Infinite-Dimensional Algebra Seminar
These is a website for Fall 2008. For a current website, click here.
Math Department at MIT |
Contacts: Pavel Etingof, Victor Kac
Archives (Spring 2008) | Archives (Fall 2008)
| Archives (Spring 2009) | Archives (Fall 2009) | Archives (Spring 2010)
Fall 2008 | Fridays 3:00 - 5:00pm at 2-139
September 5
- Shlomo Gelaki (Technion, Israel)
- Nilpotent fusion categories
- I will introduce nilpotent fusion categories, discuss some of
their basic properties, and give examples (joint work with D. Nikshych and
D. Naidu). In particular, fusion categories of prime power
Frobenius-Perron dimension (= p-categories) are nilpotent. I will explain
the Sylow decomposition of braided nilpotent fusion categories into a
Deligne product of p-categories, and discuss the classification of
p-categories (in particular of semisimple (quasi-)Hopf algebras of prime
power dimension) (joint with V. Drinfeld, D. Nikshych and V. Ostrik).
September 12
- Pavel Etingof (MIT)
- Weakly group-theoretical and solvable fusion categories
- A fusion category C is said to be nilpotent if it can be included in a chain of fusion categories C0=Vec, C1,...,Cn=C, such that for each i, Ci is graded by a finite group Gi, and the
trivial component is Ci-1. If the group Gi can be chosen to be cyclic, then C is said to be cyclically nilpotent. A
fusion category is weakly group theoretical if it is Morita
equivalent to a nilpotent category, and solvable if it is
Morita equivalent to a cyclically nilpotent category (the last
definition is motivated by the fact that the category of
representations of a finite group is solvable iff the group
itself is solvable).
The goal of the talk is to discuss properties of weakly group-theoretical and
solvable fusion categories. In particular, we will see that
weakly group-theoretical categories are of Frobenius type, i.e.
the dimension of every simple object divides the dimension of the
category, and that any fusion category of dimension pa qb is
solvable (a categorical analog of Burnside's theorem). At the end
of the talk I will discuss some concrete applications of this
theory (such as classification of semisimple Hopf algebras
of dimension pq2 and pqr for primes p,q,r). This is joint
work with D. Nikshych and V. Ostrik.
September 19
- Dennis Gaitsgory (Harvard)
- Integral formulas for KZ equations in higher genus and Fourier-Mukai
transform
- Let X be a (smooth, complete) algebraic curve, G a reductive group,
and κ a symmetric invariant form on g=Lie(G). Let KLκ
G be the corresponding Kazhdan-Lusztig category, consisting of
representions of the Kac-Moody extensions of g((t)) at level κ,
that are G[[t]]-integrable. Let x1,...,xn be an n-tuple of points of X,
and M1,...,Mn be an n-tuple of objects of KLκG. To this
data, by taking coinvariants one can associate a twisted D-module
on BunG.
(Moreover, by letting the points x1,..., xn move along X one obtains
a twisted D-module on Xn × BunG, which generalizes the KZ
connection for X=P1.)
On the other hand, to the data of ( x1,..., xn, M1,..., Mn) one can
associate a twisted D-module on a particular space of colored divisors
on X. In the talk we will show how the two D-modules are connected,
by the procedure of geometric Eisenstein series and Fourier-Mukai
transform.
September 26
- Dennis Gaitsgory (Harvard)
- Positive vs. negative level duality and Kashiwara-Tanisaki
localization
results
- Let G a reductive group, and κ a symmetric invariant form on g=Lie(G).
Let Oκ be the corresponding category O. On the one hand, we have
the contragredient duality functor on Oκ. On the other hand, we shall
show that semi-infinite cohomology identifies Oκ with the dual of
Oκ' , where κ'= - κ+2κcritical, at the level of
derived
categories. Combining the two functors, we will recover Arkhipov's
equivalence
between D(Oκ) and D(Oκ').
Suppose now that κ is negative. In this case, a localization result of
Kashiwara-Tanisaki shows that (a direct summand of) Oκ is equivalent
to the category of Iwahori-monodromic twisted D-modules on the thin affine
flag scheme G((t))/I. On the other hand, when κ is positive, another
result
of Kashiwara-Tanisaki realizes Oκ via D-modules on the thick affine
flag
scheme.
In the second half of the talk, we will show how these two results can be
obtained
from one another via Arkhipov's functor.
October 3
- Reimundo Heluani (Berkeley)
- Generalized complex manifolds and the chiral de Rham complex
- To any differentiable manifold M one can associate a sheaf of
vertex algebras called the chiral de Rham complex of M. To given geometric
structures of M one can try to associate algebraic structures on this sheaf.
In this talk we will describe the algebraic structures arising from
generalized complex geometries on M.
October 10
- Travis Schedler (MIT)
- Categorical algebraic geometry and associative algebras
-
Algebraic geometry over a field is based on the study of the category
of commutative algebras (monoids) in the category of vector spaces.
