18.965: Homework 1

Due: Tuesday, September 24

1. (Stereographic projection) Let

$$
S^{n}:=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=1\right\} \subset \mathbb{R}^{n+1}
$$

be equipped with the subset topology. That is, a set $V \subset S^{n}$ is open if $V=S^{n} \cap U$ for an open set $U \subset \mathbb{R}^{n+1}$. Let $N=(0, \ldots, 0,1)$ be the North pole, and $S=(0, \ldots, 0,-1)$ be the south pole. Define $\pi_{1}: S^{n}-\{N\} \rightarrow \mathbb{R}^{n}$ (resp. $\pi_{2}: S^{n}-\{S\} \rightarrow \mathbb{R}^{n}$) so that $\left(\pi_{1}(p), 0\right)$ (resp. $\left.\left(\pi_{2}(p), 0\right)\right)$ is the point where the Line passing through N (resp. S) and p intersects the hyperplane $\left\{x_{n+1}=0\right\}$.
(a) Prove that $\Phi:=\left\{\left(S^{n}-\{N\}, \pi_{1}\right),\left(S^{n}-\{S\}, \pi_{2}\right)\right\}$ is a C^{∞} atlas on S^{n}.
(b) Prove that $\left(S^{n}, \Phi\right)$ is a smooth submanifold on \mathbb{R}^{n+1}. That is, the smooth structure defined by the Φ coincides with the smooth structure induced on S^{n} as a submanifold of \mathbb{R}^{n+1}.
2. Suppose X is a connected topological space. Assume that X is Hausdorff, and locally euclidean of dimension n; that is, X can be covered by charts ($U_{\alpha}, \phi_{\alpha}$) such that

$$
\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}
$$

is a homeomorphism. The following three properties are equivalent
(a) X is second countable. That is, there is a countable collection of open sets $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ such that, for an open set W we can write

$$
W=\bigcup U_{i_{k}}
$$

for some i_{k}. For example, \mathbb{R}^{n} is second countable, where the U_{i} can be taken to be open balls centered on rational points, and with rational radii.
(b) X is paracompact.
(c) There exist compact sets $\left\{K_{i}\right\}_{i \in \mathbb{N}}$ such that $K_{i} \subset \operatorname{int}\left(K_{i+1}\right)$ and $X=\cup_{i} K_{i}$. That is, X has a compact exhaustion.

Prove that (b) and (c) are equivalent. Here is a "hint". To prove $(b) \Rightarrow(c)$, cover X by open sets which are preimages, under ϕ_{α} of open balls (with compact closure). By paracompactness, you can take a locally finite refinement $\left\{V_{\alpha}\right\}_{\alpha \in A}$ all of which have compact closure. Use these sets to construct K_{i} iteratively. To prove $(c) \Rightarrow(b)$, let $\left\{V_{\alpha}\right\}$ be any open cover. Since X is Hausdorff, compact sets are closed, and so $E_{i, j}:=K_{i}-\operatorname{int}\left(K_{j}\right)$ is compact for $j<i$. Take a finite subcover of the $\left\{V_{\alpha}\right\}$ covering $E_{i+1, i}$, and set

$$
W_{\alpha, i}=V_{\alpha} \cap \operatorname{int}\left(E_{i+2, i-1}\right) .
$$

Show that the resulting collection $\left\{W_{\alpha, i}\right\}$ is a locally finite refinement. For fun, prove the equivalence of $(a) /(b)$ and (c).
3. If M, N are connected, smooth manifolds, then the product $M \times N$ can be made into a smooth manifold using the product manifold structure. Given patches (U, ϕ) on M and (V, ψ) on N we use $(U \times V, \phi \times \psi)$ as a patch on $M \times N$. Show that this makes $M \times N$ into a smooth manifold. To show $M \times N$ is paracompact, use the preceding problem.
4. Prove the following lemma stated in class: Suppose $f: M_{1}^{m+k} \rightarrow M_{2}^{m}$ is a smooth map. Suppose $q \in M_{2}$ is a regular value of f. Then $f^{-1}(q)$ is a smooth submanifold of M_{1} dimension k.
5. Let (x, y, z) be coordinates on \mathbb{R}^{3}. Let Y_{r} be the set of points in \mathbb{R}^{3} at distance $r>0$ from the circle

