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A Class of Optimal Directed Graphs for Network
Synchronization

Susie Lu, Student Member, IEEE , John Urschel, Ji Liu, Member, IEEE

Abstract— In a paper by Nishikawa and Motter, a quantity
called the normalized spread of the Laplacian eigenvalues
is used to measure the synchronizability of certain network
dynamics. Through simulations, and without theoretical
validation, it is conjectured that among all simple directed
graphs with a fixed number of vertices and arcs, the optimal
value of this quantity is achieved if the Laplacian spectrum
satisfies a specific pattern. This paper proves this conjec-
ture and further shows that the conjectured spectral condi-
tion is not only sufficient but also necessary. Moreover, the
paper proves that the optimal Laplacian spectrum is always
achievable by a class of almost regular directed graphs,
which can be constructed through an inductive algorithm.

I. THE CONJECTURE

Over the past two decades, synchronization in complex net-
works has attracted considerable attention for its crucial role in
fields including biology, climatology, ecology, sociology, and
technology [1]. A typical class of network synchronization
dynamics can be described as

ẋi = F (xi) +
ε
d

∑n
j=1 aij

(
H(xj)−H(xi)

)
, (1)

where xi is the state vector of the ith dynamical agent in
a network of n agents, F represents the dynamics of each
agent when isolated, H(xj) denotes the signal that the jth
agent sends to its neighboring agents, aij is the ijth entry of
the adjacency matrix of the underlying simple directed graph,
and ε/d represents the coupling strength ε normalized by the
average coupling strength per vertex d = 1

n

∑n
i=1

∑n
j=1 aij .

The network synchronization problem is to derive conditions
under which all n agents’ states converge to the same stable
state. More details on the above network synchronization
dynamics can be found in [2].

In the case when the underlying graph is undirected, the
synchronizability of the network dynamics is measured by
the eigenratio, which is defined as the ratio of the largest
eigenvalue to the smallest nonzero eigenvalue of the Laplacian
matrix [1, Section 4.1.2]. For directed graphs, however, there
is no standard index for measuring synchronizability [1, Page
115]. It is worth emphasizing that the network synchronization
dynamics described in [1, Equation (54)] is mathematically
equivalent to (1), although they use slightly different notation.

A directed graph is called simple if it does not have any
self-arcs and multiple directed edges with the same tail and
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head vertices. For any simple directed graph G with n vertices,
we use D and A to denote its in-degree matrix and adjacency
matrix, respectively. Specifically, D is an n×n diagonal matrix
whose ith diagonal entry equals the in-degree of vertex i, and
A is an n × n matrix whose ijth entry equals 1 if (j, i) is
an arc (or a directed edge) in G and otherwise equals 0. The
Laplacian matrix of G is defined as L = D − A. It is easy
to see that a Laplacian matrix L always has an eigenvalue at
0 since all its row sums equal 0. In the special case when G
is a simple undirected graph, each undirected edge between
two vertices i and j can be equivalently replaced by a pair of
directed edges (i, j) and (j, i); then L is a symmetric matrix
and thus has a real spectrum. It is well known that in this
case L is positive-semidefinite, its smallest eigenvalue equals
0, and its second smallest eigenvalue is positive if and only if
G is connected [3]. For directed graphs, L may have complex
eigenvalues. Let λ1, λ2, . . . , λn denote all n eigenvalues of L,
with λ1 = 0 and λ2, . . . , λn possibly complex. Define

σ2 ∆
= 1

n−1

∑n
i=2 |λi − λ̄|2, where λ̄ = 1

n−1

∑n
i=2 λi, (2)

which is a normalized deviation of possibly nonzero eigen-
values. This quantity is called1 the normalized spread of the
eigenvalues in [2] to measure the synchronizability of (1). It
is claimed and validated by simulations that the smaller the
value of σ2n2/m2, the more synchronizable the network will
generally be, where m denotes the number of directed edges in
G. Note that since the sum of all n agents’ in-degrees equals
m and the sum of all eigenvalues of a matrix equals the trace
of the matrix, it follows that λ̄ = m/(n− 1) which is always
a real number. It is clear that, for fixed values of n and m,
the smallest possible σ corresponds to the optimal graph(s)
for network synchronization. The following conjecture was
proposed by Nishikawa and Motter in [2, Page 10343].

Conjecture: Among all simple directed graphs with n
vertices and m arcs, the minimum possible value of σ2 is

σ2
min = 1

(n−1)2

[
m− (n− 1)κ

][
(n− 1)(κ+ 1)−m

]
, (3)

which is achieved if the Laplacian spectrum is

0, κ, . . . , κ,︸ ︷︷ ︸
(n−1)(κ+1)−m

κ+ 1, . . . , κ+ 1︸ ︷︷ ︸
m−(n−1)κ

, (4)

where κ
∆
= ⌊ m

n−1⌋. Here ⌊·⌋ denotes the floor function.

1The definition of the normalized spread of the eigenvalues in [2, Page
10343] includes an additional d2 term in the denominator; in this paper, we
adopt a simplified definition without the d2 term, as its omission does not
affect the conjecture in [2] for unweighted graphs.
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Note that κ is the unique integer such that (n − 1)κ ≤
m < (n − 1)(κ + 1). Defining qκ = (n − 1)κ and qκ+1 =
(n − 1)(κ + 1), it follows that2 qκ ≤ m < qκ+1 and σ2

min =
(m − qκ)(qκ+1 −m)/(n − 1)2, which is consistent with the
expressions in [2]. It was implicitly assumed in [2] that m ≥
n− 1 for the conjecture, as indicated by its Fig. 2A where m
ranges from n − 1 to n(n − 1). This assumption is natural,
as network synchronization requires connectivity, and n−1 is
the minimal number of arcs needed to guarantee a connected
network. We will show that the conjecture holds even when
m < n− 1.

It is worth emphasizing that the conjecture itself is inde-
pendent of network synchronization dynamics, even though it
was proposed as an optimal synchronization condition.

There is another popular way to define a Laplacian matrix of
a directed graph based on out-degree [4]. Specifically, letting
Dout denote the out-degree matrix of G, the corresponding
Laplacian matrix is denoted and defined as Lout = Dout−A′.
It is straightforward to verify that the in-degree Laplacian
matrix of a directed graph G equals the out-degree Laplacian
matrix of its transpose graph G′, where the transpose of a
directed graph is the directed graph with the same vertex set
obtained by reversing all its directed edges. In other words,
L(G) = Lout(G′). Since the set of all possible simple directed
graphs with n vertices and m arcs is invariant under the
graph transpose operation, the conjecture remains unaffected
regardless of whether the Laplacian matrix is defined based
on in-degree or out-degree. The only resulting difference is
that any optimal graph with σmin needs to be correspondingly
transposed if the definition is changed from in-degree based
to out-degree based.

The conjecture was validated in [2] only for small-sized
graphs with n ≤ 6 through simulations; no theoretical
validation was provided therein. Indeed, to the best of our
knowledge, the conjecture has never been studied from a
theoretical perspective. It even remains unclear whether the
conjectured Laplacian spectrum (4) exists for a given fixed
number of vertices n and arcs m. This is exactly what this
paper aims to address.

This paper proves the conjecture by establishing the follow-
ing theorem, which states a stronger version of the conjecture.

Theorem 1: Among all simple directed graphs with n ver-
tices and m arcs, the minimum possible value of σ2 is (3),
which is achieved if, and only if, the Laplacian spectrum is (4).

The theorem establishes that the conjectured minimal value
of σ2 is attainable and that the conjectured spectral condition
is not only sufficient but also necessary for optimal syn-
chronizability. The paper further shows that, for any feasible
pair of n and m, the conjectured Laplacian spectrum can
always be achieved by a class of “almost regular” directed
graphs. Consequently, all these graphs are optimal graphs for
network synchronization. Moreover, for any fixed number of
vertices n, these graphs can be generated through an inductive
construction algorithm for each possible number of arcs m.
The algorithm was presented in a preliminary conference
version [5], in which the conjecture was proved only for a few

2There is a typo in [2] which states qκ ≤ m ≤ qκ+1.

special cases. This paper provides a complete analysis of the
algorithm and its generated graphs, and proves the conjecture
in full generality, which were not included in [5].

II. PROOF OF THE CONJECTURE

To prove the conjecture, and in fact more strongly, to prove
Theorem 1, the analysis consists of two main logical steps. The
first is to establish that the conjectured Laplacian spectrum (4)
is actually a necessary and sufficient condition for achieving
σ2
min in (3), the minimal normalized spread of the Laplacian

eigenvalues (cf. Corollary 1); the second is to show that
this conjectured optimal condition is always realizable (cf.
Theorem 3). These two steps will be addressed in the following
two subsections, respectively.

A. Necessary and Sufficient Spectral Condition
The necessity and sufficiency of the Laplacian spectral

condition (4) are a consequence of the following theorem.

