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Abstract

This thesis examines the behavior of Higham2 matrices in Gaussian elimination through pertur-
bation analysis. Higham2 matrices, including the special case of Wilkinson matrices, are known for
achieving the maximum growth under partial pivoting. Through theoretical analysis and numerical
experiments, this thesis highlights the sensitivity of these matrices to perturbations and how these
small perturbations can be strategically applied to matrix entries to reduce the growth, thus enhanc-
ing computational stability and accuracy.1

1All code is made available at https://github.com/Bowen1Zhu/growth_factor.
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0
Introduction

The solution of a linear system Ax = b is one of the oldest problems in mathematics. One of the

most fundamental and important techniques for solving a linear system is Gaussian elimination, in

which a matrix is factored into the product of a lower and upper triangular matrix. Given an n × n

matrix A, Gaussian elimination performs a sequence of rank-one transformations, resulting in the
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sequence of matrices A(k) ∈ Ck×k for k equals n to 1, satisfying

A(k) = M(2,2) −M(2,1)[M(1,1)]−1M(1,2), where A =

n−k k M(1,1) M(1,2) n−k

M(2,1) M(2,2) k

.

The resulting LU factorization of A is encoded by the first row and column of each of the iterates

A(k), k = 1, ..., n. Not all matrices have an LU factorization, and a permutation of the rows (or

columns) of the matrix may be required. In addition, performing computations in finite precision

can elicit issues due to round-off error. The error due to rounding in Gaussian elimination for a

matrix A in some fixed precision is controlled by the growth factor of the Gaussian elimination algo-

rithm, defined by

g(A) :=
maxk |A(k)|∞

|A|∞
,

where | · |∞ is the entry-wise matrix infinity norm (see5 Theorem 3.3.1 for details). For this reason,

understanding the growth factor is of both theoretical and practical importance.

Partial pivoting is the most popular method for performing Gaussian elimination, and produces

a factorization PA = LU, where, at each step of Gaussian elimination applied to PA, the pivot is

the largest magnitude entry of the first column. This method is widely available through interfaces

from high level languages such as Julia1, Mathematica19, Matlab15, Python NumPy7, R11 etc.

Many researchers have studied and continue to study the question of why Gaussian elimination

with partial pivoting has been so very effective4,8,9,10,13,14,16,17. In contrast to complete pivoting,

where the existence of matrices with even super-linear growth remains an open problem2,3,6, it has

been known since Wilkinson’s classic text The Algebraic Eigenvalue Problem18 p.212 that, for partial

pivoting, the growth factor is bounded above by 2n−1 and that this quantity can be achieved by the
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matrix

A =



1 0 · · · 0 1

−1 . . . . . . ...
...

... . . . 1 0 1

−1 · · · −1 1 1

−1 · · · −1 −1 1


. (0.0.1)

Much later, Higham and Higham (from now on denoted Higham2) identified the complete set

of n by n real matrices that achieve the maximal growth of 2n−1 9. We call such matrices Higham2

matrices (see Proposition 0.0.1 for a description).

Proposition 0.0.1. 9 Theorem 2.2 Every matrix A ∈ GLn(R), ∥A∥max = 1, with growth factor

under partial pivoting equal to 2n−1 must be of the form

DPA =

 L 0

−111T 1


U uuu

0 2n−1

 =

 LU 111

−111TU 1

 , (0.0.2)

where D,P ∈ GLn(R) is a±1 diagonal matrix and permutation matrix, respectively, L ∈ GLn−1(R)

is lower uni-triangular with Lij = −1 for all i > j, uuu = (1, 2, ..., 2n−2)T ∈ Rn−1, and

U ∈ GLn−1(R) is upper triangular, with entries satisfying ∥LU∥max ≤ 1 and ∥111TU∥∞ ≤ 1.

Partial pivoting is practically unstable in the worst case. For partial pivoting, open questions

largely concern the behavior of worst-case instances under random perturbation (i.e., smoothed

analysis, see12,13) and of randommatrices (see17,10). Here, we study how stable large growth in

partial pivoting is under small perturbations. We consider the class of partially pivoted matrices

A ∈ Rn×n with maximal growth g(A) = 2n−1, characterized by Higham and Higham9.

A scalar quantity of interest is the last pivot of a Higham2 matrix, which is a differentiable func-

2We denote “Higham and Higham” as Higham2, to be read as “Higham squared,” yet we realize this has
the appearance of a footnote, so for readers who saw it this way, we have included this footnote.
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tion of the matrix entries as Higham2 matrices can not be singular. We can therefore ask for the gra-

dient of this last pivot or, even better, to have a full (non-infinitesimal) perturbation analysis of the

last pivot (for Gaussian elimination without pivoting). We provide such a perturbation analysis in

Theorem 1.2.1. The last pivot is an ideal quantity to measure in order to understand the growth fac-

tor, as every entry ofU is the last pivot of the LU factorization of some submatrix of A. We observe

that generically, large growth does not last very long in the sense that often a small perturbation can

dramatically reduce a large pivot. We have a mental image that the Higham2 matrices live on a kind

of “ridge” that one can easily fall off of. This picture is consistent with the smoothed analysis of

