- 1. Do [Gee, Exercise 4.25].
- 2. In [Gee, 5.4] the proof of Theorem 5.1 is reduced to the case where five conditions are satisfied. Justify the reduction step for any two of the first four conditions there.¹ Feel free to appeal to Facts 4.22 and 4.26 of the notes.
- 3. Let the notation be basically as in [Gee, 5.5]. (In particular $\overline{\rho}: G_F \to GL_2(\mathbb{F})$ is absolutely irreducible. If ρ_0 has weight (\mathbf{k}, η) then the Hecke algebra \mathbb{T}_U is made out of the automorphic forms of the same weight (\mathbf{k}, η) .) Let $\rho_{\mathfrak{m}}^{\mathrm{mod}}: G_F \to GL_2(\mathbb{T}_{U,\mathfrak{m}})$ be the representation constructed in [Gee, 5.2]. Let

$$\mathscr{S} = (F, T, \overline{\rho}, \chi, \{\mathscr{D}_v\}_{v \in T})$$

be a global deformation problem (deformation of $\overline{\rho}$ unramified outside T with determinant χ and local deformation problem \mathscr{D}_v at $v \in T$). Denote by $R := R_{\mathscr{S}}^{\mathrm{univ}}$ the universal deformation ring (without framing). By checking that $\rho_{\mathfrak{m}}^{\mathrm{mod}}$ is a deformation of $\overline{\rho}_{\mathfrak{m}}$ of type \mathscr{S} , one obtains a surjection $R \to \mathbb{T}_{U,\mathfrak{m}}$. (No need for you to check this in your solution.) Let $\rho : G_F \to GL_2(\mathcal{O}) \subset GL_2(L)$ is a deformation of $\overline{\rho}$ of type \mathscr{S} , corresponding to $f_{\rho} : R \to \mathcal{O}$. If f_{ρ} factors through the surjection $R \to \mathbb{T}_{U,\mathfrak{m}}$, show that ρ is automorphic, i.e. arises from a regular automorphic cuspidal representation of $GL_2(\mathbb{A}_F^{\infty})$.²

4. (This exercise will be useful next week.) Let A be a commutative ring with unity. For an A-module M define

$$\operatorname{Supp}_A M := \{ \mathfrak{p} \in \operatorname{Spec} A : M_{\mathfrak{p}} \neq 0 \}.$$

- (a) Show that if M is finitely generated then $\operatorname{Supp}_A M$ is equal to $\operatorname{Spec}(A/\operatorname{Ann}_A(M))$ (as a set), where $\operatorname{Ann}_A(M)$ denotes the annihilator ideal of M in A.
- (b) Suppose that R and T are commutative rings with unity with a surjection $\xi : R \to T$. Let S be a finitely generated ideal over T, viewed also as an R-module. If $\operatorname{Supp}_R S = \operatorname{Spec} R$ and T is reduced³ then deduce that ξ induces an isomorphism $R^{\operatorname{red}} \simeq T$, where R^{red} is the maximal reduced quotient of R.

References

[Gee] Toby Gee, Modularity lifting theorems - Notes for Arizona winter school, draft, http://www2.imperial.ac.uk/~tsg.

¹Again you need not deal with all the four conditions as there won't be extra credit.

²I sketched the idea in class but please write out the details.

³Thanks to Ka Yu Tam for reporting that I forgot this condition in an earlier version.