18.786. (Spring 2014) Problem set \# 6 (due Tue Apr 1)

1. Prove the lower bound for the Krull dimension of $R_{\mathcal{S}}^{\text {univ }}$ as in Proposition 3.24.(3) of [Gee]. (Make sure you have the latest version of Gee's notes.) Compute the lower bound, by explicitly computing the various dimensions appearing in the formula, assuming (in addition to $\ell \nmid n, \ell>2$) that ${ }^{1}$

- $n=2$ and F is a totally real field,
- at every $v \mid \infty, \operatorname{det} \bar{\rho}\left(c_{v}\right)=-1$, where c_{v} denotes the image of complex conjugation c under $G_{\mathbb{R}}=$ $\{1, c\} \hookrightarrow G_{F}$ (induced by any fixed F-embedding $\left.\bar{F} \hookrightarrow \mathbb{C}\right),{ }^{2}$
- at every $v \mid \ell, R_{\left.\bar{\rho}\right|_{F_{v}}}^{\square} / I\left(\mathcal{D}_{v}\right)$ is equal to $R_{\bar{\rho}_{G_{F_{v}}}, \chi, \mathrm{cr},\left\{H_{\sigma}\right\}}$ as in Theorem 3.28 of [Gee],
- at every $v \nmid \ell, \mathcal{D}_{v}$ consists of all liftings (so that $I\left(\mathcal{D}_{v}\right)=(0)$).

2. Do [Gee, Exercise 3.34].
3. Let K be a finite extension of \mathbb{Q}_{p}.
(a) Let $r: W_{K} \rightarrow G L_{2}(\mathbb{C})$ be an irreducible representation such that the kernel of $\left.r\right|_{I_{K}}$ is open in I_{K}. Show that $\left.r\right|_{I_{K}}$ is reducible if and only if there exists an unramified quadratic extension K^{\prime} / K such that $r \simeq \operatorname{Ind}_{W_{K^{\prime}}}^{W_{K}}(\psi)$ for some character $\psi: W_{K^{\prime}} \rightarrow \mathbb{C}^{\times}$. (This provides an example where a WD-rep is (absolutely) irreducible but its type is reducible as an I_{K}-representation.)
(b) Now let $\psi_{i}: I_{K} \rightarrow \mathbb{C}^{\times}$be tame continuous characters for $i=1,2$. (Tame means that ψ_{i} are trivial on the wild inertia subgroup.) Find a necessary and sufficient condition ${ }^{3}$ for $\psi_{1} \oplus \psi_{2}$ to be the restriction to I_{K} of some WD-representation of W_{K}. (In other words, find the condition for $\left(\psi_{1} \oplus \psi_{2}, 0\right)$ to be an inertial type.) When is it the restriction of an irreducible WD-representation?
4. This exercise is meant to supply a heuristic explanation for why there are two irreducible components (which are disjoint) in a certain split ramified case, cf. Part 2 of Theorem 4.1.5 of [Pil]. ${ }^{4}$ Let $\psi: G_{K} \rightarrow$ \mathcal{O}^{\times}be a continuous character and $\bar{\psi}:=\psi \otimes_{\mathcal{O}} \mathbb{F}$. Put $\bar{\rho}=\mathbf{1} \oplus \bar{\psi}$, where $\mathbf{1}$ is the trivial character of G_{K}. Consider liftings of $\bar{\rho}$ of the form

$$
\text { either } \quad \rho=\eta_{1} \psi \oplus \eta_{2} \quad \text { or } \quad \rho=\eta_{1} \oplus \eta_{2} \psi \quad \eta_{i}: G_{K} \rightarrow \mathcal{O}^{\times}, i=1,2
$$

(so that in the former case the reduction of $\eta_{1} \psi$ is $\mathbf{1}$ and the reduction of η_{2} is $\bar{\psi}$, and similarly in the latter case). Put $\bar{\eta}_{i}:=\eta_{i} \otimes_{\mathcal{O}} \mathbb{F}$. Assume that τ is a split ramified type (in the current situation this means $\left.\psi\right|_{I_{K}}$ is nontrivial, i.e. ψ is ramified).
Now let ρ run over all liftings as above under the constraint that ρ has inertial type $\tau=\left[\left(\left.\psi\right|_{I_{K}} \oplus \mathbf{1}, 0\right)\right]$, i.e. $\left.\left.\rho\right|_{I_{K}} \simeq \psi\right|_{I_{K}} \oplus 1$. Show that the ordered pair $\left(\bar{\eta}_{1}, \bar{\eta}_{2}\right)$ is uniquely determined except when

- $\bar{\psi}$ is unramified and $\bar{\psi} \neq \mathbf{1}$,
in which case exactly two distinct pairs occur for $\left(\bar{\eta}_{1}, \bar{\eta}_{2}\right) .{ }^{5}$

[^0]
References

[Gee] Toby Gee, Modularity lifting theorems - Notes for Arizona winter school, draft, http://www2.imperial.ac.uk/~tsg.
[Pil] V. Pilloni, The study of 2-dimensional p-adic Galois deformations in the ell not p case, draft, http://perso.ens-lyon.fr/vincent.pilloni/Defo.pdf.

[^0]: ${ }^{1}$ Again my ℓ (resp. p) is Gee's p (resp. ℓ). I'm sticking to my convention but it's fine if you decide to follow Gee's notation in your homework.
 ${ }^{2}$ In this case we say that $\bar{\rho}$ is totally odd. Compare with Fact 4.20.(4) of [Gee].
 ${ }^{3}$ Of course I'm asking for a non-tautological condition, without any reference to W_{K} or anything external to I_{K}, ψ_{1}, and ψ_{2}.
 ${ }^{4}$ One could consider the apparently more general case $\bar{\rho}=\bar{\psi} \oplus \bar{\psi}^{\prime}$ but quickly reduces to the case $\bar{\psi}^{\prime}=\mathbf{1}$ by twisting by a character.
 ${ }^{5}$ In this case the two irreducible components (which are also connected components) correspond to the two ($\bar{\eta}_{1}, \bar{\eta}_{2}$) in that the family of characters (η_{1}, η_{2}) occurring on each component have the same $\bmod \ell$ reduction.