Sankar, Spielman, and Teng13. The structure of the Higham2 matrices provides an ideal setting to

better understand the ridge and its profile. Perhaps unsurprisingly, not all directions of descent are

created equal. We provide numerical experiments (in Chapter 2) to visualize the effects of perturb-

ing Higham2 matrices and confirm the conclusions gleaned from the theoretical results of Theorem

1.2.1.
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1
Entrywise Perturbation Analysis

1.1 GeneralMatrices

Here we provide mathematical estimates for the effects of entrywise perturbations on the last pivot

of the LU factorization of a matrix (Lemma 1.1.1), recall an explicit representation of Higham2

matrices (Proposition 0.0.1), and consider the effects of entrywise perturbations for this class (The-

orem 1.2.1). The theoretical results of Theorem 1.2.1 give insight into the experimental results we
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observe in Chapter 2.

Lemma 1.1.1. Let

A =

 L 0

ℓT 1


U uuu

0 p

 ∈ GLn(R),

where L ∈ SLn−1(R) is lower unitriangular, U ∈ GLn−1(R) is upper triangular, and ℓ, uuu ∈ Rn−1.

Then the LU factorization, if it exists, of A + ε eeeieeeTj , where eeei is the ith standard basis vector, has last

pivot p(i,j)ε , where

p(i,j)ε =



p+ ε
(U−1uuu)j(ℓTL−1)i

1+ ε(LU)−1
ji

for i, j < n

p− ε(ℓTL−1)i for i < n, j = n

p− ε(U−1uuu)j for i = n, j < n

p+ ε for i = j = n

. (1.1.1)

Proof. The matrices A and A−1 have block form

A =

 L 0

ℓT 1


U uuu

0 p

 =

 LU Luuu

ℓTU p+ ℓTuuu


and

A−1 =

U−1 −p−1U−1uuu

0 p−1


 L−1 0

−ℓTL−1 1

 =

(LU)−1 + p−1U−1uuuℓTL−1 −p−1U−1uuu

−p−1ℓTL−1 p−1

 .
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Let us first consider the case i, j < n. We have

p(i,j)ε =
det(A+ ε eeeieeeTj )
det(LU+ ε êeeîeeeTj )

=
det(A)
det(LU)

( 1+ εeeeTj A−1eeei
1+ ε̂eeeTj (LU)−1̂eeei

)
= p

( 1+ εA−1
ji

1+ ε(LU)−1
ji

)
,

where êeei is the ith standard basis vector inRn−1. For i, j < n,

A−1
ji = (LU)−1

ji + p−1(U−1uuu)j(ℓTL−1)i,

and so

p(i,j)ε − p = p
[ 1+ εA−1

ji

1+ ε(LU)−1
ji

− 1
]
=

εp(A−1
ji − (LU)−1

ji )

1+ ε(LU)−1
ji

=
ε(U−1uuu)j(ℓTL−1)i

1+ ε(LU)−1
ji

.

When i = n or j = n,

p(i,j)ε =
det(A+ ε eeeieeeTj )

det(LU)
= p(1+ εA−1

ji ).

Noting that A−1
jn = −p−1(U−1uuu)j for j < n, A−1

ni = −p−1(ℓTL−1)i for i < n, and A−1
nn = p−1

completes the proof.

1.2 Higham2 Matrices

Applying Lemma 1.1.1 to Higham2 matrices (described in Proposition 0.0.1) gives the following

theorem.

Theorem 1.2.1. Let A, ∥A∥max = 1, be a Higham2 matrix of the form in Equation 0.0.2 (e.g., as

described in Proposition 0.0.1 with P = D = I). Then the LU factorization, if it exists, of A + ε eeeieeeTj ,
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where eeei is the ith standard basis vector, has last pivot

p(i,j)ε =



1
21−n + ε 2−i∑n−j

ℓ=1 2−ℓU−1
j,n−ℓ

for i < j < n

1+ 1
2 ε (U

−1
ji −

∑i−j
ℓ=1 2

−ℓU−1
j,i−ℓ)

21−n + ε(21−nU−1
ji + 2−i∑n−i−1

ℓ=1 2−ℓU−1
j,n−ℓ)

for j ≤ i < n

2n−1 (1+ ε2−i) for i < j = n

2n−1

1+ ε
n−j∑
ℓ=1

2−ℓU−1
j,n−ℓ

 for j < i = n

2n−1 + ε for i = j = n

, (1.2.1)

Proof. By Proposition 0.0.1, A =

 L 0

−111T 1


U uuu

0 2n−1

, where L ∈ SLn−1(R) is lower

uni-triangular with Lij = −1 for all i > j, uuu = (1, 2, ..., 2n−2)T, andU ∈ GLn−1(R) is upper

triangular. The matrix L has a simple structure, and its inverse has entries given by L−1
ij = φ(i − j),

where φ(k) equals zero for k < 0, one for k = 0, and 2k−1 for k > 0. Therefore,

(111TL−1)i =

n−1∑
k=i

φ(k−i) = 2n−i−1 and (LU)−1
ji =

n−1∑
k=i

φ(k−i)U−1
jk = U−1

ji +

n−1∑
k=i+1

2k−i−1U−1
jk .

