
18.965: HOMEWORK 7

DUE: NEVER

This is an optional homework. The goal is to define, and work out some
of the basic properties of Gromov-Hausdorff convergence. The Gromov-
Hausdorff metric gives us a way of measuring distances between metric
spaces. We are going to begin with a (seemingly) simpler situation, which
goes back to work of Hausdorff. Let (X, d) be a metric space. For any subset
A ⊂ X, and any ε > 0 we set

Bε(A) =
⋃
p∈A

Bε(p),

where Bε(p) is the ball of radius ε around p. This is the “ε- fattening” of A.

Definition 0.1. For Y,Z compact subsets of X define the Hausdorff dis-
tance between Y and Z by

dH(Y, Z) := inf
{
ε > 0

∣∣Y ⊂ Bε(Z), Z ⊂ Bε(Y )
}
.

The Hausdorff metric defines a metric structure on the set of all compact
subsets of (X, d), which is furthermore a complete metric when (X, d) is a
complete metric space. This is what you will prove in the next two problems

(1) Show that dH defines a metric on the set

X̃ := {A ⊂ X
∣∣A is compact}.

(2) Show that (X̃, dH) is a complete metric space if and only if (X, d) is
complete. As a hint, suppose X is complete and {Aj} is a Cauchy

sequence in (X̃, dH). Consider “discretizing Aj at scale N−1” for
N � 1 using a collection of points which are at most distance N−1

apart. Construct a Hausdorff limit for these discretized sets. Do this
for a sequence of scales going to zero.

(3) Show that if (X, d) is compact, then so is (X̃, dH).

The Gromov-Hausdorff distance is an elaboration on the Hausdorff dis-
tance which allows us to measure distances between metric spaces. We are
going to give several definitions of the distance, useful for various purposes,
which all define equivalent metric structures, and hence equivalent notions
of convergence (which is what we are interested in).

Definition 0.2. Let (X, dX) and (Y, dY ) be compact metric spaces. We say

that a metric d̂ on X t Y is admissible if d̂|X = dX and d̂|Y = dY . We
1
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define the Gromov-Hausdorff distance dGH(X,Y ) to be

dGH(X,Y ) = inf{ε > 0 : ∃ an admissible metric d̂ such that dH(X,Y ) < ε}

That is, we take admissible metrics on XtY , and then measure the Haus-
dorff distance between X,Y in this metric. The Gromov-Hausdorff distance
is the infimum of all such distances. There is an extension of this notion to
non-compact metric spaces called the pointed Gromov-Hasudorff distance.
In essence, one fixes a point pX ∈ X and a point pY ∈ Y . Assuming that
BR(pX), BR(pY ) are compact for all R > 0, we then consider the infimum
over all admissible metrics and ε > 0 such that

dH(B(pX , ε−1), B(pY , R)) + d(pX , pY ) < ε

For the most part we will focus on the setting of compact metric spaces,
but you should think about the appropriate generalizations to the case of
pointed metric spaces.

(4) Prove that there is a always an admissible metric on XtY , and that

dGH(X,Y ) 6
1

2
max{diamX,diamY }

Here is another way to define the Gromov-Hasudorff distance

Definition 0.3. A map f : (X, dX)→ (Y, dY ) is said to be an ε-isometry if

(i) |dX(x1, x2)− dY (f(x1), f(x2))| < ε
(ii) Y ⊂ BY

ε (f(X))

Note that an ε-isometry need not be injective, nor continuous.

Definition 0.4. We define the Gromov-Hausdorff distance between (X, dX), (Y, dY )
to be

dGH(X,Y ) = inf{ε > 0 : ∃ ε-isometries f : X → Y, h : Y → X}

(5) This definition really only needs f . The ε-isometry h is included
only to make the distance symmetric. To see this, show that if
f : X → Y is an ε-isometry, then there is a 3ε-isometry h : Y → X.
This exercise should indicate to you how far from continuous maps
these ε-isometries can be.

(6) Prove that this notion of Gromov-Hausdorff distance is equivalent
to the first definition. As a hint, given f : X → Y an ε-isometry,
define an admissible metric d on X t Y by

d(x, y) = inf{dX(x, x′) + dY (y, y′) + ε : d(y′, f(x′)) < ε}.