Theorem 2: For any integer-coefficient monic polynomial
p(x) of positive degree k with complex roots r1, . . . , rk whose
sum

∑k
i=1 ri equals ℓ,

1
k

∑k
i=1

∣∣ri − ℓ
k

∣∣2 ≥
(
ℓ
k − ⌊ ℓ

k ⌋
)(
⌈ ℓ
k ⌉ −

ℓ
k

)
, (5)

and equality holds if, and only if, each root equals ⌊ ℓ
k ⌋ or

⌊ ℓ
k ⌋+ 1, where ⌈·⌉ denotes the ceiling function.

By Viète’s formulas, the sum of the roots is the negative of
the coefficient of xk−1 in p(x), and hence ℓ is an integer. Also,
it is worth emphasizing that when all roots are integers and
their difference is at most one, for example when each root
equals ⌊ℓ/k⌋ or ⌊ℓ/k⌋ + 1, and their sum is a given integer,
the multiset of roots is uniquely determined.

For any simple directed graph with n vertices and m arcs,
let pL(x) = det(xI − L) be the characteristic polynomial of
its Laplacian matrix L, whose eigenvalues are λ1, λ2, . . . , λn

with λ1 = 0. Then, q(x) = pL(x)/x is an integer-coefficient
monic polynomial of degree n − 1 whose complex roots are
λ2, . . . , λn. Since their sum

∑n
i=2 λi equals the number of

arcs m, which is an integer, Theorem 2 applies here with k =
n− 1 > 0 and ℓ = m. First, note that σ2 = 1

n−1

∑n
i=2 |λi −

λ̄|2 = 1
n−1

∑n
i=2 |λi − m

n−1 |
2, which equals the left hand side

of (5). Second, with k = n−1 and ℓ = m, the right hand side
of (5) can be written as

1
(n−1)2

(
m− (n− 1)⌊ m

n−1⌋
)(
(n− 1)⌈ m

n−1⌉ −m
)
.

Note that if m is a multiple of n−1, then m−(n−1)⌊ m
n−1⌋ =

0, and if m is not a multiple of n−1, then ⌈ m
n−1⌉ = ⌊ m

n−1⌋+1.
In either case, the above expression coincides with that in (3).
Last, under the condition

∑n
i=2 λi = m, if each of λ2, . . . , λn

equals either ⌊ m
n−1⌋ or ⌊ m

n−1⌋+1, then the Laplacian spectrum
must be given by (4), and clearly vice versa. We therefore have
proved the following corollary.

Corollary 1: For any simple directed graph with n vertices
and m arcs, σ2 ≥ 1

(n−1)2 [m−(n−1)κ][(n−1)(κ+1)−m], and
equality holds if, and only if, the Laplacian spectrum is (4).

Proof of Theorem 2: Let a = ⌊ ℓ
k ⌋ and b = ℓ

k − ⌊ ℓ
k ⌋.

Express p(x) as (x−a)α(x−a−1)βq(x), where α and β are
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nonnegative integers, and q(x) is a monic integer-coefficient
polynomial with no roots at a or a + 1. It is clear that q(x)
is of order γ = k − α − β ≥ 0, and we write its roots as
s1, . . . , sγ . Then,∑k

i=1 |ri −
ℓ
k |

2 =
∑k

i=1 |ri − (a+ b)|2

= αb2 + β(1− b)2 +
∑γ

i=1 |si − (a+ b)|2. (6)

Note that the right hand side of (5), ( ℓk − ⌊ ℓ
k ⌋)(⌈

ℓ
k ⌉ − ℓ

k ),
equals b(1−b). To prove the theorem, it is equivalent to show
that the expression in (6) is no smaller than kb(1 − b), and
that equality holds if and only if each ri equals a or a+ 1.

When b = 0, equivalently when ℓ is a multiple of k, the
right hand side of inequality (5) equals 0, and in this case the
theorem is clearly true. It is therefore assumed that b > 0 for
the remainder of the proof.

We first consider the case when γ = 0, which implies that
α+ β = k and all roots of p(x) are a or a+ 1. In this case,
a + b = ℓ

k = 1
k

∑k
i=1 ri = 1

k (αa + β(a + 1)) = a + β
k , so

β = kb, and thus α = k(1− b). From (6),∑k
i=1 |ri −

ℓ
k |

2 = αb2 + β(1− b)2 = kb(1− b),

and therefore equality holds in (5) in this case.
We next consider the case when γ is a positive integer. Note

that
∑γ

i=1 si =
∑k

i=1 ri−αa−β(a+1) = ℓ−αa−β(a+1)
is an integer. We divide the analysis into two cases depending
on whether 1

γ

∑γ
i=1 si lies in the interval [a, a+ 1] or not.

Case 1: Suppose that 1
γ

∑γ
i=1 si ∈ [a, a + 1]. Express the

monic polynomial q(x) as
∏γ

i=1(x− si). From the inequality
of arithmetic and geometric means, for any integer z that is
not a root of q(x),∑γ

i=1 |si − z|2 ≥ γ
(∏γ

i=1 |si − z|
) 2

γ = γ|q(z)|
2
γ ≥ γ, (7)

where we used the fact that q(z) is a nonzero integer in the
last inequality. It is straightforward to verify that

|si − (a+ b)|2 = b|si − (a+ 1)|2 + (1− b)|si − a|2

− b(1− b),

which expresses |si− (a+ b)|2 in terms of |si−a|2 and |si−
(a + 1)|2. Substituting this expression into (6) and applying
inequality (7) yields∑k

i=1

∣∣ri − ℓ
k

∣∣2 = αb2 + β(1− b)2 + b
∑γ

i=1 |si − (a+ 1)|2

+ (1− b)
∑γ

i=1 |si − a|2 − γb(1− b)

≥ αb2 + β(1− b)2 + γ(1− b+ b2). (8)

We claim that, among all feasible triples (α, β, γ), the lower
bound in (8) attains its smallest value only when α+ β = k,
or equivalently γ = 0. To prove the claim, we use α̃ and β̃ to
respectively denote the values of α and β in the case γ = 0.
From the preceding discussion, these values are unique, with
α̃ = k(1 − b) and β̃ = kb. Recall that any triple (α, β, γ)
satisfies the two equalities α+β+γ = k and αa+β(a+1)+∑γ

i=1 si = ℓ. In the case γ = 0, these two equalities simplify
to α̃ + β̃ = k and α̃a + β̃(a + 1) = ℓ. These four equalities
lead to the following linear equations in (α̃−α) and (β̃−β):

(α̃− α)a+ (β̃ − β)(a+ 1) =
∑γ

i=1 si,

(α̃− α) + (β̃ − β) = γ.

Solving the above linear equations yields

α̃− α = γ(a+ 1)−
∑γ

i=1 si,

β̃ − β =
∑γ

i=1 si − γa.

Since 1
γ

∑γ
i=1 si ∈ [a, a+1], it is easy to see that both (α̃−α)

and (β̃−β) are nonnegative. Moreover, their sum equals γ >
0, and thus at least one of them is positive. In other words,
α̃ ≥ α and β̃ ≥ β, with at least one of these inequalities being
strict. Substituting γ = k−α− β, the lower bound in (8) can
be written as the following function of α and β:

α(b− 1)− βb+ k(1− b+ b2).

Since 0 < b < 1, the above function is strictly decreasing in
α and β. It follows that the function achieves its minimum
uniquely at α = α̃ and β = β̃, that is, when γ = 0. This
proves the claim. Substituting α̃ = k(1− b) and β̃ = kb into
the function, its minimum equals kb(1 − b). From (8), we
conclude that in Case 1,

∑k
i=1 |ri −

ℓ
k |

2 > kb(1− b).
Case 2: Suppose that 1

γ

∑γ
i=1 si /∈ [a, a + 1]. Let s =

1
γ

∑γ
i=1 si. Then, either s < a or s > a+ 1. Note that∑γ

i=1 |si − (a+ b)|2

=
∑γ

i=1 |si|2 − (a+ b)
∑γ

i=1(si + s̄i) + γ(a+ b)2

=
∑γ

i=1 |si|2 − 2sγ(a+ b) + γ(a+ b)2

(a)

≥ 1
γ |

∑γ
i=1 si|2 − 2sγ(a+ b) + γ(a+ b)2

= s2γ − 2sγ(a+ b) + γ(a+ b)2 = γ(s− a− b)2,

where in (a) we used the Cauchy–Schwarz inequality. Plugging
the above inequality into (6) yields∑k

i=1 |ri −
ℓ
k |

2 ≥ αb2 + β(1− b)2 + γ(s− a− b)2. (9)

We claim that αb2 + β(1− b)2 + γ(s− a− b)2 > kb(1− b).
To see this, let c = s− a, and then

αb2+β(1−b)2+γ(s−a−b)2 = kb2+β(1−2b)+γc(c−2b),

where we used the fact that α + β + γ = k. It follows that
proving the claim is equivalent to proving

β(1− 2b) + γc(c− 2b) > kb(1− 2b). (10)

Recall the facts that a + b = ℓ
k and ℓ = αa + β(a + 1) +∑γ

i=1 si = αa + β(a + 1) + γs. It follows that kb = ℓ −
ka = αa + β(a + 1) + γs − ka = β + γs − γa = β +
γc. Thus, the above inequality (10) is equivalent to β(1 −
2b)+ γc(c− 2b) > (β+ γc)(1− 2b), which further simplifies
in a straightforward manner to c(c − 1) > 0. We prove this
inequality by considering the two possible cases for s. First, if
s < a, then c < 0, and thus c(c−1) > 0. Second, if s > a+1,
then c > 1, and c(c−1) > 0 also holds. This proves the claim.
From (9),

∑k
i=1 |ri −

ℓ
k |

2 > kb(1− b) in Case 2.
From the preceding discussion, we conclude that when b >

0,
∑k

i=1 |ri−
ℓ
k |

2 is no smaller than kb(1−b), and that equality
holds if and only if γ = 0, that is, if and only if each ri is
either a or a+ 1. This completes the proof of the theorem.
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B. Optimal Graphs

In this subsection, we present an algorithm that, for any
fixed number of vertices n > 1, inductively constructs a class
of simple directed graphs, each having the Laplacian spectrum
specified in (4) for every possible number of arcs m ≥ n− 1.
Note that if m < n − 1, the graph is disconnected, in which
case network synchronization cannot be achieved. To this end,
we need the following concepts.

