
MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE

THEORY

0.1. Vector Bundles and Connection 1-forms. Let E → X be a complex vector
bundle of rank r over a smooth manifold. Recall the following “abstract” definition

Definition 0.1. A connection on E is a C-linear map on the space of smooth sections
∇ : Γ(E)→ Γ(E ⊗ Λ1) satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇(s)

for any smooth section s ∈ Γ(E), and any smooth function f .

(1) Given an open set U ⊂ X, and a local trivialization (that is, a local frame
{eα}16α6r) we get an isomorphism

E|U ∼= U × Cr

by writing a section s ∈ Γ(U,E) as s = sαeα and mapping s 7→ (sα) ∈ Cr. Show
that we can write a connection on E as ∇ = d+ A where we can view A (locally)
as a 1-form valued in End(E) := Hom(E,E). That is we can write

A = Aαj βdx
j

where, for each j, Aαj β : Cr → Cr. It is common to write dA for the covariant
derivative d+A.

(2) Work out the transformation rule for A under a change of frame. That is, if we
take a new frame {σα} related by

σα = tβαeβ

for a map t : U → Gl(n,C), find an expression for the connection ∇ written in the
frame σα. The key point here is that ∇(s) is independent of the choice of trivial-
ization.

(3) Show that the curvature F∇ := [∇,∇] of (E,∇) can be regarded as a section
F∇ ∈ Γ(End(E)⊗ Λ2) which can be expressed as

F∇s = d2
A(s) = (dA+A ∧A)s.

Prove the second Bianchi identity: dAF = 0 (recall how that covariant deriva-
tive extends to End(E)).
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(4) If X is a complex manifold, and E is equipped with a Hermitian metric H, let ∇ be
the unitary Chern connection. Show that F∇ is a section of End(E)⊗ Λ1,1. That
is, the (2, 0) and (0, 2) parts of the curvature vanish.

0.2. Sheaf Theory. Let X be a complex manifold, and let F be a sheaf of Abelian groups
over X.

(1) Let U := {Uα}α∈A be a locally finite open cover of X, and let Cp(U,F) denote the
p-cochains. Recall we defined a coboundary operator

δ : Cp(U,F)→ Cp+1(U,F).

Show that: Cp(U,F) has the structure of an abelian group, and that δ is a group
homomorphism with δ2 = 0.

(2) Recall the following definition

Definition 0.2. A (locally finite) open cover W = {Wβ}β∈B is called a refinement
of U = {Uα}α∈A is there is a map µ : B → A such that

Wβ ⊂ Uµ(β).

The map µ is referred to as the refining map.

Show that µ defines a group homomorphism µ̂ : Cp(U,F) → Cp(W,F), and
that δµ̂ = µ̂δ. Deduce that we get a map

µ∗ : Hp(U,F)→ Hp(W,F)

(3) Suppose we have two refining maps µ, ν : B → A. Define a map

Θ : Cp(U,F)→ Cp−1(W,F)

by

Θf(W0, . . . ,Wp−1) =

p−1∑
j=0

(−1)jf(Uµ(0), . . . , Uµ(j), Uν(j), . . . , Uν(p−1))|W0∩...∩Wp−1 .

Show that this map makes sense, and compute that

µ̂(f) = ν̂(f) + δθf.

In particular, conclude that µ∗ = ν∗ as maps on cohomology. Deduce that Čech
cohomology is well-defined.

(4) Show that if F is fine, then Ȟp(X,F) = 0 for all p > 1.
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0.3. Hodge Theory Part 1: Linear Elliptic Operators. To begin, let’s recall some
of the basic theory of Sobolev spaces, weak derivatives and elliptic operators. A good
reference for this material is L.C. Evans- Partial Differential Equations, chapter 5 and
chapter 6 . If you are unfamiliar with this subject, I recommend reading these sections.

Let Ω ⊂ Rn be a domain. For functions u, v ∈ L1
loc(Ω), and a multi-index α we say that

v is the α-th weak derivative of u, written Dαu = v, if∫
ω
(−1)|α|uDαϕdx =

∫
Ω
vϕdx

for any smooth function ϕ with compact support in Ω (ie. ϕ ∈ C∞0 (Ω)). For the most
part we will be interested in functions with just one weak derivative, which we denote by
Du = (D1u, , . . . , Dnu).

