18.786. (Spring 2014) Problem set # 10 (due Thu May 8) - last one!

Let Q and other notation be as in [Gee, 5.5].

- 1. The following has been used when studying objects on the Galois side.
 - (a) Show that $\rho_Q^{\text{univ}}|_{G_{F_v}}$ is isomorphic to a direct sum of two characters χ_{α} and χ_{β} such that the two characters modulo $\mathfrak{m}_{R_Q^{\text{univ}}}$ map Frob_v to $\overline{\alpha}_v$ and $\overline{\beta}_v$, respectively. (Feel free to use Exercise 3.34, cf. [Gee, p.37].)
 - (b) Check that there is a natural \mathcal{O} -algebra isomorphism $(R_Q^{\mathrm{univ}})_{\Delta_Q} \simeq R_\emptyset^{\mathrm{univ}}$.
- 2. Let Δ be a finite ℓ -group and \mathcal{O} the integer ring in an ℓ -adic field L. Let S be a finite free $\mathcal{O}[\Delta]$ -module. Then construct an \mathcal{O} -module¹ isomorphism $S_{\Delta} \simeq S^{\Delta}$, where S_{Δ} (resp. S^{Δ}) is Δ -coinvariant quotient (resp. Δ -invariant subspace).²
- 3. Let $R := R_{\emptyset}^{\text{univ}}$, $S := S_{\emptyset}$, R_{∞} , and S_{∞} be as in the last diagram of [Gee, p.44]. As usual R acts on S through the surjection $R \to \mathbb{T} := \mathbb{T}_{U,\mathfrak{m}}$ onto a suitable Hecke algebra. Suppose that there is an \mathcal{O} -algebra surjection $R \to R'$, that an \mathcal{O} -algebra map $f : R \to \mathcal{O}$ factors through $R \to R'$, and that the image of Spec $R' \hookrightarrow \operatorname{Spec} R_{\infty}$ is contained in $\operatorname{Supp}_{R_{\infty}}(S_{\infty})$.
 - (a) Show that $\operatorname{Supp}_{R'}(S_{\infty} \otimes_{R_{\infty}} R') = \operatorname{Spec} R'$.
 - (b) Deduce that f factors through the surjection $R \to \mathbb{T}$.

(Here is a long note on how this exercise is used to complete the proof of minimal ALT: Recall that our patching argument a priori shows only that $\operatorname{Supp}_{R_{\infty}}(S_{\infty})$ is a union of irreducible components of $\operatorname{Spec} R_{\infty}$ and falls short of proving that $\operatorname{Supp}_{R_{\infty}}(S_{\infty}) = \operatorname{Spec} R_{\infty}$; the latter is not even expected because we start with a coarse local deformation problem at $v \in T_r$. To achieve our goal of showing that $f_{\rho}: R \to \mathcal{O}$ arising from ρ factors through $R \twoheadrightarrow \mathbb{T}$, the main idea is to consider a refined global deformation problem

$$\mathscr{S}' := (F, T, \overline{\rho}, \chi, \{\mathcal{D}'_v\}_{v \in T})$$

where

- for $v \in T_{\ell}$, $\mathcal{D}'_v = \mathcal{D}_v$ collects crystalline reps of prescribed weights $\{H_{\tau}\}$ but
- for $v \in T_r$, \mathcal{D}'_v corresponds to the unique irreducible component \mathcal{C} in $R^{\square}_{\overline{\rho}_v,\chi_v}[1/\ell]$ containing $\rho_{0,v}$ and ρ_v (the two are in the same component by the assumption of minimal ALT; recall that \mathcal{D}_v consists of all liftings in the original problem \mathscr{S} .).

Set $R' := R_{\mathscr{I}'}^{\mathrm{univ}}$. Then one easily verifies that $\operatorname{Spec} R' \hookrightarrow \operatorname{Spec} R_{\infty}$ is contained in $\operatorname{Supp}_{R_{\infty}}(S_{\infty})$ from the fact that $\operatorname{Supp}_{R_{\infty}}(S_{\infty})$ is a union of irreducible components. Now this exercise tells you that f_{ρ} factors through $R \twoheadrightarrow \mathbb{T}$, so ρ is automorphic as desired. Compare all this with the argument in the last two paragraphs in the proof of [Tho12, Thm 6.8], which deals with a higher dimensional case.)

 $^{^1}$ Brian pointed out the typo: I mistakenly wrote "an \mathcal{O} -algebra isomorphism" in an earlier version.

²Applying this to $S = S_Q$ and $\Delta = \Delta_Q$, one obtains $(S_Q)_{\Delta_Q} \simeq S_Q^{\Delta_Q} = S(U_{Q,0}, \mathcal{O})_{\mathfrak{m}_Q}$ (in fact there is a natural isomorphism induced by the "trace map" in our setup), which together with Prop 5.8 yields an isomorphism $(S_Q)_{\Delta_Q} \simeq S_{\emptyset}$, compatibly with the actions of the Galois deformation rings. It also follows that $(S_Q^{\square})/\mathfrak{a}_Q \simeq S_{\emptyset}$, cf. [Gee, p.41].

the actions of the Galois deformation rings. It also follows that $(S_{\overline{\rho}}^{\square})/\mathfrak{a}_{Q} \simeq S_{\emptyset}$, cf. [Gee, p.41].

³More precisely \mathcal{D}'_{v} corresponds to $\mathcal{I}(\mathcal{D}'_{v}) = \ker(R^{\square}_{\overline{\rho}_{v},\chi_{v}} \to R^{\square}_{\overline{\rho}_{v},\chi_{v},\mathcal{C}})$ where the last ring is the maximal quotient which is ℓ -torsion free, reduced, and whose characteristic 0 points are in \mathcal{C} .

⁴To ensure that each of $\rho_{0,v}$ and ρ_v is indeed in a unique component (i.e. does not lie in the intersection of multiple components) one appeals to the local-global compatibility of the Langlands correspondence and the fact that the local components of every cuspidal automorphic representation of $GL_2(\mathbb{A}_F)$ are generic (=have Whittaker models) at all places. This is a technical remark, which you may ignore until you get familiar.

References

- [Gee] Toby Gee, Modularity lifting theorems Notes for Arizona winter school, draft, http://www2.imperial.ac.uk/~tsg.
- [Tho12] Jack Thorne, On the automorphy of l-adic Galois representations with small residual image, J. Inst. Math. Jussieu 11 (2012), no. 4, 855–920, With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne. MR 2979825