Applying Lemma 1.1.1 to A and noting that (U−1uuu)j =
∑n−1

k=j 2
k−1U−1

jk , we have p(n,n)ε = 2n−1+ ε,

p(i,n)ε = 2n−1(1+ ε 2−i) for i < n, p(n,j)ε = 2n−1(1+ ε
∑n−j

ℓ=1 2
−ℓU−1

j,n−ℓ) for j < n, and

p(i,j)ε = 2n−1 −
ε2n−i−1∑n−1

k=j 2
k−1U−1

jk

1+ ε(U−1
ji +

∑n−1
k=i+1 2k−i−1U−1

jk )
for i, j < n.

When i < j < n,U−1
ji = 0 and

∑n−1
k=i+1 2

k−i−1U−1
jk =

∑n−1
k=j 2

k−i−1U−1
jk , and so p(i,j)ε equals

8



(21−n + ε 2−i∑n−j
ℓ=1 2

−ℓU−1
j,n−ℓ)

−1. Finally, in the case j ≤ i < n, we have

p(i,j)ε =
1+ 1

2 ε (U
−1
ji −

∑i−j
ℓ=1 2

−ℓU−1
j,i−ℓ)

21−n + ε(21−nU−1
ji + 2−i∑n−i−1

ℓ=1 2−ℓU−1
j,n−ℓ)

.

1.3 Implications

Equation 1.2.1 of Theorem 1.2.1 deserves a number of observations. Let us restrict our attention to

the case i < j. We note that, as long as the quantity ε 2−i∑n−j
ℓ=1 2

−ℓU−1
k,n−ℓ is not exponentially small

in n, the last pivot is roughly equal to 2i (ε
∑n−j

ℓ=1 2
−ℓU−1

k,n−ℓ)
−1. In general, one would expect this

to be the case for “most” Higham2 matrices when ε is only polynomially small, although exceptions

certainly exist (e.g., the Wilkinson matrixU = I from Equation 0.0.1, and others). This intuition is

supported by experimental results in Chatper 2. The case i = 1 and j = n− 1 is particularly striking,

as

|Un−1,n−1| =
∣∣∣∣(LU)n−1,n−1 + (111TU)n−1

2

∣∣∣∣ ≤ 1,

giving

p(1,n−1)
ε =

4Un−1,n−1

ε+ 2−(n−3)Un−1,n−1
=

Un−1,n−1

ε

(
4− 2−(n−5)Un−1,n−1

ε+ 2−(n−3)Un−1,n−1

)
,

and so

|p(1,n−1)
ε | ≤ 4+ on(1)

|ε|
, where |on(1)| < 2−(n−6) for |ε| > 2−(n−4).

The entry 1, n − 1 is an example of a perturbation direction that will always produce a small last

pivot when ε is only polynomially small. Finally, we note that, while Lemma 1.1.1 and Theorem

9



1.2.1 apply only to the last pivot, this framework holds for arbitrary entries ofU, as every entry of

U is the last pivot of the LU factorization of some submatrix of A. In Section 5.1, we make use of

the insights gained from Theorem 1.2.1 to suggest perturbations tailored to the most influential

components of A.
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2
Numerical Observations of Entrywise

Perturbations

In this chapter, we explore empirical findings on how perturbations at various entries affect the last

pivot value in both general Higham2 matrices and theWilkinson matrix. We first present Figure 2.1

which illustrates the overall impact of these perturbations on uniformly randomHigham2 matrices

and theWilkinson matrix, providing a visual summary of our key results. We then analyze these
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effects based on our empirical observations.

Figure 2.1: Heatmaps of the effect of perturbations at different entries in a random 25 × 25 Higham2 and Wilkinson
matrix.

The upper plot presents a heatmap of the log ratios log
∣∣∣p(i,j)ε

∣∣∣ for a random 25× 25 Higham2 matrix, normalized such

that ∥A∥max = 1. The lower plot presents a similar heatmap of the log ratios log
∣∣∣p(i,j)ε

∣∣∣ of the 25 × 25Wilkinson

matrix. Each (i, j)‐th grid corresponds to the log ratio log
∣∣∣p(i,j)ε

∣∣∣ at ε = 1e− 3.
In the Higham2 matrix, the most significant reduction in the last pivot occurs when perturbing the (1, 1) entry, achieving
a value of 1.68× 107. Perturbations in the upper left entries typically lead to substantial reductions.
Conversely, in the Wilkinson matrix, the reduction effects are comparatively smaller, with the most significant reduction
occurring at the (1, n − 1) entry, resulting in a pivot value of approximately 4000 (regardless of the matrix size n).
Perturbations in the upper right entries (excluding the last column) tend to yield relatively significant reductions.

Figure 2.1 demonstrates that in uniformly sampled Higham2 matrices, perturbing the upper left

entries typically results in the maximum reduction of the last pivot values. However, in the special

12



case of the Wilkinson matrix, this overall reduction effect is relatively less significant, and perturbing

the upper right entries (excluding the rightmost column) reduces the last pivot values most effec-

tively. In the following sections, we will provide an analysis of these phenomena.

