18.786. (Spring 2014) Problem set # 2 (due Tue Feb 25)

Let ℓ, p be distinct primes. Let K (resp. L) be a finite extension of \mathbb{Q}_p (resp. \mathbb{Q}_ℓ). (Unfortunately the roles of ℓ and p are swapped in Gee's notes; there he considers p-adic representations of the Galois group over an ℓ -adic field. My justification is that our convention here seems a bit more popular.)

- 1. Do Parts (2), (4), (5), and (6) of [Gee, Exercise 2.11].
- 2. Do [Gee, Exercise 2.16].
- 3. Let ℓ, p be distinct primes. Recall that $WD_{\zeta,\varphi}$ is a map

 $(V, \rho) \mapsto (V, r, N)$

(may also be written as $\rho \mapsto (r, N)$ for simplicity) from the set of continuous finite-dimensional representations of $G_K := \operatorname{Gal}(\overline{K}/K)$ on *L*-vector spaces to the set of Weil-Deligne representations of W_K on finite dimensional *L*-vector spaces, by the recipe in class or in [Gee, Prop 2.17]. (It is a private exercise for you to check that (r, N) is indeed a WD-rep, cf. [Gee, Exercise 2.19.(4)]; no need to write this up.)

- Show that $WD_{\zeta,\varphi}$ induces a fully faithful *functor* with the obvious notion of morphisms on the source and target *categories* of Galois and Weil-Deligne representations.¹ (Namely a morphism is an *L*-linear map of vector spaces compatible with either the data ρ or (r, N).²)
- Prove that the functors $WD_{\zeta,\varphi}$ and $WD_{\zeta',\varphi'}$ as defined in [Gee, Prop 2.17] are isomorphic.

References

[Gee] Toby Gee, Modularity lifting theorems - notes for arizona winter school, draft, http://www2.imperial.ac.uk/~tsg.

¹The essential image of this functor can be described as in the statement of [Gee, Prop 2.17]. Checking this is left as another private exercise, cf. Exercise 2.19.(4) therein.

²Explicitly, a morphism from (V, r, N) to (V', r', N') is an *L*-linear map $f: V \to V'$ such that $r'(\tau) \circ f = f \circ r(\tau)$ for every $\tau \in W_K$ and $f \circ N = N' \circ f$. A morphism from (V, ρ) to (V', ρ') is an *L*-linear $f: V \to V'$ such that $\rho'(\tau) \circ f = f \circ \rho(\tau)$ for every $\tau \in W_K$.