18.786. (Spring 2014) Problem set # 1 (due Thu Feb 13)

- 1. Prove that a profinite group Γ (with profinite topology) is compact, Hausdorff, and totally disconnected. (The last condition means that every connected proper subset of Γ has at most one element.)
- 2. [Gee, Exercise 2.2] Let F be a field. Show that a continuous homomorphism $\rho : \operatorname{Gal}(\overline{F}/F) \to GL_n(\mathbb{C})$ factors through $\operatorname{Gal}(E/F)$ for a finite extension E/F in \overline{F} and that ρ has image in $GL_n(\overline{\mathbb{Q}})$ possibly after conjugation by an element of $GL_n(\mathbb{C})$. (Here $\overline{\mathbb{Q}}$ is viewed as the algebraic closure of \mathbb{Q} in \mathbb{C} .)
- 3. Complete the proof of the Brauer-Nesbitt theorem. Let's recall the setup. Let k be a field, Γ be a group, V_j be an n_j -dimensional vector space over k, and $\rho_j : \Gamma \to GL_k(V_j)$ be semisimple representations of Γ , where j = 1, 2. If

$$\forall \gamma \in \Gamma, \quad \det(1 - \rho_1(\gamma)T) = \det(1 - \rho_2(\gamma)T)$$

(i.e. the characteristic polynomials are the same for the two representations) then your problem is to prove that $\rho_1 \simeq \rho_2$. Freely use the following lemma (proved in class):

Lemma 0.1. Let $r \ge 1$. Let R be an associate k-algebra (which may not be commutative) and $M_1, ..., M_r$ be simple (left) R-modules which are mutually non-isomorphic and finite dimensional over k. Then there exist $e_1, ..., e_r \in R$ such that the multiplication map e_i is the identity map on M_i and the zero map on M_j for all $j \ne i$.

- 4. Let $n \in \mathbb{Z}_{\geq 1}$. Let ℓ be a prime. Let L be a finite extension of \mathbb{Q}_{ℓ} , \mathcal{O}_L be its ring of integers, and put $\Lambda := \mathcal{O}_L^n$.
 - Show that $1+\ell^m \cdot \operatorname{End}_{\mathcal{O}_L}(\Lambda)$ is a pro- ℓ -subgroup of $GL_{\mathcal{O}_L}(\Lambda)$ for each $m \in \mathbb{Z}_{\geq 1}$. (Here the subscript \mathcal{O}_L indicates that one considers \mathcal{O}_L -linear endomorphisms and automorphisms, respectively.)
 - Let Γ be a profinite group whose order is "prime to ℓ " in the sense that every finite group quotient of Γ has prime-to- ℓ order. Suppose that $\rho : \Gamma \to GL_{\mathcal{O}_L}(\Lambda)$ is a continuous homomorphism whose image is contained in $1 + \ell \cdot \operatorname{End}_{\mathcal{O}_L}(\Lambda)$. Then prove that ρ is the trivial representation.

References

[Gee] Toby Gee, Modularity lifting theorems - notes for arizona winter school, draft, http://www2.imperial.ac.uk/~tsg.