2.1 Perturbation of the Largest Reduction

SinceU is upper triangular, its inverseU−1 is also upper triangular. Thus, the following lemma en-

sues.

Lemma 2.1.1. For any lower triangular entry (a, b) with a > b, the ratio
(U−1uuu ℓTL−1)ab
(U−1L−1)ab

= −p.

Proof. Since

(uuu ℓTL−1)jk = −2j−1−kp,

and

L−1
jk =



0 j < k

1 j = k

2j−1−k j > k

,

then

(U−1uuu ℓTL−1)ab =

n∑
c=1

U−1
ac (uuu ℓTL−1)cb

=

a−1∑
c=1

0 · (uuu ℓTL−1)cb +

n∑
c=a

U−1
ac (uuu ℓTL−1)cb

=
n∑

c=a
U−1
ac · (−2c−1−bp)

13



and

(U−1L−1)ab =
n∑
c=1

U−1
ac L

−1
cb

=
a−1∑
c=1

0 · L−1
cb +

n∑
c=a

U−1
ac L

−1
cb

=

n∑
c=a

U−1
ac · 2c−1−b.

Thus we have

(U−1uuu ℓTL−1)ab
(U−1L−1)ab

=

∑n
c=a U−1

ac · (−2c−1−bp)∑n
c=a U

−1
ac · 2c−1−b

= −p for a > b.

Claim 2.1.2. For a uniformly sampled Higham2 matrix with a sufficiently large size, p(1,1)ε tends to

be small.

The above statement is reflected in Figure 2.1. This assertion can be derived from the fact that

U−1
11 tends to be the smallest element in magnitude in the first row ofU−1, so in general

(U−1uuu ℓTL−1)11
(U−1L−1)11

=
U−1
11 · (−21−2p) +

∑n
c=2 U

−1
1,c · (−2c−2p)

U−1
11 +

∑n
c=2 U

−1
1,c · 2c−2

≈ −p,

and given n sufficiently large,

p(1,1)ε = p+ ε
(U−1uuu)1(ℓTL−1)1

1+ ε(LU)−1
11

≈ p+ ε
(U−1uuu)1(ℓTL−1)1

ε(LU)−1
11

≈ p+ ε
−p
ε

≈ 0.

However, there is no guarantee that p(1,1)ε is always small, as we can manually construct cases where∣∣U−1
11
∣∣ is not relatively small (e.g., the Wilkinson matrix) or

∣∣ε(LU)−1
11
∣∣ ̸≫ 1. In fact,

14



p(1,1)ε = p
(
1+

ε
p
(U−1uuu ℓTL−1)11
1+ ε(U−1L−1)11

)
= p

(
1+

ε
p
U−1
11 · (−21−2p) +

∑n
c=2 U

−1
1,c · (−2c−2p)

1+ ε(U−1
11 +

∑n
c=2 U

−1
1,c · 2c−2)

)

= p
(
1−

U−1
11 · 21−2 +

∑n
c=2 U

−1
1,c · 2c−2

1
ε + U−1

11 +
∑n

c=2 U
−1
1,c · 2c−2

)

= (2n−1θ) ·
( 1

ε +
U−1
11
2

1
ε + U−1

11 +
∑n

c=2 U
−1
1,c · 2c−2

)

=

( 1
ε +

U−1
11
2

1
2n−1ε +

U−1
11

2n−1 +
∑n

c=2 U
−1
1,c · 2c−1−n

)
θ

will blow up at ε = − 1
(U−1L−1)11

= − 1
(U−1

11 +
∑n

c=2 U
−1
1,c · 2c−2)

, which is usually a large value.

In particular, note that in the special case of the Wilkinson matrix,U−1
11 = 1 is the only nonzero

entry in the first row, in which case
(U−1uuu ℓTL−1)11
(U−1L−1)11

≈ −p no longer holds, and instead,

p(1,1)ε =
ε+ 0.5
ε+ 1

· 2n−1 < 2n−1

In fact, similar computation would reveal that p(i,j)ε approaches 2n−1 for all (i, j) distant from (1, n−

1), given a sufficiently small ε. In the case of a 25×25Wilkinson matrix, for example, perturbing the

(1, 1) entry with ε = 1e − 3 yields a last pivot value of 1.68 × 107. On the other hand, the same

perturbation applied to the (1, n− 1) entry results in a last pivot value of approximately 4.00× 103,

regardless of the matrix size n.
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2.2 Patterns in Adjacent Entry Perturbations

Perturbing the (1, 1) entry results in the largest reduction of the last pivot value p(1,1)ε of the random

Higham2 matrix in Figure 2.1. In fact, for a uniformly sampled Higham2 matrix, p(1,1)ε is usually the

smallest among all p(i,j)ε for 1 ≤ i, j ≤ n. The following analysis suggests that for smaller indices

i and j, perturbing the (i, j) entry yields a last pivot value that is approximately half as large as that

resulting from perturbing the (i+ 1, j) entry using the same ε.

Claim 2.2.1. A uniformly sampled Higham2 matrix with a sufficiently large size tends to have

p(i+1,j)
ε

p(i,j)ε
≈ 2 for small i, j.