Definition 0.3. The Sobolev space W k,p(Ω) is defined to be the space of functions u ∈
Lp(Ω) such that Dαu exists, and Dαu ∈ Lp for all |α| 6 k. This space has a norm given
by

‖u‖Wk,p(Ω) := ‖u‖Lp(Ω) +
k∑
i=1

‖Dku‖Lp(Ω).

Theorem 0.4. Some basic properties of the Sobolev spaces are:

(i) W k,2(Ω) is a Hilbert space. It is common to denote W k,2 = Hk.
(ii) W k,p(Ω) is a Banach space (Evans, section 5.2, Theorem 2).

(iii) If Ω is bounded, then C∞(Ω) is dense in W k,p(Ω). We can then define W k,p
0 (Ω)

to be the closure of the compactly supported smooth functions in W k,p(Ω) (Evans,
section 5.3, Theorem 2).

Consider a differential operator on Ω

Lu := −Di(a
ij(x)Dju) + bi(x)Diu+ cu

where we are summing over repeated indices. We say that u ∈ W 1,2(Ω) solves Lu = f
weakly if

(0.1)

∫
Ω
aijDjuDiϕ+ bi(Diu)ϕ+ cuϕdx =

∫
Ω
fϕdx

for all ϕ ∈ C∞0 (Ω).

(1) Show that if u ∈ C2(Ω) solves Lu = f pointwise, then Lu = f weakly also.

(2) Show that (0.1) also holds for ϕ ∈W 1,2
0 (Ω).

We say that L is uniformly elliptic if aij = aji and there exists a constant λ > 0 so that∑
i,j

aij(x)ξiξj > λ|ξ|2

a.e. in Ω, for all ξ ∈ Rn.

(3) Prove the following (fundamental) theorem, referred to commonly as “Interior El-
liptic Regularity”.
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Theorem 0.5. Let Ω be a bounded domain. Assume aij ∈ C1(Ω), bi, c ∈ L∞(Ω),
f ∈ L2(Ω), and u ∈W 1,2(Ω) solving

Lu = f

in Ω, with L uniformly elliptic. Then u ∈W 2,2
loc (Ω), and, for each V b Ω we have

‖u‖W 2,2(V ) 6 C
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
for a constant C depending only on Ω, V and the coefficients of L.

Here is a sketch for how to do this.

Step 1 Assume u is smooth, and bi = c = 0 to begin with. Choose a direction `, and
apply the definition of a weak solution (that is, integration by parts) to the
test function ϕ := −D`(η

2D`u) where η is a smooth function η : Ω → [0, 1]
with η ≡ 1 in V , and η ≡ 0 in a neighborhood of ∂Ω. We can choose η so that
|Dη| 6 10dist(V, ∂Ω). Use integration by parts and the inequality

|a||b| 6 ε

2
a2 +

1

2ε
b2

to prove that

λ

∫
Ω
|Du`|2η2 6

∣∣∣∣∫
Ω
fϕ

∣∣∣∣+ C

∫
Ω
|Du|2 + ε

∫
Ω
|Du`|2η2

where C depends only on the C1 norm of aij , ε and dist(V, ∂Ω). Here I have
used u` := D`u.

Step 2 Estimate∫
Ω
|fϕ| 6 ε

∫
Ω
η2|Du`|2η2 + C

∫
Ω
|f |2 + C

∫
Ω
|Du|2

with C, depending only on the data in step 1.
Step 3 By choosing ε appropriately, obtain the estimate∫

V
|Du`|2 6 C

(
‖f‖2L2(Ω) + ‖u‖2W 1,2(Ω)

)
with C depending on the C1 norm of aij , dist(V, ∂Ω) and a lower bound for λ.

Step 5 Prove the same thing for general L by writing Lu = f as

−Di(a
ij(x)Dju) = f̃ = f − bi(x)Diu− cu.