A vertex i in a directed graph G is called a root of G if
for each other vertex j of G, there is a directed path from
i to j. We say that G is rooted at vertex i if i is in fact a
root, and that G is rooted if it possesses at least one root. In
other words, a directed graph is rooted if it contains a directed
spanning tree. An n-vertex directed tree is a rooted graph with
n− 1 arcs. It is easy to see that a directed tree has a unique
root with an in-degree of 0, while all other vertices have an
in-degree of exactly 1. The smallest possible directed tree is
a single isolated vertex.

We use a mod b to denote the modulo operation of two
integers a and b, which returns the remainder after dividing a
by b.

Algorithm 1: Given n > 1 vertices, label them, without loss
of generality, from 1 to n. Let G(n,m) denote the n-vertex
simple directed graph to be constructed with m arcs. Start with
the m = n− 1 case and set G(n, n− 1) as any directed tree
such that all its arcs (i, j) satisfy i < j. For each integer n ≤
m ≤ n(n−1), compute vn,m = n−((m−1) mod n), identify
the smallest index un,m ∈ {1, . . . , n} such that un,m ̸= vn,m
and (un,m, vn,m) is not an arc in G(n,m− 1), then construct
G(n,m) by adding the arc (un,m, vn,m) to G(n,m− 1). □

The requirement i < j for all arcs (i, j) immediately implies
that each directed tree G(n, n − 1) is rooted at vertex 1 and
has vertex n as a leaf. Before proceeding, we first show that
the above algorithm is well defined.

Lemma 1: For any fixed n > 1 and n ≤ m ≤ n(n − 1),
the index un,m defined in Algorithm 1 always exists.

Proof of Lemma 1: From the algorithm description,
G(n,m) is constructed from G(n,m − 1) by adding an arc
with head index vn,m = n − ((m − 1) mod n). This process
proceeds inductively from m = n to m = n(n − 1). Note
that for n ≤ m ≤ n(n − 1), the vertex index vn,m =
n−((m−1) mod n) can take any value in {1, 2, . . . , n}. Each
vertex in a graph with n vertices has an in-degree of at most
n− 1. The algorithm begins with a directed tree, G(n, n− 1),
in which vertex 1 has in-degree 0, while all other vertices
have an in-degree of 1. Hence, to prove the existence of the
vertex index un,m described in the algorithm, it is sufficient
to show that vertex 1 appears as the head of an added arc (i.e.,
vn,m = 1 occurs) at most n − 1 times during the inductive
construction process, while each vertex i ∈ {2, . . . , n} appears
as the head of an added arc (i.e., vn,m = i occurs) at most n−2
times. We thus consider vertex 1 and vertices in {2, . . . , n}
separately.

First consider vertex 1. The condition vn,m = n − ((m −
1) mod n) = 1 holds if and only if m = kn with k being
any integer. Since n ≤ m ≤ n(n − 1), the condition occurs

exactly n − 1 times with k ∈ {1, . . . , n − 1}. Next consider
vertices other than vertex 1. For each i ∈ {2, . . . , n}, the
condition vn,m = n − ((m − 1) mod n) = i holds if and
only if m = kn + 1 − i with k being any integer. Since
n ≤ m ≤ n(n− 1), the condition occurs exactly n− 2 times
with k ∈ {2, . . . , n− 1}.

With the fact vn,m ∈ {1, . . . , n}, Lemma 1 ensures that
Algorithm 1 operates without ambiguity under the given
conditions for n and m. In Figure 1, we present an illustrative
example of the algorithm that inductively constructs a se-
quence of graphs G(n,m), where n = 5 and m ranges from 4
to 19. The first graph is a directed tree, and in each subsequent
graph, a new arc is added to the preceding graph, with the
newly added arc highlighted in purple. We will consistently
use purple to indicate newly added arcs when illustrating an
inductive construction process for Algorithm 1. For simplicity
in drawing, we use a bidirectional edge to represent two arcs
in opposite directions throughout this paper; each bidirectional
edge is therefore counted as two arcs. Another illustrative
example for 6 vertices is provided in Figure 2.

Fig. 1. An example of the inductive construction process of Algorithm 1
for n = 5 and 4 ≤ m ≤ 19

To construct a graph with n vertices and m ≥ n arcs using
Algorithm 1, the computational complexity is O(m− n+ 1).
This is because the algorithm initializes the graph as a directed
tree with n−1 arcs and then builds it incrementally by adding
the remaining m−n+1 arcs one at a time, with constant-time
endpoint identification at each step.

From the algorithm description, the constructed graphs are
all rooted simple directed graphs. Indeed, any simple directed
graph possessing the Laplacian spectrum specified in (4), if it
exists, is necessarily rooted (cf. Subsection III-A). Moreover,
each constructed graph G(n,m), with n ≤ m ≤ n(n− 1), is
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Fig. 2. An example of the inductive construction process of Algorithm 1
for n = 6 and 5 ≤ m ≤ 16

dependent on the specific directed tree G(n, n − 1). In other
words, for any fixed n, each distinct directed tree G(n, n −
1) uniquely determines a corresponding sequence of graphs
G(n,m), n ≤ m ≤ n(n−1), with G(n, n(n−1)) always being
the complete graph. Figure 3 illustrates two such complete
sequences of graphs generated by the algorithm for n = 4,
starting from two different directed trees and ending at the
same complete graph.

We say that two directed graphs are identical if they have
the same sets of vertices and arcs, with the same labels on
both; this requirement is stronger than graph isomorphism.
The classic Cayley’s formula [6] states that the number of
distinct (undirected) trees on n labeled vertices is nn−2. Based
on this, counting the number of distinct directed trees is easy.
Any directed tree can be formed by orienting the edges of an
undirected tree. Since each undirected tree allows any of its
vertices to act as the root of a directed tree, each undirected
tree can be oriented in n different ways to form a directed
tree. Therefore, the number of distinct directed trees on n
labeled vertices is n×nn−2 = nn−1. But this number cannot
be used to count the total number of possible directed trees
G(n, n − 1), as the algorithm requires that all arcs (i, j) in
G(n, n− 1) satisfy i < j.

Lemma 2: The number of distinct directed trees on n

Fig. 3. Two complete examples of the inductive construction process of
Algorithm 1 for n = 4

labeled vertices, such that each arc (i, j) satisfies i < j, is
(n− 1)!.

Proof of Lemma 2: We prove the lemma by induction on
n. For the base case n = 1, the lemma is clearly true. For
the inductive step, suppose that the lemma holds for n = k,
where k is a positive integer. Let n = k + 1. Since each arc
(i, j) is required to satisfy i < j, vertex k + 1 must be a leaf
vertex, and its parent vertex can be any vertex in {1, . . . , k}.
Thus, for each directed tree with k vertices that satisfies the
requirement, there are k different ways to construct a directed
tree with k + 1 vertices that also satisfies the requirement by
adding vertex k + 1 as a child of any existing vertex. By the
inductive hypothesis, the total number of desired directed trees
with k vertices is (k−1)!. Therefore, the total number of such
directed trees with k + 1 vertices equals k × (k − 1)! = k!,
which proves the inductive step.

The lemma states that there are (n− 1)! different possible
G(n, n−1). That is to say, each G(n,m) may represent up to
(n−1)! different graphs. For simplicity, we use the notation as
is and take this fact without further mention in the sequel. It is
possible that, for certain values of n and m, the graph G(n,m)
constructed by the algorithm may be identical, even when the
construction process begins with different directed trees. A
trivial example is when m = n(n − 1) with which G(n,m)
must be the complete graph regardless of G(n, n−1). Another
illustrative 4-vertex example is given in Figure 4. Figure 3
provides a further 4-vertex example, where two construction
processes start from two different directed trees but end at the
same graph G(4,m) for m ∈ {9, 10, 11, 12}. This example
highlights that once two construction processes for the same
vertex number n coincide at some G(n,m), all subsequent
graphs in the two sequences must also coincide. This follows
directly from the algorithm description. In addition, a sufficient
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condition on the relationship between n and m is provided in
Lemma 7, which guarantees that G(n,m) is unique no matter
what the initial directed tree is.

