18.786. (Spring 2014) Problem set \# 1 (due Thu Feb 13)

1. Prove that a profinite group Γ (with profinite topology) is compact, Hausdorff, and totally disconnected. (The last condition means that every connected proper subset of Γ has at most one element.)
2. [Gee, Exercise 2.2] Let F be a field. Show that a continuous homomorphism $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow G L_{n}(\mathbb{C})$ factors through $\operatorname{Gal}(E / F)$ for a finite extension E / F in \bar{F} and that ρ has image in $G L_{n}(\overline{\mathbb{Q}})$ possibly after conjugation by an element of $G L_{n}(\mathbb{C})$. (Here $\overline{\mathbb{Q}}$ is viewed as the algebraic closure of \mathbb{Q} in \mathbb{C}.)
3. Complete the proof of the Brauer-Nesbitt theorem. Let's recall the setup. Let k be a field, Γ be a group, V_{j} be an n_{j}-dimensional vector space over k, and $\rho_{j}: \Gamma \rightarrow G L_{k}\left(V_{j}\right)$ be semisimple representations of Γ, where $j=1,2$. If

$$
\forall \gamma \in \Gamma, \quad \operatorname{det}\left(1-\rho_{1}(\gamma) T\right)=\operatorname{det}\left(1-\rho_{2}(\gamma) T\right)
$$

(i.e. the characteristic polynomials are the same for the two representations) then your problem is to prove that $\rho_{1} \simeq \rho_{2}$. Freely use the following lemma (proved in class):

Lemma 0.1. Let $r \geq 1$. Let R be an associate k-algebra (which may not be commutative) and M_{1}, \ldots, M_{r} be simple (left) R-modules which are mutually non-isomorphic and finite dimensional over k. Then there exist $e_{1}, \ldots, e_{r} \in R$ such that the multiplication map e_{i} is the identity map on M_{i} and the zero map on M_{j} for all $j \neq i$.
4. Let $n \in \mathbb{Z}_{\geq}$. Let ℓ be a prime. Let L be a finite extension of $\mathbb{Q}_{\ell}, \mathcal{O}_{L}$ be its ring of integers, and put $\Lambda:=\mathcal{O}_{L}^{n}$.

- Show that $1+\ell^{m} \cdot \operatorname{End}_{\mathcal{O}_{L}}(\Lambda)$ is a pro- ℓ-subgroup of $G L_{\mathcal{O}_{L}}(\Lambda)$ for each $m \in \mathbb{Z}_{\geq 1}$. (Here the subscript \mathcal{O}_{L} indicates that one considers \mathcal{O}_{L}-linear endomorphisms and automorphisms, respectively.)
- Let Γ be a profinite group whose order is "prime to ℓ " in the sense that every finite group quotient of Γ has prime-to- ℓ order. Suppose that $\rho: \Gamma \rightarrow G L_{\mathcal{O}_{L}}(\Lambda)$ is a continuous homomorphism whose image is contained in $1+\ell \cdot \operatorname{End}_{\mathcal{O}_{L}}(\Lambda)$. Then prove that ρ is the trivial representation.

References

[Gee] Toby Gee, Modularity lifting theorems - notes for arizona winter school, draft, http://www2.imperial.ac.uk/~tsg.