(One only needs a bound for the L2 norm of f̃ in terms of ‖f‖L2 and ‖u‖W 1,2 .)
Step 6 Now deduce the same thing for non-smooth functions. If Lu = f , let um be a

sequence of smooth functions converging to u in W 1,2(Ω). Show that

Lum = fm

where fm ∈ L2(Ω), and fm converges to f in L2(Ω). In particular, we have
‖fm‖L2(Ω) → ‖f‖L2(Ω).
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Step 7 Now by the estimate in the smooth case we get

‖um‖W 2,2(V ) 6 C
(
‖fm‖L2(Ω) + ‖um‖2W 1,2(Ω)

)
,

for a uniform constant C. Since W 2,2(V ) is a Hilbert space, we conclude
that um converges weakly (along some subsequence) to a limit u∞ in W 2,2(V ).
Since um converges to u strongly in W 1,2(V ) we know that u∞ = u in W 1,2(Ω).
Show that D2u∞ is a weak second derivative of u, and hence u ∈ W 2,2(V ).
Show that in a Hilbert space, the norm is lower semi-continuous along weak
limits. That is, if xn converges weakly to x in a Hilbert space H then

‖x‖ 6 lim inf ‖xn‖.

Conclude that

‖u‖W 2,2(V ) 6
(
‖f‖L2(Ω) + ‖u‖2W 1,2(Ω)

)
(4) The Sobolev embedding theorem implies, for example, that if Ω is a ball, and

u ∈ W k,p(Ω) for kp > n, then in fact u ∈ Ck−1−[n/p](Ω) where [n/p] denotes the
integer part on n/p. As an application of the elliptic regularity theorem, show
that if aij , bi, c and f are smooth, and Lu = f for some u ∈ W 1,2(Ω), then in
fact u ∈ C∞(Ω). (Hint: Differentiate the equation and apply elliptic regularity
repeatedly. This is referred to as “bootstrapping”).

0.4. Hodge Theory Part 2: Hodge Theory. We are now in a position to prove Hodge’s
theorem. Let E → X be a holomorphic vector bundle with a Hermitian metric H on E, and

a Hermitian metric g onX (not necessarily Kahler). Let� = ∂ ∂
†
+∂
†
∂ on C∞(X,E⊗Λp,q).

Theorem 0.6. Let L2(X,E ⊗ Λp,q) denote the space of L2 (p, q) forms with values in E
(I will suppress the bundle from now on). Then

(a) There is an orthonormal basis {ψ`} of L2, ψ` ∈ C∞ and with

�ψ` = λ`ψ`

for λ` ∈ R.
(b) There is an operator G : L2 → L2, called the Green’s operator, which is bounded

and self-adjoint so that

�G = Id− π
where π : L2 → L2 is the orthogonal projection onto the closed subspace

Ker� := {ϕ ∈ C∞(X,E⊗ Λp,q|�ϕ = 0}.

Furthermore, there is an L2 orthogonal decomposition

L2 = Ker�⊕ Range∂ ⊕ Range∂
†
.

The corollary of this that we are interested in is:
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Corollary 0.7. If ϕ ∈ C∞(X,E ⊗ λp,q) as ∂ϕ = 0, so that [ϕ] defines a Dolbeaut (and
hence Čech) cohomology class, then [ϕ] can be represented by a harmonic representative
πϕ ∈ Ker�|E⊗λp,q .

Note that Ker�|E⊗Λp,q seems to depend on the metric, since � does. On the other hand,
Dolbeault cohomology only depends on the complex structure. So we get a connection
between metric structures (like �), and metric independent structures!

We will prove this now, using the basic properties of linear elliptic operators developed
above. Before starting, we need one more tool regarding Sobolev spaces, which is the
Sobolev space analog of the Arzela-Ascoli theorem.

Theorem 0.8. (Rellich’s Compactness Theorem) The inclusion W k,2 ↪→ W p,2 for k > p
is compact. That is, if {ϕj} is a bounded sequence in W k,2 then there is a convergent
subsequence in W p,2.

