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Abstract. Gaussian elimination is the most popular technique for solving a dense linear system.

Large errors in this procedure can occur in floating point arithmetic when the matrix’s growth factor
is large. We study this potential issue and how perturbations can improve the robustness of the

Gaussian elimination algorithm. In their 1989 paper, Higham and Higham characterized the complete

set of real n by n matrices that achieves the maximum growth factor under partial pivoting. This
set of matrices serves as the critical focus of this work. Through theoretical insights and empirical

results, we illustrate the high sensitivity of the growth factor of these matrices to perturbations and

show how subtle changes can be strategically applied to matrix entries to significantly reduce the
growth, thus enhancing computational stability and accuracy.

1. Introduction to Partial Pivoting Growth

It is well-known, even to beginning students in engineering and science, that the most popular
method for solving the dense linear system Ax = b for x is Gaussian elimination. Indeed, this method,
employed using partial pivoting, is widely available through interfaces from high level languages such
as Julia [1], Mathematica [12], Matlab [11], Python NumPy [7], R [13], etc. Error estimates for the
stability of the Gaussian elimination algorithm in floating point arithmetic are governed by the bits of
precision used, the condition number of the matrix, and the growth factor (i.e., the largest magnitude
entry encountered during the Gaussian elimination algorithm) [5, Theorem 3.3.2]. Many researchers
have studied and continue to study the question of why Gaussian elimination with partial pivoting has
been so very effective [4, 8, 9, 10, 14, 15, 16, 17]. In contrast to complete pivoting, where the existence
of matrices with even super-linear growth remains an open problem [2, 3, 6], it has been known since
Wilkinson’s classic text The Algebraic Eigenvalue Problem [18, p.212] that, for partial pivoting, the
growth factor is bounded above by 2n−1 and that this quantity can be achieved by the matrix

A =



1 0 · · · 0 1

−1
. . .

. . .
...

...
...

. . . 1 0 1
−1 · · · −1 1 1
−1 · · · −1 −1 1

 . (1.1)

Much later, Higham and Higham (from now on denoted Higham2) identified the complete set of n by
n real matrices that achieve the maximal growth of 2n−1 [9]. We call such matrices Higham2 matrices
(see Proposition 2.2 for a description). A scalar quantity of interest is the last pivot of a Higham2

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA.

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA.

E-mail addresses: edelman@mit.edu, urschel@mit.edu, bowenzhu@g.harvard.edu.

2020 Mathematics Subject Classification. Primary 65F05, 15A23.
2We denote “Higham and Higham” as Higham2, to be read as “Higham squared,” yet we realize this has the appearance

of a footnote, so for readers who saw it this way, we have included this footnote.
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matrix, which is a differentiable function of the matrix entries. We can therefore ask for the gradient of
this last pivot or, even better, to have a full (non-infinitesimal) perturbation analysis of the last pivot
(for Gaussian elimination without pivoting). We provide such a perturbation analysis in Theorem 2.3.
The last pivot is an ideal quantity to measure in order to understand the growth factor, as every entry
of U is the last pivot of the LU factorization of some submatrix of A. We observe that generically,
large growth does not last very long in the sense that often a small perturbation can dramatically
reduce a large pivot. We have a mental image that the Higham2 matrices live on a kind of “ridge” that
one can easily fall off of. This picture is consistent with the smoothed analysis of Sankar, Spielman,
and Teng [14]. The structure of the Higham2 matrices provide an ideal setting to better understand
the ridge and its profile. Perhaps unsurprisingly, not all directions of descent are created equal. We
provide numerical experiments (in Section 3) to visualize the effects of perturbing Higham2 matrices
and confirm the conclusions gleaned from the theoretical results of Section 2.

2. Entrywise Perturbations & Higham2 Matrices

Here we provide mathematical estimates for the effects of entrywise perturbations on the last pivot of
the LU factorization (without pivoting) of a matrix (Lemma 2.1), recall a characterization of Higham2

matrices (Proposition 2.2), and consider the effects of entrywise perturbations on this class (Theorem
2.3, Corollaries 2.4 & 2.5). These theoretical results give insight into the experimental observations in
Section 3.

