18.786. (Spring 2014) Problem set # 4 (due Tue Mar 11)

- * This problem set is lengthier but mainly due to explanation of notation and definitions.
- 1. (Extending coefficients) Let $L' \supset L \supset \mathbb{Q}_{\ell}$ be finite extensions. Write \mathcal{O}' (resp. \mathcal{O}) for the ring of integers of L' (resp. L) and \mathbb{F}' (resp. \mathbb{F}) for its residue field. Let Γ be a profinite group satisfying Hyp(Γ) (i.e. the condition in the first paragraph of [Gee, 3.1]), $\overline{\rho} : \Gamma \to GL_n(\mathbb{F})$ a continuous representation. Denote by $\overline{\rho}' := \overline{\rho} \otimes_{\mathbb{F}} \mathbb{F}' : \Gamma \to GL_n(\mathbb{F}')$ the extension of coefficients from $\overline{\rho}$ (in other words, the composition $\overline{\rho}$ with $GL_n(\mathbb{F}) \subset GL_n(\mathbb{F}')$). Prove that there is a canonical isomorphism (in the category $\mathcal{C}_{\mathcal{O}'}$)

$$R_{\overline{\rho}'}^{\Box} \simeq R_{\overline{\rho}}^{\Box} \otimes_{\mathcal{O}} \mathcal{O}'$$

where $R_{\overline{\alpha}'}^{\Box}$ (resp. $R_{\overline{\rho}}^{\Box}$) is the universal lifting ring for $\overline{\rho}'$ in $\mathcal{C}_{\mathcal{O}'}$ (resp. $\overline{\rho}$ in $\mathcal{C}_{\mathcal{O}}$).¹

- 2. (Compare with [Gee, Exercise 3.11]) Let \mathbb{F} be a finite extension of \mathbb{F}_l , and $\overline{\rho} : \Gamma \to GL_{\mathbb{F}}(\overline{V})$ a continuous representation, where Γ is a profinite group satisfying Hyp(Γ). Assume that $\overline{\rho}$ is absolutely irreducible (so that the universal deformation ring $R_{\overline{\rho}}^{\text{univ}} \in \mathcal{C}_{\mathcal{O}}$ exists; its unique maximal ideal is denoted $\mathfrak{m}_{R_{\overline{\rho}}^{\text{univ}}}$). Construct natural maps between the following sets and show that they are bijections.
 - (a) Hom_{\mathbb{F}}($\mathfrak{m}_{R^{\mathrm{univ}}_{\overline{\rho}}}/(\mathfrak{m}^2_{R^{\mathrm{univ}}_{\overline{\sigma}}},\lambda),\mathbb{F}$)
 - (b) $\operatorname{Hom}_{\mathcal{O}}(R^{\operatorname{univ}}_{\overline{\rho}}, \mathbb{F}[\epsilon]/(\epsilon^2))$
 - (c) $H^1(\Gamma, \mathrm{ad}\overline{\rho})$
 - (d) $\operatorname{Ext}^{1}_{\mathbb{F}[\Gamma]}(\overline{\rho},\overline{\rho})$

Here H^1 and Ext^1 denote *continuous* cohomology and extension classes, resp. For H^1 this means that 1-cocycles are required to be continuous maps.² We recall the definition of $\operatorname{Ext}^1_{\mathbb{F}[\Gamma]}(\overline{\rho},\overline{\rho})$ here: it's the equivalence classes of extensions

$$0 \to \overline{\rho} \to \xi \to \overline{\rho} \to 0,$$

where ξ is a continuous $\mathbb{F}[\Gamma]$ -module and the maps are $\mathbb{F}[\Gamma]$ -module morphisms.³ The two extensions ξ and ξ' are equivalent if there is a commutative diagram

such that the vertical maps are isomorphisms of $\mathbb{F}[\Gamma]$ -modules.

3. In the proof of [Gee, Lem 3.13] we encounter the following situation. Let \mathfrak{m} denote the maximal ideal of $\mathcal{O}[[\underline{x}]] = \mathcal{O}[[x_1, ..., x_d]]$, and $J := \ker \phi$ as in the lemma. Then $\mathfrak{m} J \subset J$, and $\rho = \rho_{\overline{\rho}}^{\Box} : \Gamma \to GL_n(\mathcal{O}[[\underline{x}]]/J)$.⁴ For each $\gamma \in \Gamma$ choose any lift $\rho(\gamma)$ of $\rho(\gamma)$ via the surjection

$$GL_n(\mathcal{O}[[\underline{x}]]/\mathfrak{m}J) \twoheadrightarrow GL_n(\mathcal{O}[[\underline{x}]]/J).$$

Now let $f \in \operatorname{Hom}_{\mathbb{F}}(J/\mathfrak{m}J,\mathbb{F})$. We already know from class that

$$c_f(\gamma,\delta) := f\left(\widetilde{\rho(\gamma\delta)}\widetilde{\rho(\delta)}^{-1}\widetilde{\rho(\gamma)}^{-1} - \mathbf{1}_n\right) \in M_n(\mathbb{F}), \quad \forall \gamma, \delta \in \Gamma$$

is a continuous 2-cocycle in $Z^2(\Gamma, \mathrm{ad}\overline{\rho})$. Write J_f for the kernel of the composite map $J \to J/\mathfrak{m}J \xrightarrow{f} \mathbb{F}$. Show that

³As usual the underlying \mathbb{F} -vector spaces are equipped with discrete topology.

⁴My Γ is Gee's G.

¹The same argument will show that $R_{\overline{\rho}'}^{\text{univ}} \simeq R_{\overline{\rho}}^{\text{univ}} \otimes_{\mathcal{O}} \mathcal{O}'$ when $\overline{\rho}$ is absolutely irreducible (equivalently when $\overline{\rho}'$ is absolutely irreducible). Of course you need not write this up. A variant of this isomorphism also exists when the determinant is fixed in the lifting/deformation problem, cf. [Gee, 3.18].

²The notion of *continuous* 2-cocycles and *continuous* H^2 -cohomology classes is defined in the same way below.

- (a) c_f gives a well-defined element $[c_f] \in H^2(\Gamma, \mathrm{ad}\rho)$, i.e. it is independent of the choices of $\rho(\gamma)$ above.
- (b) $f \mapsto [c_f]$ is \mathbb{F} -linear.
- (c) $[c_f] \in H^2(\Gamma, \mathrm{ad}\rho)$ is trivial if and only if there exist choices of $\rho(\gamma)$ for all $\gamma \in \Gamma$ such that the map $\Gamma \to GL_n(\mathcal{O}[[\underline{x}]]/J_f)$ induced by $\gamma \mapsto \rho(\gamma)$ is a homomorphism.

Feel free to look up [Ser-LF], [AW], Serre's "Galois cohomology" book, etc for the definition of 2-cocycles, H^2 , etc.

References

[Gee] Toby Gee, Modularity lifting theorems - Notes for Arizona winter school, draft, http://www2.imperial.ac.uk/~tsg.