Fig. 4. Two inductive construction processes (first row and second row)
of Algorithm 1 for n = 4, starting from different directed trees and
leading to the identical G(4, 6) graph

All constructed G(n,m) graphs have the following property.
A directed graph is called almost regular if the difference
between its largest and smallest in-degrees is at most 1. In
the special case when all in-degrees are equal, the graph is
called regular. Let ν ∆

= ⌊m
n ⌋.

Proposition 1: For any integers n ≥ 2 and m ≥ n− 1, any
G(n,m) constructed by Algorithm 1 is almost regular, with
n(ν + 1)−m vertices of in-degree ν and m− nν vertices of
in-degree ν + 1; that is, its vertex in-degree sequence is

(d1, . . . , dn) = ( ν, . . . , ν︸ ︷︷ ︸
n(ν+1)−m

, ν + 1, . . . , ν + 1︸ ︷︷ ︸
m−nν

). (11)

The proposition implies that whenever m is a multiple of n,
any graph G(n,m) constructed by Algorithm 1 is an exactly
regular directed graph.

Proof of Proposition 1: We first consider two special cases.
First, in the case when m = n− 1, G(n, n− 1) is a directed
tree, which is clearly almost regular. Second, in the case when
m = n, G(n, n) is constructed by adding the arc (un,n, 1) to
G(n, n− 1). Then, all n vertices have an in-degree of 1, and
thus G(n, n) is regular. It remains to consider the case m ≥
n+1. From the algorithm description, G(n,m) is constructed
from G(n, n) by inductively adding arcs whose head indices
are given by vn,k = n − ((k − 1) mod n) for k ∈ {n +
1, . . . ,m}. Note that as k ranges from n+1 to 2n, vn,k takes
values from n to 1, and this pattern repeats with a period of
n as k continues from 2n+ 1 to m. This implies that the in-
degrees of G(n,m) satisfy dn ≥ · · · ≥ d1 and dn−d1 ≤ 1 for
all m ≥ n + 1. Thus, G(n,m) is always almost regular. The
remaining statement of the proposition directly follows from
the following lemma.

Lemma 3: For any almost regular simple directed graph
with n vertices and m arcs, assume, without loss of generality,
that its vertex in-degrees satisfy d1 ≤ · · · ≤ dn. Then, its in-
degree sequence is (11).

Proof of Lemma 3: Since the graph is almost regular, dn−
d1 ≤ 1. Suppose there are 1 ≤ p ≤ n vertices with the

minimal in-degree d1. Then, the remaining q = n− p vertices
have an in-degree of d1+1. It follows that m = pd1+ q(d1+
1) = d1n+ q. As q takes a value in {0, 1, . . . , n− 1}, d1 and
q are respectively the unique quotient and remainder when m
is divided by n. Then, d1 = ⌊m

n ⌋ = ν and q = m − d1n =
m− nν. Therefore, the in-degree sequence is (11).

Proposition 1 specifies the in-degree di of each vertex i in
G(n,m). Each di can take an integer value from 0 to n− 1,
depending on the value of m. The following lemma further
identifies the in-neighbors corresponding to these di values.

Lemma 4: For any G(n,m), the d1 incoming arcs of
vertex 1 originate from d1 vertices whose indices are in
{2, . . . , d1+1}, and for each i ∈ {2, . . . , n}, the di incoming
arcs of vertex i originate from vertex ij , the unique vertex
index such that (ij , i) is an arc in G(n, n − 1), and from
di − 1 other vertices whose indices are the di − 1 smallest
elements of {1, . . . , n} \ {i, ij}.

Proof of Lemma 4: From the algorithm description, vertex
1 has in-degree 0 in G(n, n − 1), so each of its incoming
arcs in G(n,m), if any, must be added as (un,p, vn,p) with
vn,p = 1 for some index p ∈ {n, . . . ,m} during the inductive
construction process. Since each un,p is defined as the smallest
vertex index such that un,p ̸= 1 and (un,p, 1) is not an arc in
G(n, p − 1), the d1 incoming neighbors of vertex 1 must be
the d1 vertices with the smallest indices other than 1, that is,
the vertices in {2, . . . , d1 + 1}.

Next consider any vertex i ∈ {2, . . . , n}, which has exactly
one incoming arc (ij , i) in the directed tree G(n, n− 1), and
thus has in-degree at least one in G(n,m). The remaining
incoming arcs of vertex i in G(n,m), if any, are added through
the inductive construction process. Using the same argument
as in the previous paragraph, the di − 1 remaining incoming
arcs originate from the di−1 vertices with the smallest indices
in {1, . . . , n} \ {i, ij}.

The most important property of G(n,m) is stated below.
Additional properties will be presented later in the paper.

Theorem 3: For any integers n ≥ 2 and m ≥ n − 1, any
graph constructed by Algorithm 1, G(n,m), has the Laplacian
spectrum given in (4).

To prove the theorem, we need several concepts and results.
A directed graph is acyclic if it contains no directed cycles.

Thus, by definition, a directed acyclic graph cannot contain
a self-arc. Any directed tree is acyclic. The transpose of an
acyclic graph remains acyclic.

Lemma 5: For any acyclic simple directed graph, its Lapla-
cian spectrum consists of its in-degrees.

Proof of Lemma 5: The adjacency matrix A of a directed
graph G, as defined in the introduction, is based on in-degrees.
The out-degree based adjacency matrix is the transpose of the
in-degree based adjacency matrix; that is, its ijth entry equals
1 if (i, j) is an arc in the graph, and equals 0 otherwise, as
referenced in [7, Page 151]. For any permutation matrix P ,
P ′AP represents an adjacency matrix of the same graph, but
with its vertices relabeled; the same property applies to out-
degree based adjacency matrices. Since G is acyclic, from [7,



LU et al.: A CLASS OF OPTIMAL DIRECTED GRAPHS FOR NETWORK SYNCHRONIZATION 7

Theorem 16.3], there exists a permutation matrix P with which
P ′A′P is upper triangular. Then, P ′AP is lower triangular,
which implies that P ′LP is also lower triangular. Thus, the
spectrum of P ′LP consists of its diagonal entries. Since P ′LP
and L share the same spectrum and diagonal entries, the
spectrum of L consists of its diagonal entries, which are the
in-degrees of G.

The union of two directed graphs, G1 and G2, with the
same vertex set, denoted by G1 ∪ G2, is the directed graph
with the same vertex set and its directed edge set being the
union of the directed edge sets of G1 and G2. Similarly, the
intersection of two directed graphs, G1 and G2, with the same
vertex set, denoted by G1 ∩G2, is the directed graph with the
same vertex set and its directed edge set being the intersection
of the directed edge sets of G1 and G2. Graph union is an
associative binary operation, and thus the definition extends
unambiguously to any finite sequence of directed graphs. The
complement of a simple directed graph G, denoted by G, is
the simple directed graph with the same vertex set such that
G∪G equals the complete graph and G∩G equals the empty
graph. It is easy to see that if vertex i has in-degree di in
G, then it has in-degree n− 1− di in G. Moreover, the total
number of arcs in G and G is n(n− 1).

It is easy to see that any Laplacian matrix has an eigenvalue
at 0 with an eigenvector 1, where 1 is the column vector in IRn

with all entries equal to 1. Using the Gershgorin circle theorem
[8], it is straightforward to show that all Laplacian eigenvalues,
except for those at 0, have positive real parts, as was done in
[9, Theorem 2] for out-degree based Laplacian matrices. Thus,
the smallest real part of any Laplacian eigenvalue is always 0.
More can be said.

Lemma 6: If the Laplacian spectrum of an n-vertex simple
directed graph G is {0, λ2, . . . , λn} with 0 ≤ Re(λ2) ≤ · · · ≤
Re(λn), then the Laplacian spectrum of its complement G
is {0, n − λn, . . . , n − λ2} and 0 ≤ Re(n − λn) ≤ · · · ≤
Re(n− λ2).

The following proof of the lemma employs the same tech-
nique as that used in the proof of Theorem 2 in [10], which
was developed for a variant of Laplacian matrices. For any
square matrix M , we denote its characteristic polynomial as
pM (λ) = det(λI −M) in the sequel.

Proof of Lemma 6: Let L and L be the Laplacian matrices
of G and G, respectively. It is straightforward to verify that
L+ L = nI − J , where I is the identity matrix and J is the
n × n matrix with all entries equal to 1. Let Q = L + J =
nI − L. We first show that

λpQ(λ) = (λ− n)pL(λ). (12)

Note that pL(λ) = 0 when λ = 0, as L has an eigenvalue at
0. Thus, (12) holds when λ = 0.