Prove that this defines an admissible metric and that dH(X,Y ) < 2ε.
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Note that if (X, dX) and (Y, dY ) are isometric, in the sense that there is
a bijection f : X → Y with dX(x1, x2) = dY (f(x1), f(x2)) then we clearly
have dGH(X,Y ) = 0. Thus, in order for the Gromov-Hausdorff distance to
define a genuine metric, we clearly need to consider the set of compact metric
spaces modulo isometry. Define M to be the set of equivalence classes of
compact metric spaces. We are going to show that (M, dGH) is a metric
space.

(7) Prove that dGH satisfies the triangle inequality.

(8) Prove that if dGH(X,Y ) = 0 then X,Y are isometric. Here’s a hint.
For all k ∈ N we have a 1

k -isometry fk : X → Y . Take {x`} ⊂ X a
countable dense subset. Then {fk(x1)} is a sequence in Y . Passing
to a subsequence we can extract a limit y1. Repeat this for all ` ∈ N
and take a diagonal subsequence to get a map f : {x`} → Y . Show
that this can be extended to an isometry from X to Y .

(9) Next we will prove that the metric space (M, dGH) is complete. I
will sketch how to do this, and your task is to check the details.
Given a Cauchy sequence of compact metric spaces (Xi, dXi) with

dGH(Xi, Xi+1) <
1

2
2−i

define Y = tiXi. By part (c), for each i we have an admissible
metric d(i,i+1) on Xi tXi+1 such that

d(i,i+1),H(Xi, Xi+1) < 2−i.

This allows us to measure distances between nearest neighbors in Y .
We extend this to an admissible metric on Y in the obvious way. For
xi ∈ Xi, xi+k ∈ Xi+k define

dY (xi, xi+k) = inf
{yi+j∈Xi+j :16j6k−1}

d(i,i+1)(xi, yi+1)

+

k−2∑
j=1

d(i+j,i+j+1)(yi+j , yi+j+1)

+ d(i+k−1,i+k)(yi+k−1, xi+k)

(it may help to draw a picture). Show that the compact sets Xi are
Cauchy with respect to the Hausdorff metric on (Y, dY ). We can
invoke problem (2) to conclude that the Xi converge, once we show
that (Y, dY ) is complete. This is not the case, however, because of
Cauchy sequences like {xi} where xi ∈ Xi. But we can just take the
completion of (Y, dY ) in the usual way to get (Y , dY ), adding to Y
equivalence classes of Cauchy sequences, and extending dY . With
this detail taken care of, we can invoke the Hausdorff completeness
result from (2) to conclude that the set of compact metric spaces is
complete with the Gromov-Hausdorff distance. Note, in fact, that
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the Gromov-Hausdorff limit of the Xi is precisely (Ȳ \Y, dY ). Think
about how this works for Xk = {nk : n ∈ Z, |n| 6 k} with metric
induced from R.

We’ve now established the basic properties of the Gromov-Hausdorff dis-
tance. Our next task is to put these to use in some way. For example,
when does a sequence of compact Riemannian manifolds converge in the
Gromov-Hausdorff sense?

Definition 0.5. Given a compact metric space (X, dX) we define the cover-
ing number N(X, ε) to be the smallest integer N such that there are points
xi ∈ X, 1 6 i 6 N with

X ⊂
N⋃
i=1

Bε(xi)

Definition 0.6. Let C(ε) be any positive function of ε and let D > 0. Let

MC,D := {(X, dX) ∈M : diam(X) 6 D, N(X, ε) < C(ε)}

We will prove

Theorem 0.7. The set MC,D is precompact in (M, dGH). Conversely, any
pre-compact set K ⊂ (M, dGH) is contained in MC,D for some C,D.

The idea of the proof is that any metric space inMC,D can be discretized
at a scale N−1 using a controlled number of points. The proof is then an
elaboration of the technique used in problem (2).

(10) Suppose (Xk, dk) is a sequence in MC,D. For each N let {xki }
Lk(N)
i=1

be a 1
N -dense net in Xk. By assumption we can find such a net

with Lk(N) < C(N−1), and hence by taking a subsequence we may
assume that Lk(N) = L(N) < C(N−1) is constant. For each k let

dkij = dk(xki , x
k
j ).