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1, z=0\right\}
$$

(a) Let $A=\left\{r \in(0, \infty) \mid Y_{r}\right.$ is a submanifold of $\left.\mathbb{R}^{3}\right\}$. Find A.
(b) Let S^{1} be equipped with the smooth structure given by stereographic projection (see (1)), and let $S^{1} \times S^{1}$ be equipped with the product manifold structure (see below). Prove that Y_{r} is diffeomorphic to $S^{1} \times S^{1}$ for any $r \in A$.
6. Prove Hadamard's Lemma. If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth, then there are smooth functions $H_{1}(x), \ldots, H_{n}(x)$ so that

$$
F=F(0)+\sum_{i=1}^{n} x_{i} H_{i}(x)
$$

with $H_{i}(0)=\frac{\partial F}{\partial x_{i}}(0)$. (Hint: Use the fundamental theorem of calculus).
7. Let M be a smooth manifold, and $p \in M$ a point. Let $\left(x_{1}, \ldots, x_{n}\right)$ be local coordinates near p. Show that every derivation D at p is given by

$$
D=\left.\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}\right|_{p}
$$

for $a_{i} \in \mathbb{R}$. (Hint: Use Hadamard's lemma).
8. Let $p\left(x_{1}, \ldots, x_{k}\right)$ be a homogeneous polynomial of degree $m \geq 2$. That is,

$$
p\left(t x_{1}, \ldots, t x_{k}\right)=t^{m} p\left(x_{1}, \ldots, x_{k}\right)
$$

(a) Prove that if $a \neq 0$, and $p^{-1}(a)$ is not empty, then $X_{a}:=\{p(x)=a\}$ is a smooth, $k-1$ dimensional submanifold of \mathbb{R}^{k}.
(b) Prove that X_{a} is diffeomorphic to X_{1} if $a>0$, and X_{a} is diffeomorphic to X_{-1} if $a<0$, provided a is in the range of p.
9. Let $M_{n}(\mathbb{R})$ be the space of $n \times n$ matrices with real entires. Assume $n \geq 2$, and define $f: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ to be $f(A)=\operatorname{det}(A)$.
(a) Recall that the adjoint of A has entry in the i-th row and j-th column

$$
(\operatorname{adj} A)_{i j}=(-1)^{i+j} \operatorname{det} A(j \mid i)
$$

where $A(j \mid i) \in M_{n-1}(\mathbb{R})$ is the matrix obtained by removing the j-th column and the i-th row. Show that the differential of f at A is given by

$$
d f_{A}: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}, \quad d f_{A}(B)=\operatorname{Tr}((\operatorname{adj} A) B)
$$

(b) Use the fact that $A(\operatorname{adj} A)=(\operatorname{det} A) I$ to prove the follwing formula for the differential of f

$$
d f_{A}=(\operatorname{det} A) \operatorname{Tr}\left(A^{-1} B\right)
$$

whenever $\operatorname{det} A \neq 0$.
(c) Conclude that $S L(n, \mathbb{R}):=\left\{A \in M_{n}(\mathbb{R}): \operatorname{det} A=1\right\}$ is a smooth submanifold of $M_{n}(\mathbb{R})$.
10. Let X, Y, Z be the vector fields on \mathbb{R}^{3} defined by

$$
X=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}, \quad Y=x \frac{\partial}{\partial z}-z \frac{\partial}{\partial x}, \quad Z=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} .
$$

(a) Compute the flow of the vector field X.
(b) The map $\mathbb{R}^{3} \ni(a, b, c) \mapsto a X+b Y+c Z$ injects onto its image which is a subspace of the space of smooth vectorfields on \mathbb{R}^{3}. Show that, under this map, the bracket of vector fields induces the cross product on \mathbb{R}^{3}.