On the other hand, many times one has to enhance or replace vector
spaces: for example, studying super or dg algebras, or (commutative) Lie groups (or monoids). Call this ''categorical algebraic geometry''.
I will define an embedding of associative (noncommutative) algebras
into categorical algebraic geometry,
Precisely, I embed every associative algebra A into a commutative
algebra in the category of wheelspaces, called the ''Fock
space,'' F(A), of A. As an application, I will perform
Grothendieck's construction of differential operators on
F(A). Following Kontsevich's philosophy, these map to
differential operators on representation varieties of A.
This also explains various constructions (due to Van den Bergh,
Crawley-Boevey, Etingof, and Ginzburg) of Poisson, symplectic, etc.,
noncommutative geometry: given a Poisson or symplectic structure on
F(A), the representation variety obtains the same
structure.
If time allows, I can discuss ''globalizations'' of this where A is
replaced by a nonaffine curve, or connections to topics such as
necklace Lie algebras, Batalin-Vilkovisky structures, Kontsevich
formality, pre-Lie algebras, and Yang-Baxter equations.
The main constructions are joint work with V. Ginzburg.
October 17
- Andrei Okounkov (Princeton)
- Vertex operators in gauge theories
-
Nekrasov partition functions of certain gauge theories may be interpreted as
traces of certain geometrically defined operators on homology or K-theory
of moduli spaces of bundles. Remarkably, these operators may be described
explicitly as certain vertex operators, which is what I would like to
describe
in this talk.
A special focus will be on the K-theory of Hilbert schemes of points on
surfaces.
October 24
- Ivan Losev (MIT)
- W-algebras I
- A W-algebra (of finite type) is a certain associative algebra constructed
from a semisimple Lie algebra and its nilpotent element. Their study traces back to Kostant (late 70's) who considered the case of a principal
nilpotent element. In the recent decade W-algberas were studied by Premet, Ginzburg,
Brundan-Kleshchev, myself and others. The main reason why they are interesting
is their relation to the representation theory of universal enveloping algebras. Also they are related to affine
W-algebras, which are vertex algebras arising in QFT.
In these two talks I am going to explain my own work on W-algebras, arXiv:0707.3108, 0807.1023,
and some work in progress. In the first talk I will explain how Fedosov deformation quantization
applies to the study of W-algebras and then describe equivalences between certain categories of representations
of W-algebras and of universal enveloping algebras. The second talk will be devoted
to finite dimensional modules and bimodules over W-algebras.
October 31
- Ivan Losev (MIT)
- W-algebras II
- (continued from Oct 24)
November 7
- Joint Number Theory and Infinite-Dimensional Algebra seminar: 3:30 - 4:30, 2-135
- Ngo Bao Chau (IAS and Orsay)
- Decomposition theorem for the Hitchin fibration
- The BBD decomposition theorem is a powerful tool in the study of l-adic cohomology. In the case of the Hitchin fibration, we have a rather precise description of all the pieces in the decomposition. This description turns out to be crucial in the proof of the fundamental lemma.
November 14
- Peter Shor (MIT)
- Modular categories and quantum computation
- We will explain the theory of topological quantum computation and how it
relates
to modular categories. We first explain how theories of anyons
in physics are related to modular categories, and give Kitaev's example of
an
explicit graph Hamiltonian that realizes the Drinfel'd double of a finite
group.
We then give an introduction to quantum computation, and show how anyons
(i.e.,
modular categories) can be used to realize universal quantum computation.
November 21
- Roman Bezrukavnikov (MIT)
- Modular representations and quantum connection for the Hilbert
scheme
- I will report on the work in progress joint with A. Okounkov.
The goal is to prove a conjecture relating representations of rational
Cherednik algebra in positive characteristic to quantum cohomology of the
Hilbert scheme of points on the plane; the conjecture is partly inspired by
T. Bridgeland's ideas on stability coniditions in triangulted categories.
The representation theoretic side is in many respects similar
to representations of semi-simple Lie algebras over fields of positive
characteristic studied (in response to conjectures by Lusztig) earlier in a
joint work with Mirkovic and Rumynin.
November 28
- No seminar (Thanksgiving holidays)
December 5
- Ivan Cherednik (University of North Carolina)
- Difference Whittaker functions
- The q-Whittaker functions, which are eigenfunctions
of the q-Toda difference operators, are the limits
of the q,t-spherical functions, generalizing the Macdonald
polynomials, as t->0 under the Inozemtsev-Etingof procedure.
In contrast to the spherical functions, they are not symmetric.
However their coefficients have important integrality-positivity
properties (which are, generally, missing in the Macdonald
theory) and are closely connected with the Demazure characters.
In known examples, these functions serve the quantum cohomology
of the flag varieties; they are expected to be related to the
quantum Langlands program. We will discuss them in the 1D case
almost from scratch, beginning with the p-adic Shintani formula.