This is just a finite list of numbers, all bounded by D. Therefore,
after taking a subsequence k0 we can assume that

d
k0,`
ij → d̂ij , |dk0,`ij − d

k0,p
ij | <

1

N
∀`, p

Now consider the metric spaces (Xk0,`(N), dk0,`) := ({xk0,`i }
L(N)
i=1 , dk0,`).

These are the discretizations of (Xk0,` , dk0,`) at scale N−1. Show that
we have

dGH((Xk0,`(N), dk0,`), (Xk0,p(N), dk0,p)) <
1

N

and

dGH((Xk0,`(N), dk0,`), (Xk0,` , dk0,`)) <
1

N
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(11) Now repeat this for N1 > N = N0 to construct a subsequence
(Xk1,` , dk1,`) of the sequence (Xk0,` , dk0,`). Show that by repeating
this argument for a sequence Nk → ∞ sufficiently quickly, and us-
ing a diagonal argument you can construct a subsequence (Xk, dk)
in MC,D which is Cauchy. Now you can apply the completeness
theorem in problem (9).

Next we will give some geometric criteria under which the compactness
theorem applies.

Theorem 0.8. Suppose (Mi, gi) is a sequence of Riemannian manifolds
with dimMi = n,Ric(gi) > (n − 1)kgi and diamMi 6 D, for n, k,D fixed
constants. Then, after taking a subsequence (Mi, gi) converge to a limit
(Z, dZ) in the Gromov-Hausdorff sense.

Note that if k > 0, then the diameter bound follows from Bonnet-Myers.
In order to prove this theorem it suffices to prove that the counting number of
any manifold (Mn, g) with diamM 6 D and Ric(g) > (n−1)kg is controlled.

(12) As a warm-up, prove that any set K ⊂ Rn with diamK 6 D can be

covered by C(n)
(
D
ε

)n
balls of radius ε, where C(n) is some universal

constant that depends only on n.

(13) We now prove the general case. Fix ε > 0. Take p0 ∈ M , and
consider Bε(p). If M ⊂ Bε(p) then we’re done. Otherwise, choose
p1 ∈ ∂Bε(p0). If M ⊂ Bε(p0) ∪ Bε(p1) then we’re done. Otherwise,
choose p2 ∈ ∂(Bε(p0)∪Bε(p1)). Proceeding in this way we get points
p1, . . . , pL such that

M ⊂
L⋃
i=0

Bε(pi)

and furthermore, B ε
2
(pi) ∩ B ε

2
(pj) = ∅. We are going to show that

L is bounded. By the Bishop-Gromov volume comparison theorem,
for any x ∈M and 0 < r 6 D we have

1 >
Vol(Br(x))

Volk(Br)
>

Vol(M)

Volk(BD)

Show that

Vol(M) > L min
06i6L

Vol(B ε
2
(pi)) > L

Vol(M)Volk(B ε
2
)

Volk(BD)

and so

L 6
Volk(BD)

Volk(B ε
2
)

= C(ε)

What does this give you when k = 0? How does this compare to the
previous problem?
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A major area in geometric analysis is to understand the properties of
these limit spaces. In general the GH limits of manifolds with bounded
Ricci curvature need not be manifolds. You should try to come up with
some examples of Gromov-Hausdorff limits to help build your intuition. A
typical question one might ask, for example, is whether GH limits of man-
ifolds with bounded Ricci curvature are manifolds outside a small singular
set. This is best understood when the manifolds are “non-collapsed”, which
is more or less a condition which prevents the Gromov-Hausdorff limit from
being lower dimensional (e.g. Vol(M) > ν > 0, together with a diame-
ter and lower Ricci bound, would suffice). There is a large body of work
in this area, which is now called the Cheeger-Colding theory. A central
tool in this theory is the use of harmonic coordinates, which are coordi-
nate systems (x1, . . . , xn) such that ∆xi = 0. As a result, the properties
of harmonic functions (both local and global) on Riemannian manifolds is
of fundamental importance. We obviously won’t have time to discuss any
of these ideas, but if you’re interested there is a (somewhat hard to find)
book by Cheeger, called “Degeneration of Riemannian Metrics under Ricci
Curvature Bounds”, which covers a lot of the basic theory. The Riemannian
Geometry text of Petersen also contains a nice treatment of some parts of
the theory as well.