To prove (12) for λ ̸= 0, let ci, i ∈ {1, . . . , n} denote the ith
column of matrix λI−L. Since Q = L+J , it follows that the
ith column of matrix λI−Q is ci−1. Since the determinant of
a matrix is multilinear and adding one column to another does
not alter its value, pQ(λ) = det [c1−1, c2−1, · · · , cn−1] =
det [c1, c2 − 1, · · · , cn − 1] − det [1, c2 − 1, · · · , cn − 1] =

det [c1, c2 − 1, · · · , cn − 1] − det [1, c2, · · · , cn]. Repeating
this process sequentially for the columns from 2 to n leads to

pQ(λ) = pL(λ)−
n∑

i=1

det
[
c1, · · · , ci−1,1, ci+1, · · · , cn

]
.

Note that
∑n

j=1 cj = λ1, as each row sum of λI−L is equal
to λ. Then, for any i ∈ {1, . . . , n},

det
[
c1, · · · , ci−1,1, ci+1, · · · , cn

]
= det

[
c1, · · · , ci−1,

1
λ

∑n
j=1 cj , ci+1, · · · , cn

]
= 1

λ det
[
c1, · · · , ci−1,

∑n
j=1 cj , ci+1, · · · , cn

]
= 1

λ det
[
c1, · · · , cn

]
= 1

λpL(λ).

Substituting this equality into the preceding expression for
pQ(λ) yields pQ(λ) = pL(λ)− n

λpL(λ), which proves (12).
To proceed, recall that L = nI −Q. Then,

pL(λ) = det(λI − L) = det(λI − nI +Q)

= (−1)n det((n− λ)I −Q) = (−1)npQ(n− λ).

From this and (12), with λ substituted by n− λ,

(n− λ)pL(λ) = (−1)n+1λpL(n− λ). (13)

Both sides of (13) are polynomials in λ of degree n + 1.
It is easy to see that 0 and n are roots of both sides, as 0
is an eigenvalue of both L and L. Then, the set of nonzero
roots of pL(λ) coincides with the set of roots of pL(n − λ),
excluding the root at n. Therefore, if the Laplacian spectrum
of G is {0, λ2, . . . , λn}, then the Laplacian spectrum of G
is {0, n − λn, . . . , n − λ2}. Recall that the smallest real part
of all Laplacian eigenvalues is always 0. With these facts, it
is easy to see that if 0 ≤ Re(λ2) ≤ · · · ≤ Re(λn), then
0 ≤ Re(n− λn) ≤ · · · ≤ Re(n− λ2).

The disjoint union of two directed graphs is a larger directed
graph whose vertex set is the disjoint union of their vertex
sets, and whose arc set is the disjoint union of their arc sets.
Disjoint union is an associative binary operation, and thus the
definition extends unambiguously to any finite sequence of
directed graphs. Any disjoint union of two or more graphs is
necessarily disconnected. A directed forest is a disjoint union
of directed tree(s). A directed forest composed of k directed
trees thus has k vertices with an in-degree of 0, while all other
vertices have an in-degree of exactly 1. It is easy to see that
the number of directed trees in a directed forest is equal to the
difference between the number of vertices and the number of
arcs. An n-vertex directed star is a directed tree whose n− 1
arcs all originate from the root.

Lemma 7: For any integers n and m such that n ≥ 2 and
(n − 1)2 ≤ m ≤ n(n − 1), any G(n,m) constructed by
Algorithm 1 is the complement of the n-vertex directed forest
consisting of a directed star with (n(n− 1)−m+1) vertices,
rooted at vertex n and with leaf vertices 1 to (n(n− 1)−m),
and m− (n− 1)2 isolated vertices.

The condition m ≥ (n− 1)2 ensures n(n− 1)−m ≤ n. In
the special case when m = n(n−1), the directed star reduces
to an isolated vertex, which is consistent with the fact that the
complement of a complete graph is an empty graph. Figure 5
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Fig. 5. Example illustrating Lemma 7

provides a simple example to illustrate Lemma 7. Note that
G(4, 10), as shown in the figure, is unique. Indeed, Lemma 7
immediately implies that if (n − 1)2 ≤ m ≤ n(n − 1), then
G(n,m) is unique regardless of which directed tree G(n, n−
1) is. Figure 3 provides two complete sequences of G(n,m)
graphs for n = 4, inductively constructed by Algorithm 1.
The two sequences start from different directed trees, and from
m = 9 onward, the constructed graphs become identical. Note
that the uniqueness of G(4, 9), G(4, 10), and G(4, 11) can also
be implied by Proposition 1 and Lemma 4.

To prove Lemma 7, we need the following result.

Lemma 8: If there exists an index k ∈ {1, . . . , n− 1} such
that (n, k) is an arc in G(n,m), then the in-degree of vertex
k in G(n,m) is n− 1.

Proof of Lemma 8: Note that (n, k) cannot be an arc in
G(n, n−1) because any arc in G(n, n−1) is required to have
a head index greater than the tail index. Since the arc (n, k)
is not in G(n, n − 1) but is in G(n,m), from the algorithm
description, there must exist exactly one index p ∈ {n, . . . ,m}
such that un,p = n and vn,p = k. The algorithm sets un,p as
the smallest vertex index for which un,p ̸= k and (un,p, k) is
not an arc in G(n, p−1). Thus, (i, k) is an arc in G(n, p−1)
for all i ∈ {1, . . . , n−1}\{k}. This implies that the in-degree
of vertex k in G(n, p − 1) is n − 1, and the same holds for
G(n,m).

Proof of Lemma 7: In the special case when m = n(n−1),
G(n,m) is the complete graph, which is the complement of the
empty graph. It is easy to verify that the lemma is true in this
case. Next consider the case when (n− 1)2 ≤ m < n(n− 1)
for which ν = ⌊m

n ⌋ = n − 2. From Proposition 1, the vertex
in-degree sequence of G(n,m) is

(d1, . . . , dn) = ( n− 2, . . . , n− 2︸ ︷︷ ︸
n(n−1)−m

, n− 1, . . . , n− 1︸ ︷︷ ︸
m−n(n−2)

).

Since m ≥ (n−1)2, m−n(n−2) ≥ 1, which implies that the
in-degree of vertex n is n− 1. Consequently, in G(n,m), the
complement of G(n,m), vertices from 1 to (n(n − 1) −m)
have an in-degree of 1, and the remaining vertices, including
vertex n, have an in-degree of 0. Note that the total number of
arcs in G(n,m) is (n(n−1)−m). We claim that these (n(n−
1)−m) arcs form a directed star rooted at vertex n, with leaf
vertices labeled from 1 to (n(n−1)−m), which immediately
implies the lemma. To prove the claim, it is equivalent to show
that (n, k) is an arc in G(n,m) for all k ∈ {1, . . . , n(n−1)−
m}. To this end, suppose to the contrary that (n, k) is not an
arc in G(n,m) for some k ∈ {1, . . . , n(n − 1) − m}. This
implies that (n, k) is an arc in G(n,m). From Lemma 8, the

in-degree of vertex k in G(n,m) is n−1. But this contradicts
the fact that dk = n− 2. Therefore, the claim is true.

Let L(n,m) denote the Laplacian matrix of G(n,m), with
its ijth entry denoted by [L(n,m)]ij . It has the following
entry-wise property.

Lemma 9: For any integers n and m such that n ≥ 2
and n − 1 ≤ m ≤ (n − 1)2, [L(n,m)]in = 0 for each
i ∈ {1, . . . , n− 1}.

Proof of Lemma 9: From the definition of a Laplacian
matrix, to prove the lemma, it is equivalent to showing that,
for each i ∈ {1, . . . , n− 1}, the arc (n, i) does not belong to
G(n,m) when n − 1 ≤ m ≤ (n − 1)2. From the inductive
construction described in Algorithm 1, if arc (n, i) belongs to
a graph G(n,m) for some n− 1 ≤ m < (n− 1)2, then there
must exist a graph G(n, (n−1)2) that also contains arc (n, i).
Therefore, it is sufficient to show that any graph G(n, (n−1)2)
constructed by Algorithm 1 does not contain the arc (n, i).
From Lemma 7, any G(n, (n − 1)2) is the complement of
the n-vertex directed star rooted at vertex n. It follows that
G(n, (n − 1)2) contains no arcs of the form (n, i) for any
i ∈ {1, . . . , n− 1}.

Lemma 9 has the following important implication. Recall
that Algorithm 1 may generate different graph sequences
depending on the initial tree graph.

Lemma 10: Let G(n,m) be the graph constructed by Algo-
rithm 1 starting from a directed tree G(n, n−1). If n ≥ 3 and
n−1 ≤ m ≤ (n−1)2, then the subgraph of G(n,m) induced
by the vertex subset {1, . . . , n− 1} is G(n− 1,m− dn), the
graph constructed by Algorithm 1 starting from the subgraph
of G(n, n − 1) induced by the vertex subset {1, . . . , n − 1},
where dn is the in-degree of vertex n in G(n,m).