Lemma 2.1. Let

A =

(
L̂ 0
ℓT 1

)(
Û u
0 p

)
∈ GLn(R),

where L̂ ∈ SLn−1(R) is lower unitriangular, Û ∈ GLn−1(R) is upper triangular, and ℓ,u ∈ Rn−1. Then
the LU factorization, if it exists, of A+ ϵ eie

T
j , where ei is the ith standard basis vector, has last pivot

p(i,j)ϵ = p+ ϵ
(Û−1u)j(ℓ

T L̂−1)i

1 + ϵ(L̂Û)−1
ji

for i, j < n,

p
(i,n)
ϵ = p− ϵ(ℓT L̂−1)i for i < n, p

(n,j)
ϵ = p− ϵ(Û−1u)j for j < n, and p

(n,n)
ϵ = p+ ϵ.

Proof. We first consider the case i, j < n. The last pivot is a ratio of determinants

p(i,j)ϵ =
det(A+ ϵ eie

T
j )

det(L̂Û + ϵ êiêTj )
=

det(A)

det(L̂Û)

(
1 + ϵeTj A

−1ei

1 + ϵêTj (L̂Û)−1êi

)
= p

(
1 + ϵA−1

ji

1 + ϵ(L̂Û)−1
ji

)
,

where êi is the ith standard basis vector in Rn−1. The matrix A−1 has block form

A−1 =

(
Û−1 −p−1Û−1u
0 p−1

)(
L̂−1 0

−ℓT L̂−1 1

)
=

(
(L̂Û)−1 + p−1Û−1uℓT L̂−1 −p−1Û−1u

−p−1ℓT L̂−1 p−1

)
,

and so A−1
ji = (L̂Û)−1

ji + p−1(Û−1u)j(ℓ
T L̂−1)i. Therefore,

p(i,j)ϵ − p = p

[
1 + ϵA−1

ji

1 + ϵ(L̂Û)−1
ji

− 1

]
=

ϵp(A−1
ji − (L̂Û)−1

ji )

1 + ϵ(L̂Û)−1
ji

=
ϵ(Û−1u)j(ℓ

T L̂−1)i

1 + ϵ(L̂Û)−1
ji

.

When i = n or j = n, p(i,j)ϵ =
det(A+ ϵ eie

T
j )

det(L̂Û)
= p(1 + ϵA−1

ji ). Noting that A−1
jn = −p−1(Û−1u)j for

j < n, A−1
ni = −p−1(ℓT L̂−1)i for i < n, and A−1

nn = p−1 completes the proof. □

We recall the following characterization of Higham2 matrices from the original paper of Higham and
Higham [9], where we have slightly adjusted the normalization and notation to suit our needs.
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Proposition 2.2. [9, Theorem 2.2] Every matrix A ∈ GLn(R), ∥A∥max = 1, with growth factor under
partial pivoting equal to 2n−1 is of the form

DPA =

(
L̂ 0

−1T 1

)(
Û u
0 2n−1

)
=

(
L̂Û 1

−1T Û 1

)
, (2.1)

where D ∈ GLn(R) is a ±1 diagonal matrix, P ∈ GLn(R) is a permutation matrix associated with

a partial pivoting of A, L̂ ∈ GLn−1(R) is lower unitriangular with L̂ij = −1 for all i > j, 1, u =

(1, 2, ..., 2n−2)T ∈ Rn−1, and Û ∈ GLn−1(R) is upper triangular, with entries satisfying ∥L̂Û∥max ≤ 1

and ∥1T Û∥∞ ≤ 1.

Applying Lemma 2.1 to Higham2 matrices (described in Proposition 2.2) gives the following theorem.

