18.965: Homework 1

Due: Tuesday, September 24

1. (Stereographic projection) Let

$$S^{n} := \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | x_{1}^{2} + x_{2}^{2} + \dots + x_{n+1}^{2} = 1 \} \subset \mathbb{R}^{n+1}$$

be equipped with the subset topology. That is, a set $V \subset S^n$ is open if $V = S^n \cap U$ for an open set $U \subset \mathbb{R}^{n+1}$. Let $N = (0, \ldots, 0, 1)$ be the North pole, and $S = (0, \ldots, 0, -1)$ be the south pole. Define $\pi_1 : S^n - \{N\} \to \mathbb{R}^n$ (resp. $\pi_2 : S^n - \{S\} \to \mathbb{R}^n$) so that $(\pi_1(p), 0)$ (resp. $(\pi_2(p), 0)$) is the point where the Line passing through N (resp. S) and p intersects the hyperplane $\{x_{n+1} = 0\}$.

- (a) Prove that $\Phi := \{ (S^n \{N\}, \pi_1), (S^n \{S\}, \pi_2) \}$ is a C^{∞} atlas on S^n .
- (b) Prove that (S^n, Φ) is a smooth submanifold on \mathbb{R}^{n+1} . That is, the smooth structure defined by the Φ coincides with the smooth structure induced on S^n as a submanifold of \mathbb{R}^{n+1} .
- 2. Suppose X is a connected topological space. Assume that X is Hausdorff, and locally euclidean of dimension n; that is, X can be covered by charts $(U_{\alpha}, \phi_{\alpha})$ such that

$$\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$$

is a homeomorphism. The following three properties are equivalent

(a) X is second countable. That is, there is a countable collection of open sets $\{U_i\}_{i\in\mathbb{N}}$ such that, for an open set W we can write

$$W = \bigcup U_{i_k}$$

for some i_k . For example, \mathbb{R}^n is second countable, where the U_i can be taken to be open balls centered on rational points, and with rational radii.

- (b) X is paracompact.
- (c) There exist compact sets $\{K_i\}_{i\in\mathbb{N}}$ such that $K_i \subset \operatorname{int}(K_{i+1})$ and $X = \bigcup_i K_i$. That is, X has a compact exhaustion.

Prove that (b) and (c) are equivalent. Here is a "hint". To prove $(b) \Rightarrow (c)$, cover X by open sets which are preimages, under ϕ_{α} of open balls (with compact closure). By paracompactness, you can take a locally finite refinement $\{V_{\alpha}\}_{\alpha \in A}$ all of which have compact closure. Use these sets to construct K_i iteratively. To prove $(c) \Rightarrow (b)$, let $\{V_{\alpha}\}$ be any open cover. Since X is Hausdorff, compact sets are closed, and so $E_{i,j} := K_i - \operatorname{int}(K_j)$ is compact for j < i. Take a finite subcover of the $\{V_{\alpha}\}$ covering $E_{i+1,i}$, and set

$$W_{\alpha,i} = V_{\alpha} \cap \operatorname{int}(E_{i+2,i-1})$$

Show that the resulting collection $\{W_{\alpha,i}\}$ is a locally finite refinement. For fun, prove the equivalence of (a)/(b) and (c).

- 3. If M, N are connected, smooth manifolds, then the product $M \times N$ can be made into a smooth manifold using **the product manifold** structure. Given patches (U, ϕ) on M and (V, ψ) on N we use $(U \times V, \phi \times \psi)$ as a patch on $M \times N$. Show that this makes $M \times N$ into a smooth manifold. To show $M \times N$ is paracompact, use the preceding problem.
- 4. Prove the following lemma stated in class: Suppose $f: M_1^{m+k} \to M_2^m$ is a smooth map. Suppose $q \in M_2$ is a regular value of f. Then $f^{-1}(q)$ is a smooth submanifold of M_1 dimension k.
- 5. Let (x, y, z) be coordinates on \mathbb{R}^3 . Let Y_r be the set of points in \mathbb{R}^3 at distance r > 0 from the circle

$$C = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1, z = 0\}$$

- (a) Let $A = \{r \in (0, \infty) | Y_r \text{ is a submanifold of } \mathbb{R}^3\}$. Find A.
- (b) Let S^1 be equipped with the smooth structure given by stereographic projection (see (1)), and let $S^1 \times S^1$ be equipped with the product manifold structure (see below). Prove that Y_r is diffeomorphic to $S^1 \times S^1$ for any $r \in A$.
- 6. Prove Hadamard's Lemma. If $F : \mathbb{R}^n \to \mathbb{R}$ is smooth, then there are smooth functions $H_1(x), \ldots, H_n(x)$ so that

$$F = F(0) + \sum_{i=1}^{n} x_i H_i(x)$$

with $H_i(0) = \frac{\partial F}{\partial x_i}(0)$. (**Hint**: Use the fundamental theorem of calculus).

7. Let M be a smooth manifold, and $p \in M$ a point. Let (x_1, \ldots, x_n) be local coordinates near p. Show that every derivation D at p is given by

$$D = \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i} \bigg|_p$$

for $a_i \in \mathbb{R}$. (**Hint**: Use Hadamard's lemma).

8. Let $p(x_1, \ldots, x_k)$ be a homogeneous polynomial of degree $m \ge 2$. That is,

$$p(tx_1,\ldots,tx_k) = t^m p(x_1,\ldots,x_k).$$

- (a) Prove that if $a \neq 0$, and $p^{-1}(a)$ is not empty, then $X_a := \{p(x) = a\}$ is a smooth, k - 1 dimensional submanifold of \mathbb{R}^k .
- (b) Prove that X_a is diffeomorphic to X_1 if a > 0, and X_a is diffeomorphic to X_{-1} if a < 0, provided a is in the range of p.
- 9. Let $M_n(\mathbb{R})$ be the space of $n \times n$ matrices with real entires. Assume $n \geq 2$, and define $f: M_n(\mathbb{R}) \to \mathbb{R}$ to be $f(A) = \det(A)$.

(a) Recall that the adjoint of A has entry in the *i*-th row and *j*-th column

$$(\operatorname{adj} A)_{ij} = (-1)^{i+j} \det A(j|i)$$

where $A(j|i) \in M_{n-1}(\mathbb{R})$ is the matrix obtained by removing the *j*-th column and the *i*-th row. Show that the differential of f at A is given by

$$df_A: M_n(\mathbb{R}) \to \mathbb{R}, \qquad df_A(B) = \operatorname{Tr}((\operatorname{adj} A)B)$$

(b) Use the fact that $A(adjA) = (\det A)I$ to prove the following formula for the differential of f

$$df_A = (\det A) \operatorname{Tr}(A^{-1}B)$$

whenever det $A \neq 0$.

- (c) Conclude that $SL(n,\mathbb{R}) := \{A \in M_n(\mathbb{R}) : \det A = 1\}$ is a smooth submanifold of $M_n(\mathbb{R})$.
- 10. Let X, Y, Z be the vector fields on \mathbb{R}^3 defined by

$$X = z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}, \quad Y = x\frac{\partial}{\partial z} - z\frac{\partial}{\partial x}, \quad Z = y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}.$$

- (a) Compute the flow of the vector field X.
- (b) The map $\mathbb{R}^3 \ni (a, b, c) \mapsto aX + bY + cZ$ injects onto its image which is a subspace of the space of smooth vectorfields on \mathbb{R}^3 . Show that, under this map, the bracket of vector fields induces the cross product on \mathbb{R}^3 .