Since G(n, n−1) is an n-vertex directed tree with vertex n
as a leaf, its subgraph induced by the vertex subset {1, . . . , n−
1} is a directed tree with n − 1 vertices. The subgraph also
satisfies the requirement that every arc has a head index greater
than the tail index, so it can serve as an initial tree graph
G(n − 1, n − 2) for Algorithm 1 to construct graphs with
n− 1 vertices. In addition, recall that G(n, n− 1) is rooted at
vertex 1, and so is G(n,m) for any m ∈ {n, . . . , n(n − 1)}.
Then, the subgraph of G(n,m) induced by the vertex subset
{1, . . . , n − 1} is also rooted at vertex 1 and therefore has
at least n − 2 arcs. Since m − dn is an upper bound on the
total number of arcs in the subgraph, its value is no smaller
than n − 2. In the following proof, we will soon show that
m − dn ≤ (n − 1)(n − 2). These two facts guarantee that
G(n− 1,m− dn) is well-defined.

Proof of Lemma 10: Let H be the subgraph of G(n,m)
induced by the vertex subset {1, . . . , n− 1}. From Lemma 9,
vertex n has no outgoing arcs in G(n,m). Then, H has n− 1
vertices and m − dn arcs, which implies m − dn ≤ (n −
1)(n − 2). In addition, each vertex i ∈ {1, . . . , n − 1} has
the same in-degree di in H as in G(n,m), with the values
of di, i ∈ {1, . . . , n}, being given in (11). Let bi denote the
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in-degree of vertex i in G(n−1,m−dn). From Proposition 1,

(b1, . . . , bn−1) = ( u, . . . , u,︸ ︷︷ ︸
(n−1)(u+1)−(m−dn)

u+ 1, . . . , u+ 1︸ ︷︷ ︸
(m−dn)−(n−1)u

),

where u = ⌊m−dn

n−1 ⌋. We claim that bi = di for all i ∈
{1, . . . , n−1}. To prove the claim, we consider two scenarios
separately. First, suppose that n divides m. Then, from (11),
all di, i ∈ {1, . . . , n} equal ν = m

n , which implies that
n − 1 divides m − dn and u = ν. It follows that all bi,
i ∈ {1, . . . , n − 1} equal u, and thus the claim holds. Next,
suppose that n does not divide m. Then, dn = ν + 1 =
⌊m
n ⌋ + 1 and m = νn + r, where 1 ≤ r ≤ n − 1 is

the unique remainder when m is divided by n. With these,
u = ⌊m−dn

n−1 ⌋ = ⌊νn+r−ν−1
n−1 ⌋ = ν + ⌊ r−1

n−1⌋ = ν and thus
(n− 1)(u+ 1)− (m− dn) = n(ν + 1)−m, which validates
the claim. This ensures that for each i ∈ {1, . . . , n − 1},
vertex i has an in-degree of di in both H and G(n−1,m−dn).
Since G(n− 1, n− 2) is the subgraph of G(n, n− 1) induced
by the vertex subset {1, . . . , n − 1}, where the former is a
directed tree with n − 1 vertices and the latter is a directed
tree with n vertices, for each i ∈ {1, . . . , n− 1}, vertex i has
the same unique in-neighbor index in both directed trees. With
this, Lemma 4 implies that each vertex has the same set of
in-neighbor indices in H and G(n − 1,m − dn). Therefore,
H = G(n− 1,m− dn).

We will also need the following lemmas regarding the
relationship between κ = ⌊ m

n−1⌋ and ν = ⌊m
n ⌋.

Lemma 11: ν ∈ {κ− 1, κ} for any integers n and m such
that n ≥ 2 and 1 ≤ m ≤ n(n− 1).

Proof of Lemma 11: Since ⌊ m
n−1⌋ ≤ m

n−1 and ⌊m
n ⌋ >

m
n −1, it follows that κ−ν = ⌊ m

n−1⌋−⌊m
n ⌋ < m

n−1−(mn −1) =
m

n(n−1) +1 ≤ 2. As κ−ν is a nonnegative integer, it can only
take a value of either 0 or 1, which implies that ν is equal to
either κ or κ− 1.

Lemma 12: ⌊m−ν−1
n−2 ⌋ = κ for any integers n and m such

that n ≥ 3 and 1 ≤ m ≤ n(n− 2).

Proof of Lemma 12: First, consider the special case when
1 ≤ m ≤ n−2, which implies κ = ν = 0. Then, ⌊m−ν−1

n−2 ⌋ =
⌊m−1
n−2 ⌋ = 0 = κ. Thus, the lemma holds in this case.
Next, consider the general case when n−1 ≤ m ≤ n(n−2).

Note that m can be written as m = κ(n− 1) + r, where 0 ≤
r ≤ n−2 is the unique remainder when m is divided by n−1.
From Lemma 11, ν equals either κ or κ−1. Let us first suppose
ν = κ. Then, κ(n−1)+r

n = m
n ≥ ⌊m

n ⌋ = ν = κ, which implies
r ≥ κ = ⌊ m

n−1⌋ ≥ 1. Thus, ⌊m−ν−1
n−2 ⌋ = ⌊κ(n−1)+r−κ−1

n−2 ⌋ =

κ+⌊ r−1
n−2⌋ = κ. In the next step, we suppose ν = κ−1. Then,

⌊m−ν−1
n−2 ⌋ = ⌊κ(n−1)+r−κ

n−2 ⌋ = κ + ⌊ r
n−2⌋, which equals κ if

0 ≤ r < n− 2. To complete the proof, it remains to consider
the case when r = n− 2. We claim that r ̸= n− 2. To prove
the claim, suppose to the contrary that r = n− 2, with which
m = κ(n− 1) + r = κn+ (n− 2− κ). Meanwhile, as n ≥ 3

and 1 ≤ m ≤ n(n−2), κ = ⌊ m
n−1⌋ ≤

n(n−2)
n−1 < n−1, which

implies that n−1−κ is a positive integer. Then, n−2−κ ≥ 0,
and thus ν = ⌊m

n ⌋ = ⌊κn+(n−2−κ)
n ⌋ = κ + ⌊n−2−κ

n ⌋ = κ.
But this contradicts ν = κ− 1. Therefore, r ̸= n− 2.

Lemma 13: For any integers n and m such that n ≥ 3 and
1 ≤ m < n(n− 2), if n divides m, then κ = ν = ⌊m−ν

n−2 ⌋.

Proof of Lemma 13: Since n divides m, m = νn. Then,
κ = ⌊ m

n−1⌋ = ⌊ νn
n−1⌋ = ⌊ν + ν

n−1⌋ = ν + ⌊ ν
n−1⌋ = ν.

Note that ν = m
n < n − 2. Therefore, ⌊m−ν

n−2 ⌋ = ⌊nν−ν
n−2 ⌋ =

⌊ν + ν
n−2⌋ = ν + ⌊ ν

n−2⌋ = ν = κ.

We are now in a position to prove Theorem 3.

Proof of Theorem 3: We will prove the following claim.
Claim: For any n ≥ 2 and n− 1 ≤ m ≤ n(n− 1),

pL(n,m)(λ) = λ(λ− κ)(κ+1)(n−1)−m(λ− κ− 1)m−κ(n−1).

Recall that for each pair of n and m, distinct G(n,m) may
be generated by Algorithm 1, depending on the choice of the
initial tree G(n, n − 1). It is worth emphasizing that we will
show the claim holds for all possible G(n,m), that is, the
above characteristic polynomial equation is satisfied for all
possible L(n,m).

Note that 1 + [(κ + 1)(n − 1) − m] + [m − κ(n − 1)] =
n. The claim implies that L(n,m) has one eigenvalue at 0,
(κ+1)(n−1)−m eigenvalues at κ, and (κ+1)(n−1)−m at
κ+1, which together constitute the entire spectrum of L(n,m).
The theorem then immediately follows from the claim. Thus,
to prove the theorem, it is sufficient to establish the claim. We
will prove the claim by induction on n.

In the base case when n = 2, all possible values of m
are 1 and 2. According to the algorithm description, G(2, 1)
contains one arc, (1, 2), and G(2, 2) contains two arcs, (1, 2)
and (2, 1). It is straightforward to verify that the claim holds
for both L(2, 1) and L(2, 2). Note that in this special case,
G(2, 1) is unique, and so is G(2, 2).

For the inductive step, suppose that the claim holds for
n = q for all possible values of m in {q − 1, . . . , q(q − 1)}
and all possible G(q, q − 1), where q ≥ 2 is an integer. Let
n = q + 1. Take into account all possible G(q + 1, q) and the
corresponding values of m, which range from q to (q + 1)q.

