18.786. (Spring 2014) Problem set # 7 (due Thu Apr 10)

1. (a) Suppose that a locally profinite topological group Γ is unimodular. Fix a bi-invariant Haar measure μ on Γ . Let $\mathcal{H}(\Gamma)$ denote the Hecke algebra of locally constant compactly supported functions $\Gamma \to \mathbb{C}$ with convolution product *. Let (π, V) be a smooth representation of Γ . Recall that $\pi(f)$ is a linear operator on V via

$$(\pi(f))(v) := \int_{\Gamma} f(\gamma)\pi(\gamma)v \cdot d\mu_{\gamma}, \quad v \in V.$$

Verify that $f \mapsto \pi(f)$ is a homomorphism from $\mathcal{H}(\Gamma)$ to $\operatorname{End}_{\mathbb{C}}(V)$, i.e. $\pi(f * g) = \pi(f)\pi(g)$.

- (b) The above construction associates to (π, V) an $\mathcal{H}(\Gamma)$ -module structure on V. Show that this gives a fully faithful functor from the category of smooth representations of Γ to the category of $\mathcal{H}(\Gamma)$ -modules.
- 2. Fix a Haar measure μ^{\times} (resp. μ) on \mathbb{Q}_p^{\times} (resp. \mathbb{Q}_p).¹ Let B and T be the subgroups of $GL_2(\mathbb{Q}_p)$ consisting of upper-triangular and diagonal matrices, resp (denoted $P_{(1,1)}$ and $M_{(1,1)}$ in class). Let N be the group of all unipotent matrices in B so that $B = N \rtimes T = T \ltimes N$. Using the natural isomorphism $T \simeq \mathbb{Q}_p^{\times} \times \mathbb{Q}_p^{\times}$, we can define a Haar measure ν on T by transporting the product measure $\mu^{\times} \cdot \mu^{\times}$ on $\mathbb{Q}_p^{\times} \times \mathbb{Q}_p^{\times}$. The natural isomorphism $N \simeq \mathbb{Q}_p$ allows to view μ as a Haar measure on N. Now define two measures μ' and μ'' such that for $f \in C_c^{\infty}(B)$,

$$\int_B f(b) \cdot d\mu'_b := \int_N \int_T f(tn) \cdot d\nu_t d\mu_n, \qquad \int_B f(b) \cdot d\mu''_b := \int_N \int_T f(nt) \cdot d\nu_t d\mu_n.$$

Prove that μ' (resp. μ'') is a left-invariant (resp. right-invariant) Haar measure. Show that $\mu'' = \delta_B \mu'$, i.e. $\int_B f(b) d\mu_b'' = \int_B f(b) \delta_B(b) d\mu_b'$, where $\delta_B \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = |a/d|_p$.

3. Do [Gee, Exercise 4.7]. Repeat the same for the double coset $GL_2(\mathcal{O}_K) \begin{pmatrix} \varpi_K^2 & 0 \\ 0 & 1 \end{pmatrix} GL_2(\mathcal{O}_K)$. Can you identify the corresponding operator as an element of $\mathbb{C}[T, S^{\pm 1}]$?

References

[Gee] Toby Gee, Modularity lifting theorems - Notes for Arizona winter school, draft, http://www2.imperial.ac.uk/~tsg.

¹For convenience you may assume that $\mu^{\times}(\mathbb{Z}_p^{\times}) = \mu(\mathbb{Z}_p) = 1$ to pin down μ^{\times} and μ if you like. There are several texts explaining more details about these μ^{\times} and μ , e.g. Tate's thesis in [CF].