Theorem 2.3. Let A ∈ GLn(R), ∥A∥max = 1, be a Higham2 matrix of the form in Equation 2.1 with
P = D = I. Then the LU factorization, if it exists, of A+ ϵ eie

T
j has last pivot

p(i,j)ϵ =


1

21−n + ϵ 2−i
∑n−j

ℓ=1 2−ℓÛ−1
j,n−ℓ

for i < j < n

1 + 1
2ϵ (Û

−1
ji −

∑i−j
ℓ=1 2

−ℓÛ−1
j,i−ℓ)

21−n + ϵ(21−nÛ−1
ji + 2−i

∑n−i−1
ℓ=1 2−ℓÛ−1

j,n−ℓ)
for j ≤ i < n

, (2.2)

p
(i,n)
ϵ = 2n−1(1+ϵ 2−i) for i < n, p

(n,j)
ϵ = 2n−1(1−ϵ

∑n−j
ℓ=1 2−ℓÛ−1

j,n−ℓ) for j < n, and p
(n,n)
ϵ = 2n−1+ϵ.

Proof. By Proposition 2.2, A =

(
L̂ 0

−1T 1

)(
Û u
0 2n−1

)
, where L̂ ∈ SLn−1(R) is lower unitriangular

with L̂ij = −1 for all i > j, u = (1, 2, ..., 2n−2)T , and Û ∈ GLn−1(R) is upper triangular. The matrix

L̂ has a simple structure, and its inverse has entries given by L̂−1
ij = ϕ(i − j), where ϕ(k) equals zero

for k < 0, one for k = 0, and 2k−1 for k > 0. Therefore,

(1T L̂−1)i =

n−1∑
k=i

ϕ(k − i) = 2n−i−1 and (L̂Û)−1
ji =

n−1∑
k=i

ϕ(k − i)Û−1
jk = Û−1

ji +

n−1∑
k=i+1

2k−i−1Û−1
jk .

Applying Lemma 2.1 to A and noting that (Û−1u)j =
∑n−1

k=j 2
k−1Û−1

jk , we have p
(n,n)
ϵ = 2n−1 + ϵ,

p
(i,n)
ϵ = 2n−1(1 + ϵ 2−i) for i < n, p

(n,j)
ϵ = 2n−1(1− ϵ

∑n−j
ℓ=1 2−ℓÛ−1

j,n−ℓ) for j < n, and

p(i,j)ϵ = 2n−1 −
ϵ2n−i−1

∑n−1
k=j 2

k−1Û−1
jk

1 + ϵ(Û−1
ji +

∑n−1
k=i+1 2

k−i−1Û−1
jk )

for i, j < n.

When i < j < n, Û−1
ji = 0 and

∑n−1
k=i+1 2

k−i−1Û−1
jk =

∑n−1
k=j 2

k−i−1Û−1
jk , and so p

(i,j)
ϵ equals (21−n +

ϵ 2−i
∑n−j

ℓ=1 2−ℓÛ−1
j,n−ℓ)

−1. Finally, in the case j ≤ i < n, we have

p(i,j)ϵ =
1 + 1

2ϵ (Û
−1
ji −

∑i−j
ℓ=1 2

−ℓÛ−1
j,i−ℓ)

21−n + ϵ(21−nÛ−1
ji + 2−i

∑n−i−1
ℓ=1 2−ℓÛ−1

j,n−ℓ)
.

□

Equation 2.2 of Theorem 2.3 deserves a number of observations. First, we note a connection between

the rate at which p
(i,j)
ϵ decreases and the condition number of the matrix: if the last pivot under ϵ

perturbation is much smaller than 1/|ϵ|, then A is ill-conditioned.