We first consider the case when m ∈ {q, . . . , q2−1}. From
Lemma 9, with n replaced by q+1, [L(q+1,m)]i(q+1) = 0 for
all i ∈ {1, . . . , q}. That is, all entries in the (q+1)th column of
L(q+1,m), except for the last entry [L(q+1,m)](q+1)(q+1),
are zero. The same holds for the (q+1)th column of λI−L(q+
1,m), whose last entry is equal to λ− [L(q+1,m)](q+1)(q+1).
Then, the Laplace expansion along the nth column of L(q +
1,m) yields

pL(q+1,m)(λ) = det
(
λI − L(q + 1,m)

)
=

(
λ− [L(q + 1,m)](q+1)(q+1)

)
pM (λ), (14)

where M is the q × q submatrix of L(q + 1,m) obtained by
removing the (q+1)th row and (q+1)th column of L(q+1,m).
Since all row sums of L(q + 1,m) are zero, and all entries
in its (q + 1)th column, except for the last entry, are zero,
M also has all row sums equal to zero. It follows that M
is the Laplacian matrix of a certain graph H with q vertices,
and H is the subgraph of G(q + 1,m) induced by the vertex
subset {1, . . . , q}. From Lemma 10, with n replaced by q +
1, H = G(q,m − dq+1), where dq+1 denotes the in-degree
of vertex q + 1 in G(q + 1,m), and G(q,m − dq+1) is the
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graph constructed by Algorithm 1 starting from the subgraph
of G(q+ 1, q) induced by the vertex subset {1, . . . , q}. Thus,
M is the Laplacian matrix of G(q,m−dq+1). Let γ ∆

= ⌊ m
q+1⌋.

We consider the following two cases separately.
Case 1: Suppose that q + 1 divides m, which implies

m = γ(q + 1). From the definition of a Laplacian matrix
and Proposition 1, [L(q+1,m)](q+1)(q+1) = dq+1 = γ. Then,
M is the Laplacian matrix of G(q,m−dq+1) = G(q,m−γ).
From (14) and the induction hypothesis,

pL(q+1,m)(λ) = (λ− γ)pM (λ), (15)

pM (λ) = λ(λ− β)(β+1)(q−1)−m+γ(λ− β − 1)m−γ−β(q−1),

where β
∆
= ⌊m−γ

q−1 ⌋. The analysis is further divided into two
scenarios based on the value of m. First, consider when m =
q2 − 1, which implies γ = q − 1 and thus β = q. Then,
(β + 1)(q − 1)−m+ γ = q − 1 and m− γ − β(q − 1) = 0.
It follows from (15) that

pL(q+1,m)(λ) = λ(λ− q + 1)(λ− 1)q−1.

Meanwhile, (γ+1)q−m = 1 and m− γq = q− 1. Thus, the
above equation validates the claim with n replaced by q + 1.
Next, consider when 1 ≤ m ≤ q2 − 2. From Lemma 13, with
n replaced by q + 1, γ = β = α

∆
= ⌊m

q ⌋. Then, from (15),

pL(q+1,m)(λ) = λ(λ− α)(α+1)q−m(λ− α− 1)m−αq, (16)

which proves the claim with n replaced by q + 1.
Case 2: Suppose that q+1 does not divide m, which implies

m−γ(q+1) > 0. From the definition of a Laplacian matrix and
Proposition 1, [L(q+1,m)](q+1)(q+1) = dq+1 = γ+1. Then,
M is the Laplacian matrix of G(q,m−dq+1) = G(q,m−γ−
1). From (14) and the induction hypothesis,

pL(q+1,m)(λ) = (λ− γ − 1)pM (λ), (17)

pM (λ)=λ(λ−β′)(β
′+1)(q−1)−m+γ′

(λ−β′−1)m−γ′−β′(q−1),

where γ′ = γ + 1 and β′ ∆
= ⌊m−γ−1

q−1 ⌋. With n replaced by
q+1, Lemma 12 and Lemma 11 respectively imply that β′ = α
and γ ∈ {α − 1, α}. The analysis is then divided into two
scenarios based on the value of γ. First, suppose γ = α − 1.
Then, (β′+1)(q−1)−m+γ′ = (α+1)(q−1)−m+α and
m−γ′−β′(q−1) = m−αq. It follows that (17) simplifies to
(16), which validates the claim. Next, suppose γ = α. Then,
(β′+1)(q−1)−m+γ′ = (α+1)q−m and m−γ′−β′(q−1) =
m − αq − 1. With these equalities, (17) once again leads to
(16), thereby proving the claim.

The two cases above collectively establish the inductive step
for m ∈ {q, . . . , q2 − 1}. In what follows, we address the
remaining case where m ∈ {q2, . . . , q2 + q}. From Lemma
7, with n replaced by q+1, G(q + 1,m), the complement of
G(q + 1,m), is the (q + 1)-vertex directed forest consisting
of a directed star with (q2 + q − m + 1) vertices, rooted at
vertex q+1, and m− q2 isolated vertices. Thus, G(q + 1,m)
is acyclic, with (q2 + q −m) vertices of in-degree 1 and the
other (m−q2+1) vertices of in-degree 0. From Lemma 5, the
Laplacian spectrum of G(q + 1,m) consists of (q2 + q −m)
eigenvalues at 1 and (m−q2+1) eigenvalues at 0. Then, from

Lemma 6, the Laplacian spectrum of G(q+1,m) is composed
of a single eigenvalue of 0, an eigenvalue of q with multiplicity
q2+q−m, and an eigenvalue of q+1 with multiplicity m−q2.
This leads to

pL(q+1,m)(λ) = λ(λ− q)q
2+q−m(λ− q − 1)m−q2 ,

which validates the claim with n replaced by q + 1. We
therefore complete the proof of the inductive step.

III. DISCUSSION

We have resolved a long-standing conjecture on optimal di-
rected graph topologies for network synchronization proposed
in [2]. The conjecture states that the normalized Laplacian
eigenvalue spread is minimized when the Laplacian spectrum
follows a specific pattern. A minimal normalized Laplacian
eigenvalue spread indicates optimal synchronizability of the
network, as demonstrated in simulations in [2]. We establish
the conjecture in a stronger form (cf. Theorem 1) by not
only proving that the conjectured Laplacian spectrum pattern
is a necessary and sufficient algebraic condition, but also
showing that this condition is always realizable. In particular,
we prove that the Laplacian spectrum pattern is achievable
for any feasible pair of vertex and arc numbers by a class of
almost regular directed graphs, which can be systematically
and efficiently constructed via an inductive algorithm.

The algorithm proposed in this paper is motivated by our
recent work [11], where an algorithm was designed to achieve
fast/fastest consensus while its generated graphs also possess
the Laplacian spectrum described in (4). It turns out the
algorithm here subsumes the algorithm in [11] as a special
case, as shown by the following lemma.

Lemma 14: If G(n, n − 1) is a directed star, then for all
n ≥ 2 and n − 1 ≤ m ≤ n(n − 1), the graph G(n,m) is
identical to the one constructed by the algorithm in [11] with
n vertices and m arcs.

Proof of Lemma 14: If G(n, n− 1) in Algorithm 1 is set
to be a directed star, it is rooted at vertex 1. It is easy to verify
that when m = n− 1, the graph constructed by the algorithm
in [11] is also a directed star rooted at vertex 1 (cf. Proposition
1 in [11]). Thus, to prove the lemma, it remains to consider
the case m ≥ n. From Proposition 1, the graph G(n,m)
constructed by Algorithm 1 has the in-degree sequence given
in (11). We use Lemma 4 to determine the in-neighbors of
each vertex. The d1 incoming arcs of vertex 1 originate from
d1 vertices whose indices are in {2, . . . , d1 + 1}. For each
i ∈ {2, . . . , n}, the di incoming arcs of vertex i originate
from vertex ij , the unique vertex index such that (ij , i) is an
arc in G(n, n−1), and from di−1 other vertices whose indices
are the di − 1 smallest elements of {1, . . . , n} \ {i, ij}. Since
G(n, n − 1) is a directed star rooted at vertex 1, ij = 1 for
all i ∈ {2, . . . , n}. Then, the in-neighbor indices for vertex
i simplify to the di smallest elements of {1, . . . , n} \ {i}. It
is easy to see that this characterization of the in-neighbor set
holds for all vertices including vertex 1. It has been shown in
[11, Proposition 2 and Lemma 6] that the graph with n vertices
and m arcs, constructed by the algorithm presented there, has
the same in-degree sequence and the same in-neighbor set
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characterization for each vertex. Therefore, for all n ≥ 2
and n − 1 ≤ m ≤ n(n − 1), the two graphs constructed
respectively by Algorithm 1 starting with a directed star and
by the algorithm in [11] are always identical.

All graphs generated by Algorithm 1 are almost regular
and achieve the conjectured minimum (normalized) Laplacian
eigenvalue spread. There exist optimal graphs with minimal
eigenvalue spread that are not constructed by Algorithm 1.
Moreover, optimal graphs are not necessarily almost regular.
Figure 6 illustrates these. Specifically, the left graph in Figure
6 is an optimal graph with 5 vertices and 5 arcs. The left
graph is not almost regular, while the graphs constructed by
Algorithm 1, G(5, 5), are almost regular. The right graph is
an optimal graph with 6 vertices and 9 arcs, in which every
vertex has out-degree at least 1. In contrast, in G(6, 9), vertex 6
always has out-degree 0 (cf. Lemma 9).