This assertion follows from the fact that

(
U−1uuuℓTL−1)

ji =

n∑
c=1

U−1
j,c · (−2c−i−1p) =

n∑
c=j

U−1
j,c · (−2c−i−1p)

(
U−1L−1)

ji = U−1
ji +

n∑
c=1

U−1
j,c L

−1
c,i = U−1

j,i +

n∑
c=max(j,i+1)

U−1
j,c · 2c−1−i

Note that when j > i,
(U−1uuu ℓTL−1)ji

(U−1L−1)ji
= −p,

When j ≤ i, sinceU−1
ji tends to have larger entries in magnitude at the upper right corner of

U−1 (i.e., for i, j close to n) the latter terms tend to dominate and thus it is usually the case that
(U−1uuu ℓTL−1)ji

(U−1L−1)ji
≈ −p.
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As a consequence,

p(i,j)ε = p+ ε

(
U−1uuuℓTL−1)

ji

1+ ε (U−1L−1)ji

=
p+ pε

(
U−1L−1)

ji + ε
(
U−1uuuℓTL−1)

ji

1+ ε (U−1L−1)ji

≈ p
1+ ε (U−1L−1)ji

.

Since (
U−1L−1)

j,i+1 = U−1
j,i+1 +

n∑
c=max(j,i+2)

U−1
j,c · 2c−i−2,

then

(
U−1L−1)

j,i

(U−1L−1)j,i+1
=

U−1
j,i + U−1

j,i+1 +
∑n

c=max(j,i+2) U
−1
j,c · (−2c−i−1)

U−1
j,i+1 +

∑n
c=max(j,i+2) U

−1
j,c · 2c−i−2

≈ 2 whenU−1
j,i +U−1

j,i+1 are small.

Thus we have the approximation

p(i+1,j)
ε

p(i,j)ε
≈

p
1+ε(U−1L−1)j,i+1

p
1+ε(U−1L−1)j,i

≈

(
U−1L−1)

j,i

(U−1L−1)j,i+1

≈ 2.

Although counterexamples such as the Wilkinson matrix, or matrices with small or cancelling en-

tries near the upper right corner ofU−1, can demonstrate limitations to this approximation, empir-

ical observations show that p(i+1,j)
ε

p(i,j)ε
≈ 2 holds in the vast majority of cases with uniformly sampled

Higham 2 matrices. For matrices of size n = 25, this phenomenon is particularly evident at up-

per left indices (in particular, i, j ≤ 5). These findings underscore the practical relevance of this
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approximation while also highlighting its dependency on specific matrix characteristics.
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3
Error Propagation Analysis

In this chapter, we analyze how the initial perturbation, particularly at the top-left entry, propa-

gates through the Gaussian elimination process. Theorem 3.1.1 illustrates how the error presented

in the (1, 1) entry of the initial Higham2 matrix tends to double in magnitude with each step of the

Gaussian elimination process. This provides an additional perspective on why perturbations at the

top-left are more influential and more likely to disrupt the expected outcome of the Gaussian elimi-

nation process.
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3.1 Propagation of Error at the Top Left Entry

Theorem 3.1.1. Let A∗ be an n × n Higham2 matrix and A be a perturbed matrix of A∗ with a

perturbation ε at the (1, 1) entry. Let A∗(k) and A(k) denote the intermediate matrices after the k-th

iteration1 of precise Gaussian elimination on A∗ and A, respectively. For any upper triangular entry

(i, j) with i ≤ j, the error is given by:

A(k)
k+1,k+1:n − A∗(k)

k+1,k+1:n =


− ε
Akk

Ak,k+1:n for k = 1

−2
(A(k−1)

kk − A∗(k−1)
kk )

A(k−1)
kk

A(k−1)
k,k+1:n + 2(A(k−1)

k,k+1:n − A∗(k−1)
k,k+1:n) for k > 1

,

(3.1.1)

Theorem 3.1.1 demonstrates that, after the k-th iteration of the Gaussian elimination of a ran-

domHigham2 matrix Awithout pivoting (i.e., after finishing processing the (k + 1)-th row), the

error in the (k+ 1)-th row arises from two sources: error in the multiplier
(
− ε
Akk

Ak,k+1:n for k = 1

and−2
(A(k−1)

kk − A∗(k−1)
kk )

A(k−1)
kk

A(k−1)
k,k+1:n for k > 1

)
and the cumulative error from the previous row(

2(A(k−1)
k,k+1:n − A∗(k−1)

k,k+1:n)
)
. We discuss these two sources of error below.

3.2 InexactMultiplier

For the Higham2 matrix, theoretically, the factor at each step of the Gaussian elimination should

be
A(k−1)
k+1,k

A(k−1)
kk

= −1. However, if there is an error in A(k−1)
kk , the actual multiplier will deviate from -1.