Corollary 2.4. Let A ∈ GLn(R), ∥A∥max = 1, be a Higham2 matrix of the form in Equation 2.1 with

P = D = I. If |ϵ| < 1 and
√
n < |p(i,j)ϵ | < 2n−5, then κ2(A) = ∥A∥2∥A−1∥2 ≥

√
n
∣∣3ϵp(i,j)ϵ

∣∣−1
.
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Proof. Let |ϵ| < 1 and
√
n < |p(i,j)ϵ | < 2n−5 for some i, j. We first relate κ2(A) to the entries of U−1:

∥A∥2∥A−1∥2 ≥ ∥Aen∥2∥A−1∥2 =
√
nmax

y ̸=0

∥U−1y∥2
∥Ly∥2

≥
√
nmax

ℓ

∥U−1en−ℓ∥2
∥Len−ℓ∥2

≥ max
k,ℓ

√
n |U−1

k,n−ℓ|√
ℓ+ 1

.

What remains is to show that |U−1
k,n−ℓ| ≥

√
ℓ+ 1

∣∣3ϵp(i,j)ϵ

∣∣−1
for some k, ℓ. We proceed by contradiction.

If this is not the case, then∣∣∣∣∣ϵ
k∑

ℓ=1

Û−1
j,n−ℓ

2ℓ

∣∣∣∣∣ < 1∣∣p(i,j)ϵ

∣∣
∞∑
ℓ=1

√
ℓ+ 1

3× 2ℓ
<

0.57∣∣p(i,j)ϵ

∣∣ and

∣∣∣∣∣ϵ (Û−1
ji −

i−j∑
ℓ=1

2−ℓÛ−1
j,i−ℓ)

∣∣∣∣∣ <
∞∑
ℓ=0

1

3× 2ℓ
=

2

3
.

These two bounds, combined with the formulae of Theorem 2.3, lead to a contradiction for all choices
of (i, j). For example, if j ≤ i < n, then

∣∣p(i,j)ϵ

∣∣ ≥ 1− 1
2

∣∣∣ϵ (Û−1
ji −

∑i−j
ℓ=1 2

−ℓÛ−1
j,i−ℓ)

∣∣∣
21−n +

∣∣∣ϵ(21−nÛ−1
ji + 2−i

∑n−i−1
ℓ=1 2−ℓÛ−1

j,n−ℓ)
∣∣∣ > 2/3

21−n + 0.57/
∣∣p(i,j)ϵ

∣∣ > 2/3

2−4 + 0.57

∣∣p(i,j)ϵ

∣∣,
a contradiction. The remaining cases are similar, and are left to the reader. □

Now, let us restrict our attention to the case i < j < n, with i relatively small. As long as

ϵ 2−i
∑n−j

ℓ=1 2−ℓÛ−1
j,n−ℓ is not exponentially small in n, p

(i,j)
ϵ is approximately 2i (ϵ

∑n−j
ℓ=1 2−ℓÛ−1

j,n−ℓ)
−1.

One would expect this to be the case for “most” Higham2 matrices when ϵ is only polynomially small,
though exceptions certainly exist (e.g., the Wilkinson matrix Û = I). This intuition is supported by
experimental results in Section 3. The case i = 1 and j = n − 1 is particularly striking, and gives
guaranteed improvement for all Higham2 matrices.

Corollary 2.5. Let A ∈ GLn(R), ∥A∥max = 1, be a Higham2 matrix of the form in Equation 2.1 with
P = D = I. Then

|p(1,n−1)
ϵ | ≤ 4 + on(1)

|ϵ|
, where |on(1)| < 2−(n−6)|ϵ|−1 for |ϵ| > 2−(n−4). (2.3)

Proof. By Equation 2.2,

p(1,n−1)
ϵ =

4Ûn−1,n−1

ϵ+ 2−(n−3)Ûn−1,n−1

=
Ûn−1,n−1

ϵ

(
4− 2−(n−5)Ûn−1,n−1

ϵ+ 2−(n−3)Ûn−1,n−1

)
.

