see Claim 3.3). We set 2α

1
1 = 0. The variable 2α

1
2 cannot be

zero, but is otherwise unconstrained. We set 2α
1
2 = 1, and so ε2(6) = ε2(9) = sgn(φ2(5)) =

sgn(1) = +1. The variable 2α
2
1 must satisfy sgn(2α

2
1ψ

(2)
2 (7)) = sgn(2α

2
1) = ε2(6) = +1. We

set 2α
2
1 = 1. The variable 2α

3
1 must satisfy sgn(2α

3
1ψ

(3)
2 (13)) = sgn(2α

3
1) = ε2(9) = +1. We

set 2α
3
1 = 1. We also set 2α

6
1 = 1. What remains is to set 2α

4
1 so that

⟨φ1,φ2⟩ = ⟨φ1, (−5, 4, 1, 1, 1, 0, 1, 0, 0,−2α
4
1 − 2,−2, 2α

4
1 + 4, 1, 2α

4
1, 0, 0)

T ⟩
= 92α

4
1 + 76 = 0.

We set 2α
4
1 = −76/9, giving

φ2 = (−5, 4, 1, 1, 1, 0, 1, 0, 0, 58/9,−2,−40/9, 1,−76/9, 0, 0)T ,

ε2 = (−1,+1,+1,+1,+1,+1,+1,−1,+1,+1,−1,−1,+1,−1,+1,+1)T .

Finally, we consider φ3. We set 3α
1
1 = 0 and 3α

1
2 = 1, implying that ε3(6) = ε3(9) = +1, and

so 3α
2
1 must be positive. We set 3α

2
1 = 1, and also set 3α

6
1 = 1. We set 3α

3
1 and 3α

4
1 so that

⟨φ1,φ3⟩ = ⟨φ1, (−5, 4, 1, 1, 1, 0, 1, 0, 0,−3α
3
1 − 3α

4
1 − 1,−2, 3α

3
1 + 3α

4
1 + 3, 3α

3
1, 3α

4
1, 0, 0)

T ⟩
= 93α

3
1 + 93α

4
1 + 67 = 0,

⟨φ2,φ3⟩ = ⟨φ2, (−5, 4, 1, 1, 1, 0, 1, 0, 0,−3α
3
1 − 3α

4
1 − 1,−2, 3α

3
1 + 3α

4
1 + 3, 3α

3
1, 3α

4
1, 0, 0)

T ⟩
= −(89/9)3α

3
1 − (58/3)3α

4
1 + (263/9) = 0.
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We set 3α
3
1 = 55/3 and 3α

4
1 = −98/9, giving

φ3 = (−5, 4, 1, 1, 1, 0, 1, 0, 0,−76/9,−2, 94/9, 55/3,−98/9, 0, 0)T ,

ε3 = (−1,+1,+1,+1,+1,+1,+1,−1,+1,−1,−1,+1,+1,−1,−1,−1)T .

Below we provide a nodal decomposition for each εs, s = 1, 2, 3, that satisfies the bound of
Theorem 1.3:

ε1 : {1}, {2, 5, 6, 7}, {3}, {4}, {8, 10, 11, 15}, {9, 13, 14}, {12}, {16},
ε2 : {1}, {2, 5, 6, 7}, {3}, {4}, {8, 11, 12}, {9, 10, 13, 15}, {14}, {16},
ε3 : {1}, {2, 5, 6, 7}, {3}, {4}, {8, 10, 11, 15}, {9, 13}, {12}, {14}, {16}.

The required bounds for εs, s > 3, hold for any non-vanishing vector φ in Eλ with ε defined
as above.
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