Assuming the actual multiplier is−1+ δ, this results in each subsequent row receiving an additional

contribution of δA(k−1)
k,: . Consequently, for any row i below the k-th row, an error of δA(k−1)

k,k+1:n im-

pacts the entries from k+ 1 to n.
1Using 1-based indexing, i.e., the first iteration uses the first row (without pivoting) as the pivot row to

process all the rows below.
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Note that when k > 1, when all entries in the k-th column are affected by an error η (due to the

error from above it and affecting the k-th column in the preceeding iterations), the (k, k)-th entry has

A(k−1)
kk = A∗(k−1)

kk + η and all (k + i, k)-th entries below it has A(k−1)
k+i,k = −A∗(k−1)

kk + η. Therefore,

the actual multiplier becomes

A(k−1)
k+i,k

A(k−1)
kk

=
−A∗(k−1)

kk + η

A∗(k−1)
kk + η

= −1+ 2
η

A∗(k−1)
kk + η

= −1+ δ.

Note that A(k−1)
kk = A∗(k−1)

kk + η. This shows that the error in multiplier is

δ = 2
η

A∗(k−1)
kk + η

= −2
(A(k−1)

kk − A∗(k−1)
kk )

A(k−1)
kk

.

3.3 Error from the Previous Row

When the (k− 1)-th pivot (and thus the (k− 1)-th multiplier) contains error, the (k− 1)-th iteration

of the Gaussian elimination perturbs the k-th row not only in the pivot element (k, k), but also in all

the remaining elements A(k−1)
k,k+1:n.

Let the error in the remaining elements of the k-th row be u, where u = A(k−1)
k,k+1:n − A∗(k−1)

k,k+1:n.

Note that this error vector u is added to the corresponding part (from the (k + 1)-th to the n-th

entries) of every row below the (k − 1)-th row. That is, A(k−1)
k+i,k+1:n − A∗(k−1)

k+i,k+1:n = u ∀i. Due to

the -1 multiplier (i.e., processing each row involves adding this row to all the subsequent rows below

it), when the k-th row is processed in the k-th iteration, the error in the (k+ 1)-th to the n-th entries

now becomes 2 u. Note that the factor of 2 here is precise because the error in multiplier has been

accounted for in the previous section precisely.
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3.4 Generalization to Perturbations at Other Entries

While the above discussion only assumes an initial error ε in the (1, 1) entry of the matrix, the analy-

sis can be generalized to an initial error in any entry:

• For any diagonal (j, j) or upper diagonal entry (i, j) with an error, an inexact multiplier arises

at the j-th row, from which error propagation begins.

• For any lower diagonal entry (i, j) with an error, both an inexact multiplier and errors from

previous rows arise starting at the i-th row, leading to subsequent error propagation.

3.5 Implications

In practice, for a general Higham2 matrix, the numerical results show that the magnitudes of the

two error sources are comparable, with neither source consistently predominating.

As Equation (3.1.1) suggests, for both sources of error, since the error from the initial iteration

will propagate through all the subsequent iterations, their magnitude tends to double with each

iteration of Gaussian elimination. Although there is no guarantee for the sign of the errors and there

is potential for the errors to cancel each other out, they generally show a strong tendency to grow

exponentially. For example, when n ≥ 30, even machine-epsilon level of error could blow up, so the

expected growth of 2n−1 is no longer observed. This also illustrates why perturbations closer to the

top left entry tend to have a larger effect.

Nevertheless, we can still manually construct cases for which lim
ε→0

d
dε
p(1,1)ε = 0 so that this error ε

applied at (1, 1) does not have any effect on the last pivot. For example, with n = 3, the expression

t13 =
4t12t23 − 2t12t33 + t22t33

4t22
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demonstrates such a scenario. Similarly, for n = 4,

t14 =
8t12t24t33 + 8t13t22t34 − 8t12t23t34 − 4t13t22t44 + 4t12t23t44 − 2t12t33t44 + t22t33t44

8t22t33

provides another example. Numerical computations confirm that in these setups, the two sources of

error precisely offset one another in the final iteration, and consequently the growth remains exactly

2n−1.
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4
Impact of Top Left Entry Perturbation

Not all directions of perturbation have equal effect. Given the observation that perturbing the (1, 1)

entry tends to be the most effective for a general Higham 2 matrix, Figure 4.1 demonstrates the effect

on the last pivot of applying to a randomHigham2 matrix A a perturbation of P1, where

P1[i, j] =


N(0, 1) if i = 1 and j = 1

0 otherwise
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(only perturbing the (1, 1) entry) versus P2, where

P2[i, j] =


0 if i = 1 and j = 1

1√
n ·N(0, 1) otherwise

(perturbing all the remaining entries except the (1, 1) entry).
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Relative change in last pivot for a random Higham matrix

when perturbing (1,1) entry vs. random perturbation w/o (1,1)

2

Figure 4.1: Contour plots of the log ratio of the perturbed and the original last pivot log
∣∣∣ pεp ∣∣∣ of a random Higham2

matrix.

p is the last pivot of a random Higham2 matrix A, and pε is the growth of the perturbed matrix A+ ε1P1 + ε2P2, where
P1 is a zero matrix with normal random value at the (1, 1) entry, and P2 is a random matrix randn(n, n) /

