### 18.786. (Spring 2014) Problem set \# 9 (due Thu Apr 29)

1. Do [Gee, Exercise 4.25].
2. In [Gee, 5.4$]$ the proof of Theorem 5.1 is reduced to the case where five conditions are satisfied. Justify the reduction step for any two of the first four conditions there. ${ }^{1}$ Feel free to appeal to Facts 4.22 and 4.26 of the notes.
3. Let the notation be basically as in [Gee, 5.5]. (In particular $\bar{\rho}: G_{F} \rightarrow G L_{2}(\mathbb{F})$ is absolutely irreducible. If $\rho_{0}$ has weight $(\mathbf{k}, \eta)$ then the Hecke algebra $\mathbb{T}_{U}$ is made out of the automorphic forms of the same weight $(\mathbf{k}, \eta)$.) Let $\rho_{\mathfrak{m}}^{\bmod }: G_{F} \rightarrow G L_{2}\left(\mathbb{T}_{U, \mathfrak{m}}\right)$ be the representation constructed in [Gee, 5.2]. Let

$$
\mathscr{S}=\left(F, T, \bar{\rho}, \chi,\left\{\mathscr{D}_{v}\right\}_{v \in T}\right)
$$

be a global deformation problem (deformation of $\bar{\rho}$ unramified outside $T$ with determinant $\chi$ and local deformation problem $\mathscr{D}_{v}$ at $v \in T$ ). Denote by $R:=R_{\mathscr{S}}^{\text {univ }}$ the universal deformation ring (without framing). By checking that $\rho_{\mathfrak{m}}^{\bmod }$ is a deformation of $\bar{\rho}_{\mathfrak{m}}$ of type $\mathscr{S}$, one obtains a surjection $R \rightarrow \mathbb{T}_{U, \mathfrak{m}}$. (No need for you to check this in your solution.) Let $\rho: G_{F} \rightarrow G L_{2}(\mathcal{O}) \subset G L_{2}(L)$ is a deformation of $\bar{\rho}$ of type $\mathscr{S}$, corresponding to $f_{\rho}: R \rightarrow \mathcal{O}$. If $f_{\rho}$ factors through the surjection $R \rightarrow \mathbb{T}_{U, \mathfrak{m}}$, show that $\rho$ is automorphic, i.e. arises from a regular automorphic cuspidal representation of $G L_{2}\left(\mathbb{A}_{F}^{\infty}\right) .^{2}$
4. (This exercise will be useful next week.) Let $A$ be a commutative ring with unity. For an $A$-module $M$ define

$$
\operatorname{Supp}_{A} M:=\left\{\mathfrak{p} \in \operatorname{Spec} A: M_{\mathfrak{p}} \neq 0\right\}
$$

(a) Show that if $M$ is finitely generated then $\operatorname{Supp}_{A} M$ is equal to $\operatorname{Spec}\left(A / \operatorname{Ann}_{A}(M)\right)$ (as a set), where $\operatorname{Ann}_{A}(M)$ denotes the annihilator ideal of $M$ in $A$.
(b) Suppose that $R$ and $T$ are commutative rings with unity with a surjection $\xi: R \rightarrow T$. Let $S$ be a finitely generated ideal over $T$, viewed also as an $R$-module. If $\operatorname{Supp}_{R} S=\operatorname{Spec} R$ and $T$ is reduced ${ }^{3}$ then deduce that $\xi$ induces an isomorphism $R^{\text {red }} \simeq T$, where $R^{\text {red }}$ is the maximal reduced quotient of $R$.

## References

[Gee] Toby Gee, Modularity lifting theorems - Notes for Arizona winter school, draft,
http://www2.imperial.ac.uk/ ${ }^{\text {tsg. }}$

[^0]
[^0]:    ${ }^{1}$ Again you need not deal with all the four conditions as there won't be extra credit.
    ${ }^{2}$ I sketched the idea in class but please write out the details.
    ${ }^{3}$ Thanks to Ka Yu Tam for reporting that I forgot this condition in an earlier version.