(1) Convince yourself that the theory we developed for elliptic operators applies to our
current setting. That is, convince yourself that the local theory applies globally by
using a partition of unity. Convince yourself that� is a linear elliptic operator of the
same form as L (say when E has rank 1)– you may assume (X, g) is Kähler, though
the result is true more generally. And finally, convince yourself that everything we
did for linear elliptic equations applies more generally to linear elliptic systems

−Di

(
Aijαβ(x)Dju

β
)

+ biαβDiu
β + cαβu

β = fα.

(2) Consider � : W 2,2 → L2. Let Ker� = {ϕ ∈ W 2,2 : �ϕ = 0}. Show that Ker� is
finite dimensional. (Hint: If not, let {ϕ`} be an infinite, orthonormal basis. Then
‖ϕ`−ϕj‖W 2,2 =

√
2 for j 6= `. Using elliptic regularity and Rellich’s theorem, obtain

a contradiction.) Note the same argument, shows Ker(�− λ) is finite dimensional
for all λ ∈ R. Elliptic regularity, shows Ker(�−λ) consists only of smooth sections.

(3) Prove the following “improved elliptic regularity”. If ϕ ∈W 2,2 and ϕ is orthogonal
to Ker�, then

‖ϕ‖W 2,2 6 C‖�ϕ‖L2 .

Hint: Argue by contradiction. Suppose there are ϕn orthogonal to Ker� but such
that

‖ϕn‖W 2,2 > n‖ϕ‖L2 .

Define ψn = ϕn‖ϕn‖−1
W 2,2 . Use elliptic regularity and Rellich’s lemma to obtain a

contradiction.

(4) Define the Ran(�) := {ψ ∈ L2 : ψ = �ϕ for some ϕ ∈ W 2,2}. Show that Ran(�)
is closed. Hint: Use the improved regularity estimate from the last problem.
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(5) Since Ran(�) is closed, we can write L2 = Ran(�) ⊕ Ran(�)⊥. That is, for all
ψ ∈ L2 we can write

ψ = �ϕ+ ψ0

for ϕ ∈ W 2,2 and ψ0 orthogonal to Ran(�)⊥. Show that there is a natural identi-
fication

Ran(�)⊥ ←→ Ker(�).

Show that this implies the orthogonal decomposition

L2 = Ker�⊕ Range∂ ⊕ Range∂
†

Hint: Use that � is self-adjoint.

(6) Finally, in the notation of the last problem, define G : L2 → W 2,2 by Gψ = ϕ.
Show that

�Gψ = (Id− π)ψ

where ψ is the orthogonal projection to Ker�. Show that

‖Gψ‖ 6 C‖ψ‖

so G : L2 → W 2,2 is a bounded and continuous operator. Observe that, if we
compose with the inclusion map, W 2,2 ↪→ L2, then Rellich’s lemma implies that
G : L2 → L2 is compact, in the sense that, if {ψj} is a bounded sequence, the
{Gψj} contains a convergent subsequence. Show that G is self-adjoint.

(7) Prove Corollary 0.7. Deduce that if Ker�E⊗Λp,q = 0 then Ȟ(X,E ⊗ Λp) =
Hq

∂
(X,E ⊗ Λp) = 0.

(8) Let E be the trivial bundle. Note that the general strategy above works for the
other Laplacians

∆d := d†d+ dd†

where d : Λp → Λp+1 is the de Rham differential, as well as the ∂ Laplacian

� := ∂†∂ + ∂∂†.

To convince yourself of this, just note that all we really needed to complete the above
argument was that the Laplacian � was elliptic and self-adjoint. By definition,
∆d,� share this property, and so everything goes through. As we proved in class,
on a Kähler manifold, we have � = � = 1

2∆d. Conclude the following famous
theorem
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Theorem 0.9 (Hodge Decomposition Theorem). On a compact Kähler manifold
we have

Hr
dR(M) =

⊕
p+q=r

Hp,q(M)

Hp,q
dR (M) = Hq,p(M)

Hp,q
dR (M) = Hp,q

∂
(M) = Ȟ(M,Ωp).

In particular, we have hp,q = dimHp,q = dimHq,p = hq,p, and the odd Betti num-
bers of M are even.