Fig. 6. Two optimal graphs with a minimal Laplacian eigenvalue spread
that are not generated by Algorithm 1

It remains unclear how to identify all directed graphs that
achieve the minimal Laplacian eigenvalue spread. Even when
restricting attention to the class of almost regular directed
graphs, a complete characterization of all optimal topologies is
still lacking. Addressing these open problems and developing
systematic methods to enumerate or recognize such optimal
graphs are natural directions for future research, albeit chal-
lenging ones.

All directed graphs constructed by Algorithm 1 are not only
optimal for network synchronization, but also typically guar-
antee fast convergence for continuous-time linear consensus
processes. A continuous-time linear consensus process over a
simple directed graph G is modeled by a linear differential
equation of the form ẋ(t) = −Lx(t), where x(t) is a vector
in IRn and L is the Laplacian matrix of G [9]. From standard
linear systems, the system reaches a consensus as t → ∞,
that is, limt→∞ x(t) = a1 for some constant a, exponentially
fast if and only if the second smallest real part among all
eigenvalues of L is positive. This spectral quantity determines
the worst-case convergence rate of the consensus process;
accordingly, we refer to it as the algebraic connectivity of
directed graph G and denote it by a(G).

Lemma 15: For any simple directed graph G with n vertices
and m arcs, a(G) ≤ m

n−1 .

Proof of Lemma 15: Label the n Laplacian eigenvalues
of G as λ1, λ2, . . . , λn such that Re(λ1) ≤ Re(λ2) ≤ · · · ≤
Re(λn). It is clear that λ1 = 0. Note that the ith diagonal
entry of the Laplacian matrix equals the in-degree of vertex
i, denoted by di. Since the sum of all eigenvalues of a matrix
equals its trace,

∑n
i=1 λi = tr(L(G)) =

∑n
i=1 di = m. Thus,

m =
∑n

i=2 Re(λi) ≥ (n − 1)Re(λ2) = (n − 1)a(G), which
implies a(G) ≤ m

n−1 .

From Theorem 3, all directed graphs constructed by Algo-
rithm 1 with n vertices and m ≥ n−1 arcs have algebraic con-
nectivity equal to ⌊ m

n−1⌋. It follows from Lemma 15 that the
algebraic connectivity of graphs constructed by Algorithm 1 is
generally “close to” the maximum possible value, with a gap of
less than 1. Consequently, these directed graphs, all of which
are almost regular, typically guarantee fast consensus perfor-
mance for continuous-time consensus processes implemented
on them. It is worth emphasizing that this “close-to-maximum”
property does not hold for all almost regular directed graphs.
Further related results and a more detailed discussion can be
found in [11].

We conclude the paper by presenting a couple of comple-
mentary results and discussing promising future directions.

A. Minimal σ2 Implies Rootedness
The necessary and sufficient spectral condition (4) for

optimal network synchronization, that is, minimal σ2, is an
algebraic condition. At the same time, it is well known that
network synchronization requires a certain level of connectiv-
ity among the agents. The following lemma shows that this
required graphical connectivity is implicitly implied by the
algebraic condition.

Lemma 16: If a directed graph G with n vertices and m ≥
n− 1 arcs attains the minimal value of σ2, then G is rooted.

Corollary 1 guarantees that a(G) is a positive integer when
m ≥ n− 1. Hence, Lemma 16 is an immediate consequence
of the following result.

Lemma 17: For any directed graph G, a(G) is positive if,
and only if, G is rooted.

Proof of Lemma 17: Let Dout be the out-degree matrix
of G, which is assumed to have n vertices; this matrix is an
n × n diagonal matrix whose ith diagonal entry equals the
out-degree of vertex i. The out-degree based Laplacian matrix
is Lout = Dout − A′, where A is the adjacency matrix of
G. Recall that L(G) = Lout(G′). Note that the set of all
possible simple directed graphs with n vertices is invariant
under the graph transpose operation. Lemma 2 in [12] shows
that the second smallest real part of all eigenvalues of Lout(G)
is positive if and only if G′ is rooted, which consequently
implies that a(G) is positive if and only if G is rooted.

B. Graphs with Integer Weights
Corollary 1 is stated for unweighted directed graphs and

can be generalized to directed graphs with arbitrary integer
weights, including negative integer weights. To this end, we
first introduce the definition of the Laplacian matrix for
weighted graphs.

A simple weighted directed graph is a simple directed graph
in which each arc is assigned a nonzero real-valued weight.
For any simple weighted directed graph Gw with n vertices,
let wij denote the weight of arc (j, i), if it exists. We use
Dw and Aw to denote the corresponding in-degree matrix and
adjacency matrix, respectively. Specifically, Dw is an n × n
diagonal matrix whose ith diagonal entry equals

∑n
j=1 wij ,

the weighted in-degree of vertex i, with the understanding
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that wij = 0 if the arc (j, i) does not exist; Aw is an n × n
matrix whose ijth entry equals wij if (j, i) is an arc in Gw,
and equals 0 otherwise. The Laplacian matrix of Gw is defined
as Lw = Dw −Aw.

It is easy to see that a weighted Laplacian matrix Lw always
has an eigenvalue at 0 since all its row sums equal 0. Since
the sum of all eigenvalues of a matrix equals its trace, the
sum of all eigenvalues of a weighted Laplacian matrix Lw

equals mw
∆
=

∑n
i=1

∑n
j=1 wij . This quantity equals the total

sum of the weights of all arcs in the corresponding weighted
directed graph Gw and is called the net number of arcs3 of Gw.
Let λ1, λ2, . . . , λn be the n eigenvalues of Lw, with λ1 = 0
and λ2, . . . , λn possibly complex, and define the normalized
eigenvalue spread of Lw in the same manner as in (2).

For integer-weighted directed graphs, that is, when all wij

are integers, mw is also an integer. In this case, using the same
arguments as those in the proof of Corollary 1, as given in the
paragraph immediately preceding its statement, we obtain the
following result.

Corollary 2: For any simple integer-weighted directed
graph with n vertices and net number of arcs mw,

σ2 ≥ 1
(n−1)2

[
mw − (n− 1)κw

][
(n− 1)(κw + 1)−mw

]
,

and equality holds if, and only if, the Laplacian spectrum is

0, κw, . . . , κw,︸ ︷︷ ︸
(n−1)(κw+1)−mw

κw + 1, . . . , κw + 1︸ ︷︷ ︸
mw−(n−1)κw

, (18)

where κw
∆
= ⌊ mw

n−1⌋.

It is worth emphasizing that Corollary 2 has the same form
as Corollary 1, except that the number of arcs m is replaced by
the net number of arcs mw, even though individual arc weights
may be negative integers and, as a consequence, mw may be
zero or negative. This is consistent with the simulation results
reported in [2, Page 10345], which suggest that the conjec-
ture also applies to simple integer-weighted directed graphs.
Notwithstanding this, Corollary 2 itself does not guarantee that
the minimal possible value of σ2 is attainable.

In the case when n−1 ≤ mw ≤ n(n−1), the minimal value
of σ2 can be achieved by considering only unweighted directed
graphs, for which mw equals the number of arcs, and by
constructing corresponding optimal graph(s) via Algorithm 1.
However, it remains theoretically unclear whether, and under
what conditions, the minimal value of σ2 can be attained
by integer-weighted directed graphs, especially when negative
integer weights are involved, although the existence of such
graphs has often been observed in simulations in [2].

A more interesting case arises when mw < n − 1 or
mw > n(n−1), in which the optimal directed graphs cannot be
unweighted. In particular, when mw < n−1, negative weights
must be involved, since if all weights are positive integers,
the graph cannot be rooted, and thus network synchronization
cannot be achieved.

Analyzing network synchronization involving negative-
weighted interactions poses an important and challenging
research direction. Simulations in [2] have demonstrated

3The quantity is termed the net number of links in [2].

that negative-weighted interactions can enhance network syn-
chronization performance, while the Laplacian matrices of
weighted graphs with negative weights do not possess the fa-
vorable properties of Laplacian matrices of positive-weighted
graphs. In particular, the spectral condition (18) does not
guarantee rooted connectivity, nor does it ensure that all
eigenvalues other than λ1 have positive real parts, both of
which are necessary conditions for network synchronization.
In contrast, for positive-weighted directed graphs, both rooted
connectivity and positivity of the real parts of all nonzero
eigenvalues are guaranteed under the same spectral condition.
Moreover, for weighted graphs with negative weights, even
if the underlying graph is connected, the eigenvalues other
than λ1 do not necessarily have positive real parts [13]. This
gap between empirical observations and available spectral
theory highlights the need for new analytical tools for network
synchronization with negative-weighted interactions.

The above three paragraphs outline a few directions for
future theoretical development. In this context, Corollary 2
serves as a useful starting point and a basis for further analysis.
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