√
n but the

entry (1, 1) is set to zero.
The upper left plot visualizes the effect of ε1, ε2 ∈ [−0.5, 0.5].
The upper right plot visualizes the effect of ε1, ε2 ∈ [−0.1, 0.1] (the area of the green box in the upper left plot).
The lower left plot visualizes the effect of ε1, ε2 ∈ [−0.01, 0.01] (the area of the blue box in the upper left plot).
The lower right plot visualizes an area of blow‐up, where ε1 ∈ [0.09, 0.11] and ε2 ∈ [0, 0.02] (the area of the red box
in the upper left plot).
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4.1 Predominant Influence of Upper Left Corner Perturbations

Figure 4.1 predominantly displays contour lines as tilted parallel lines across the entire range of

ε1, ε2, which suggests that the effects of the two perturbations are largely independent and separa-

ble across most regions. The steep slope suggests that perturbations in the P1 direction have a more

pronounced effect on the last pivot compared to the P2 direction. In fact, despite perturbations af-

fecting almost all entries, the major contributors to the reduction of the last pivot in P2 are still the

entries close to (1, 1), such as (2, 1) and (1, 2). Perturbations in entries in the upper right corner

exhibit negligible effects on the last pivot.

4.2 Blow-Up Phenomena

Figure 4.1 also displays a distinct band of blow-up region where the last pivot value spikes, and the

contours in this area are more intricate. This occurs at a specific ratio of ε1 and ε2, depending on

the random values within P1 and P2. The presence of this blow-up band can be attributed to the

fact that the last pivot is expressible in terms of ε as pε =
aε+ b
cε+ d

. According to Equation 1.1.1, the

blow-up occurs when the denominator 1+ ε(LU)−1
ji = 0, i.e., when ε = − 1

(LU)−1
ji
, though such

value is typically not achieved in practice. As the value of (ε1, ε2)moves farther from the band of

blow-up region, the magnitude of the last pivot diminishes, although the rate of reduction tends to

decelerate.
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5
Perturbation for Growth Reduction

Since perturbing the (1, 1) entry effectively reduces the growth of most Higham2 matrices, and

special cases like the Wilkinson matrix can be handled by perturbing the (1, n − 1) entry, a compre-

hensive approach for consistently reducing the last pivot value and the overall growth is to perturb

all entries in the first row. Each entry affects the last pivot of some submatrix within the full matrix,

making this a reliable method to control the growth of the entire class of the Higham2 matrices.
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5.1 Strategic Perturbation on the First Row

Figure 5.1: Plot of the growth factor of A and the perturbed matrix A+ P versus the matrix size n.
A is a uniformly sampled Higham2 matrix in the left plot and a Wilkinson matrix in the right plot. The perturbation
P = εeee1 · vvv⊤, with vi ∼ N(0, 1) and ε = 1e− 10, applies a normal random perturbation across the first row.
While the unperturbed matrix growth follows the form of 2n−1, the growth of the perturbed Higham2 and Wilkinson
matrices plateau at approximately 1e6 and 1e10 for matrix sizes around 18 and 30, respectively.

The effect of this perturbation strategy is illustrated in Figure 5.1. When we apply a row of ran-

dom normal numbers with a standard deviation of 1e− 8, the growth of a randomHigham2 matrix

and theWilkinson matrix levels off at around 1e6 and 1e10 at matrix sizes of approximately 18 and

30, respectively. This indicates that Higham2 matrices lie on a ”ridge” in the matrix space, where

even tiny random perturbations can significantly affect their behavior in Gaussian elimination and

make them drop from the theoretical high growth.

5.2 Round-off Errors in Practical Computations

In fact, in practical computations with floating-point arithmetics, the error presented in the initial

floating-point representation of the Higham2 matrix is sufficient to distort the Gaussian elimination

calculation, given that the matrix is sufficiently large size (e.g., n = 40), let alone the errors arising

from the subsequent floating-point computations.
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As discussed in Chapter 3, due to the way Higham2 matrices are constructed, each iteration of

the Gaussian elimination process involves directly adding the adjacent rows. This iterative process

of adding neighboring rows can make any errors initially present at the top of the matrix not only

persist but double with each row processing, leading to exponential error propagation. Thus, it is

interesting to observe that the very structural characteristics that make Higham2 matrices achieve

such high theoretical growth factors also limit their growth in practical computations due to round-

off errors. In practice, even the presence of the machine epsilon itself would prevent consistently

achieving any growth greater than 1e11 in double-precision floating-point computations, making

the theoretical growth unachievable for randomHigham2 matrices larger than 40 × 40. These ob-

servations show how important and effective it is to use small perturbations in the initial entries to

guarantee matrix stability under exact arithmetics (in the absence of floating-point errors), especially

in applications that require high numerical precision.
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6
Conclusion

In this thesis, we have analyzed the behaviors of Higham2 matrices under small perturbations through

theoretical calculations and empirical observations to examine the stability of Gaussian elimination

under extreme scenarios. Gaussian elimination is a fundamental algorithm in linear algebra. How-

ever, it still can suffer from errors, more so when considering large-scale ill-conditioned problems.

We thus focus on the class of Higham2 matrices, including the special case of Wilkinson matrices,

to understand the effect of entrywise perturbations on the Gaussian elimination process. The focus
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of our analysis on Higham2 matrices allows us to extract specific numerical properties from these

particular matrix structures and algorithms.