Noting that |Ûn−1,n−1| =
∣∣[(L̂Û)n−1,n−1 + (1T Û)n−1

]
/2
∣∣ ≤ 1 gives the desired result. □

The entry (1, n − 1) is an example of a perturbation direction that always produces a small last
pivot when ϵ is only polynomially small. Finally, we note that, while Lemma 2.1 and Theorem 2.3
apply only to the last pivot, this general framework holds for arbitrary entries of U , as every entry of
U is the last pivot of the LU factorization of some submatrix of A. For instance, Corollary 2.5 implies
that a only polynomially small ϵ perturbation to the (1, n − k)th entry of a Higham2 matrix leads to
|Un−k+1,n| ≤ (4+ on(1))/|ϵ| for any fixed k (with n growing). In Section 3, we make use of the insights
gained from Theorem 2.3 to suggest perturbations tailored to the most influential components of A,
and compare their effect to perturbations applied uniformly to A.

3. Experimental Results

Here we perform two experiments, illustrated in Figures 1 and 2. First, in Figure 1, we consider
the effects of an ϵ = 10−8 perturbation to the last pivot of Higham2 matrices of dimension n = 100.
Though n = 100 is quite a small test-case, it is already more than sufficient for our purposes, as,
in double precision, the last pivot is nearly equal to the inverse of machine epsilon squared. The
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Figure 1. The effects of an ϵ = 10−8 perturbation at different entries of three 100 × 100

Higham2 matrices for different choices of Û (Û = I is the Wilkinson matrix). We plot a

heatmap for each, where the (i, j)th grid point is the value of log10 |p
(i,j)
ϵ | (in exact arithmetic).

(a) Û = triu(randn(n, n)) (b) Û =
triu(randn(n,n))

∥triu(randn(n,n))∥2
+ I (c) Û = I (Wilkinson)

Figure 2. Solving Ax = b for Higham2 matrices using Gaussian elimination with no piv-
oting (GENP) in double precision. For each value of n, we generate a Higham2 matrix A (in
exact precision), a Gaussian vector x, compute b = Ax, and solve Ax = b for x using GENP
applied either to A or A + 10−8nB, where B has independent standard normal entries in
either the first row only or the entire matrix. The three scatter plots report the log relative

error for each choice of Û and perturbation method.

heatmap on the left is of a Higham2 matrix generated by taking the Û ∈ GLn−1(R) of Proposition
2.2 to have independent standard normal entries, scaled so that ∥A∥max = 1, the map on the right is
of the Wilkinson matrix (see Equation 1.1), and the map in the middle is of a matrix in between the

two (w.r.t. choice of Û). Perturbations in the top left portion of a random Higham2 matrix appear
to be most impactful. This is consistent with Theorem 2.3 and the fact that the inverse of an upper
triangular matrix with normal entries tends to have exponentially large entries (in n) near the upper-
right corner. However, the Wilkinson matrix provides a clear reminder that this is not always the case.
The inverse of Û = I has zero entries above the diagonal, rendering perturbations to the top-left entries
of A relatively useless. Our results are also consistent with Inequality 2.3: perturbing the top-right
(1, n− 1) entry with a sufficiently large ϵ is a reliable way to always decrease the last pivot size.
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Of course, we are not merely interested in the last pivot, but in the quality of solution to Ax = b we
obtain using Gaussian elimination. Our theoretical and experimental results in Theorem 2.3, Corollary
2.5, and Figure 1 give key insights into the stability of the last pivot, with implications for the growth
factor itself, as every entry of U is the last pivot of a sub-matrix of A. In Figure 2, we examine
the effects of matrix perturbation on the numerical solution to Ax = b for Higham2 matrices using
Gaussian elimination with no pivoting. In the left plot, we observe that the ill-conditioning of a random
Higham2 matrix is a major barrier to a reasonable solution. This is consistent with the theoretical
observation that extremely fast decay in the last pivot implies ill-conditioning (Corollary 2.4). In both
the middle and right plots, we observe that the perturbation to the first row is the superior strategy.
It is quite possible that this observation holds more broadly than the class of maximum growth factor
Higham2 matrices considered here, and that there may be benefits to considering perturbations tailored
specifically to Gaussian elimination with partial pivoting.
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