
Coupled damped oscillators and the 18.031 Mascot

Tuned mass dampers

A tuned mass damper is a system of coupled damped oscillators in which one oscillator is
regarded as primary and the second as a control or secondary oscillator. If tuned properly
the maximum amplitude of the primary oscillator in response to a periodic driving force
will be lowered and much of the energy will be absorbed by the secondary oscillator.

This is used for example in tall buildings to limit the swaying of the building in the wind.
People are sensitive to this swaying, so by adding a tuned mass damper the building sways
less and the damper, which no one can feel, vibrates instead. Another application is to
stabilize laboratory tables supporting experiments that are sensitive to vibrations.

The 18.031 mascot is an example of such a system. The figure below represents an idealized
version of it. The first mass m1 is attached on one side to a wall by a spring and damper and
on the other side it is attached to a second mass m2 by another spring and damper. The
spring and damping constants k1, k2, c1, c2 are indicated on the figure. A force f1(t) pushes
on the first mass. The absolute positions of the masses are given by x1 and x2, arranged so
that the spring between them is relaxed when x1 = x2 and the spring connecting the first
mass to the wall is relaxed when x1 = 0.
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We will regard first mass as the building, or the table – it’s being shaken by some force,
and we wish to control the ampitude of its resulting oscillation – so the system response of
interest is x1. The second mass is presumably smaller, and the behavior of x2 is of only
secondary interest.

The system of differential equations

Newton’s F = ma and the usual assumptions about linear damping and spring force lead
to the following differential equations governing the motion of the system.

m1ẍ1 + b1ẋ1 + k1x1 − b2(ẋ2 − ẋ1) − k2(x2 − x1) = f1(t)
m2ẍ2 + + b2(ẋ2 − ẋ1) + k2(x2 − x1) = 0

Let’s rearrange these equations to put all the x1’s on one side and all the x2’s on the other:

(m1ẍ1 + b1ẋ1 + k1x1) + (b2ẋ1 + k2x1) = f1(t) + b2ẋ2 + k2x2

m2ẍ2 + b2ẋ2 + k2x2 = b2ẋ1 + k2x1.
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We can simplify the notation, and clarify the structure of these equations, by using operator
notation. Define polynomials

P1(s) = m1s
2 + b1s + k1

P2(s) = m2s
2 + b2s + k2

Q2(s) = b2s + k2

Thus P1(s) is the characteristic polynomial of the first oscillator, P2(s) is the characteristic
polynomial of the second oscillator, and Q2(s) is a first order polyomial reflecting the
components connecting the two systems. Our system of equations becomes

(P1(D) + Q2(D))x1 = f1(t) + Q2(D)x2 (1)

P2(D)x2 = Q2(D)x1

The system function

When we transform this system to the frequency domain we get

(P1(s) + Q2(s))X1(s) = F1(s) + Q2(s)X2(s) (2)

P2(s)X2(s) = Q2(s)X1(s)

(For simplicity, from now on we’ll write P1, X1. etc instead of P1(s), P2(s), etc.)

This is a pair of linear equations relating X1, X2, and F1. We’re interested in X1, so let’s
begin by isolating X1 on the left of the first equation:

X1 =
1

P1 + Q2
(F1 + Q2X2) (3)

According to the second equation in (2),

X2 =
Q2

P2
X1. (4)

Thus X1 arises from summing F1 with a multiple of X2; and, X2 is in turn a multiple of X1.
We can interpret this as a feedback loop, and express it using the following block diagram.
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Altogether the feedback branch, along the bottom, multiplies X1 by Q2
2/P2. Notice that

the feedback is entirely determined by the parameters of the secondary oscillator.

It’s easy enough to use (4) to eliminate X2 from (3). Then using the fact that P2 −Q2 =
m2s

2, we find

X1 =
P2

P1P2 + m2s2Q2
F1
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This has the expected form: in the frequency domain, the output signal X1 is a certain
function of s times the input signal; the transfer function for this system is

G1(s) =
P2

P1P2 + m2s2Q2

Exercises: (a) Obtain this result using Black’s formula.

(b) Draw the analogous block diagram assuming that x2 is the system response of interest.
What is the transfer function for it?

This formula contains several interesting pieces of information.

1. The zeros of the transfer function for this closed loop system occur precisely at the
poles of the transfer function for the secondary oscillator – namely, at the roots of the
characteristic polynomial P2(s) = m2s

2 + b2s + k2.

Suppose that the secondary oscillator is lightly damped; in fact, for simplicity, suppose
that it is undamped. Then these roots will be ±iω2, where ω2 =

√
k2/m2 is the natural

frequency of the secondary oscillator. Now drive the system with a sinusoidal force with
angular frequency ω. If you now adjust the parameters m2 and k2 of the secondary oscillator
so that ω2 = ω, then the mass in the primary oscillator will be stationary: G1(iω) = 0.
This is ideal! An amazing feature of this result is that it can be made to function no matter
what the secondary mass is. In reality there’s always some damping, of course, but if it’s
small then the promary mass becomes nearly stationary when the driving frequency is near
the natural frequency ω2.

Exercise: What’s the downside to using very small mass for the secondary oscillator?

2. When |s| is either very small or very large, the system behaves very much the way the
main oscillator behaves – as if the secondary oscillator was just not there.

3. The transients of this system are of the form ert where r is a pole of G1(s) (assuming
all these poles are simple). For almost all choices of system parameters, the roots of the
numerator will differ from the roots of the denominator. In that case, the poles of G1(s)
are precisely the roots of the denominator, P1(s)P2(s) +m2s

2Q2(s). This is a fourth degree
equation, so there are four independent transients. This makes sense, since there are four
degrees of freedom in choosing initial conditions: you can set the position and the velocity
of each of the two masses.