Theorem 1.2.1 suggests that Higham2 matrices, when subjected to perturbations, show complex

but predictable behaviors. Even though there are special cases such as Wilkinson matrices, perturb-

ing the top left entries tends to be the most effective at reducing the growth of a general Higham2

matrix. The upper bound of |p(1,n−1)
ε | also suggests that strategically perturbing the first row can

consistently reduce the growth, thus enhancing the robustness of numerical methods against in-

stabilities caused by such adverse matrix properties. Section 5.1 demonstrates the effectiveness and

reliability of this method for controlling the growth factor of an arbitrary Higham2 matrix. We also

point out in Section 5.2 that while Higham2 matrices theoretically pose a significant challenge in

numerical operations like solving Ax = b, their inherent sensitivity to even minor perturbations of-

ten neutralizes this potential threat. Our findings elucidate how the very propensity for high growth

in these matrices makes them unlikely to manifest such extremes in practical computational scenar-

ios, where floating-point errors are almost inevitable.

We have also provided an analysis of the error propagation in the Gaussian elimination of Higham2

matrices in Chapter 3. Theorem 3.1.1 demonstrates how errors, especially at the top-left entry,

propagate and tend to double in magnitude with each step. This analysis provides an additional

understanding of why perturbations at the top-left are particularly disruptive. We discuss the two

primary sources of error—error in the multiplier and cumulative error from previous rows—and

how these errors compound through the elimination process.

Finally, the numerical experiments that we have conducted provide further evidence support-

ing our theoretical analysis. The heatmaps and contour plots visualize the behavior of Higham2

matrices under perturbations, aligning with the theoretical predictions that we have established in

Chapter 1 and Chapter 2. These results illustrate the practical impact of entrywise perturbations on

matrix stability.

32



References

[1] Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM review, 59(1), 65–98.

[2] Bisain, A., Edelman, A., & Urschel, J. (2023). A new upper bound for the growth factor in
gaussian elimination with complete pivoting. arXiv preprint arXiv:2312.00994.

[3] Edelman, A. & Urschel, J. (2024). Some new results on the maximum growth factor in
gaussian elimination. SIAM Journal onMatrix Analysis and Applications, 45(2), 967–991.

[4] Foster, L. V. (1994). Gaussian elimination with partial pivoting can fail in practice. SIAM
Journal onMatrix Analysis and Applications, 15(4), 1354–1362.

[5] Golub, G. H. & Van Loan, C. F. (2013). Matrix computations. JHU press.

[6] Gould, N. (1991). On growth in Gaussian elimination with complete pivoting. SIAM
Journal onMatrix Analysis and Applications, 12(2), 354–361.

[7] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk,
M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., & Oliphant, T. E. (2020).
Array programming with NumPy. Nature, 585(7825), 357–362.

[8] Higham, D. J., Higham, N. J., & Pranesh, S. (2021). Randommatrices generating large
growth in lu factorization with pivoting. SIAM Journal onMatrix Analysis and Applica-
tions, 42(1), 185–201.

[9] Higham, N. J. &Higham, D. J. (1989). Large growth factors in Gaussian elimination with
pivoting. SIAM Journal onMatrix Analysis and Applications, 10(2), 155–164.

[10] Huang, H. & Tikhomirov, K. (2022). Average-case analysis of the Gaussian elimination with
partial pivoting. arXiv preprint arXiv:2206.01726.

[11] R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

33



[12] Sankar, A. (2004). Smoothed analysis of Gaussian elimination. PhD thesis, Massachusetts
Institute of Technology.

[13] Sankar, A., Spielman, D. A., & Teng, S.-H. (2006). Smoothed analysis of the condition num-
bers and growth factors of matrices. SIAM Journal onMatrix Analysis and Applications,
28(2), 446–476.

[14] Spielman, D. A. & Teng, S.-H. (2004). Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3), 385–463.

[15] TheMathWorks Inc. (2022). Matlab version: 9.13.0 (r2022b).

[16] Trefethen, L. N. & Bau, D. (2022). Numerical linear algebra, volume 181. Siam.

[17] Trefethen, L. N. & Schreiber, R. S. (1990). Average-case stability of Gaussian elimination.
SIAM Journal onMatrix Analysis and Applications, 11(3), 335–360.

[18] Wilkinson, J. (1965). The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

[19] Wolfram Research, Inc. (2024). Mathematica, Version 14.0. Champaign, IL.

34


	Introduction
	Entrywise Perturbation Analysis
	General Matrices
	Higham2 Matrices
	Implications

	Numerical Observations of Entrywise Perturbations
	Perturbation of the Largest Reduction
	Patterns in Adjacent Entry Perturbations

	Error Propagation Analysis
	Propagation of Error at the Top Left Entry
	Inexact Multiplier
	Error from the Previous Row
	Generalization to Perturbations at Other Entries
	Implications

	Impact of Top Left Entry Perturbation
	Predominant Influence of Upper Left Corner Perturbations
	Blow-Up Phenomena

	Perturbation for Growth Reduction
	Strategic Perturbation on the First Row
	Round-off Errors in Practical Computations

	Conclusion
	References

