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1 Introduction

In this note we collect together most of what we have or will cover on poles and pole
diagrams.

2 Poles, Amplitude Response, Connection to ERF

For the LTI system P (D)x = f with input f(t) and response x(t), the transfer function is
W (s) = 1/P (s). In this case the poles of W (s) are simply the zeros of the characteristic
polynomial P (s) (also known as the characteristic roots).

In 18.03 and in this course we have had lots of experience using these roots and know they
give important information about the system. The reason we talk about the poles of the
transfer function instead of just sticking with the characteristic roots is that all LTI systems
have a transfer function, but not necessarily a characteristic polynomial.

Here and in 18.03 we have learned about the equation

P (D)x = Q(D)f(t). (1)

We have seen that the stability of the system is determined by the roots of the characteristic
polynomial. We saw as well that the amplitude response of the system to a sinusoidal input
of frequency ω is determined by the characteristic polynomial P and the polynomial Q, i.e.
the gain is

g(ω) =

∣∣∣∣Q(iω)

P (iω)

∣∣∣∣
So the amplitude of the response is the amplitude of the input multiplied by the gain.

A key object from either point of view is the transfer function. For the system (1), if
we consider f(t) to be the input and x(t) to be the output, then the transfer function is
W (s) = Q(s)/P (s).

Here we will learn about poles and the pole diagram of an LTI system. This ties together
the notions of stability, amplitude response and transfer function, all in one diagram in
the complex s-plane. The pole diagram gives us a way to visualize systems which makes
many of their important properties clear at a glance; in particular, and remarkably, the pole
diagram

1. shows whether the system is stable;

2. shows whether the unforced system is oscillatory;

3. shows the exponential rate at which the unforced system returns to equilibrium (for
stable systems); and
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4. gives a rough picture of the amplitude response and practical resonances of the system.

For these reasons the pole diagram is a standard tool used by engineers in understanding
and designing systems.

We conclude by reminding you that every LTI system has a transfer function. Everything
we learn in this note will apply to all such systems.

3 Definition of Poles

3.1 Rational Functions

A rational function is a ratio of polynomials Q(s)/P (s).

Example 1. The following are all rational functions. (s2+1)/(s3+3s+1), 1/(ms2+bs+k),
s2 + 1 + (s2 + 1)/s3.

If the numerator Q(s) and the denominator P (s) have no roots in common, then the rational
function Q(s)/P (s) is in reduced form

Example 2. The three functions in the example above are all in reduced form.

Example 3. (s − 2)/(s2 − 4) is not in reduced form, because s = 2 is a root of both
numerator and denominator. We can rewrite this in reduced form as

s− 2

s2 − 4
=

s− 2

(s− 2)(s+ 2)
=

1

s+ 2
.

3.2 Poles

For a rational function in reduced form the poles are the values of s where the denominator
is equal to zero; or, in other words, the points where the rational function is not defined.
We allow the poles to be complex numbers here.

Example 4. (a) The function 1/(s2 + 8s+ 7) has poles at s = −1 and s = −7.

(b) The function (s− 2)/(s2 − 4) = 1/(s+ 2) has only one pole, s = −2.

(c) The function 1/(s2 + 4) has poles at s = ±2i.

(d) The function s2 + 1 has no poles.

(e) The function 1/(s2 + 8s+ 7)(s2 + 4) has poles at -1, -7, ±2i. (Notice that this function
is the product of the functions in (a) and (c) and that its poles are the union of poles from
(a) and (c).)

Remark. We reiterate that for the system (1) with transfer function Q(s)/P (s), the poles
are just the roots of P (s). That is, they are the characteristic roots used to solve the
homogeneous equation P (D)x = 0.

3.3 Graphs Near Poles

We start by considering the function F1(s) = 1
s . This is well defined for every complex s

except s = 0. To visualize F1(s) we might try to graph it. However it will be simpler, and
yet still show everything we need, if we graph |F1(s)| instead.
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To start really simply, let’s just graph |F1(s)| = 1
|s| for s real (rather than complex).

s
−3 −2 −1 1 2 3

1

2

3

|1/s|

Figure 1: Graph of 1
|s| for s real.

Now let’s do the same thing for F2(s) = 1/(s2 − 4). The roots of the denominator are
s = ±2, so the graph of |F2(s)| = 1

|s2−4| has vertical asymptotes at s = ±2.

s
−3 −2 −1 1 2 3

|1/(s2 − 4)|

Figure 2: Graph of 1
|s2−4| for s real.

As noted, the vertical asymptotes occur at values of s where the denominator of our function
is 0. These are what we defined as the poles.

• F1(s) = 1
s has a single pole at s = 0.

• F2(s) = 1
s2−4 has two poles, one each at s = ±2.

Looking at Figures 1 and 2 you might be reminded of a tent. The poles of the tent are
exactly the vertical asympotes which sit at the poles of the function.

Let’s now try to graph |F1(s)| and |F2(s)| when we allow s to be complex. If s = a + ib
then F1(s) depends on two variables a and b, so the graph requires three dimensions: two
for a and b, and one more (the vertical axis) for the value of |F1(s)|. The graphs are shown
in Figure 3 below. They are 3D versions of the graphs above in Figures 1 and 2. At each
pole there is a conical shape rising to infinity, and far from the poles the function fall off to
0.
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Figure 3: The graphs of |1/s| and 1/|s2 − 4|.

Roughly speaking, the poles tell you the shape of the graph of a function |F (s)|: it is large
near the poles. If the order of the numerator is less than that of the denominator then
|F (s)| will be small when |s| is large.

4 Pole Diagrams

4.1 Definition of the Pole Diagram

The pole diagram of a function F (s) is simply the complex s-plane with an X marking the
location of each pole of F (s).

Example 5. Draw the pole diagrams for each of the following functions.

(a) F1(s) = 1
s+2 (b) F2(s) = 1

s−2 (c) F3(s) = 1
s2+4

(d) F4(s) = s
s2+6s+10

(e) F5(s) = 1
((s+3)2+1)(s+2)(s+4)

(f) F6(s) = 1
((s+3)2+1)(s−2)

answer:

Re

Im

-3 -1 1 3

-3i

i

3i
(a)

Re

Im

-3 -1 1 3

-3i

i

3i
(b)

Re

Im

-3 -1 1 3

-3i

i

3i
(c)

Re

Im

-3 -1 1 3

-3i

i

3i
(d)

Re

Im

-3 -1 1 3

-3i

i

3i
(e)

Re

Im

-3 -1 1 3

-3i

i

3i
(f)

For (d) we found the poles by first completing the square: s2 + 6s + 10 = (s + 3)2 + 1, so
the poles are at s = −3± i.
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4.2 The Pole Diagram for an LTI System

Definition: The pole diagram for an LTI system is defined to be the pole diagram of its
transfer function.

Example 6. Give the pole diagram for the system

ẍ+ 8ẋ+ 7x = f(t),

where we take f(t) to be the input and x(t) the output.

answer: The transfer function for this system is W (s) =
1

s2 + 8s+ 1
=

1

(s+ 1)(s+ 7)
.

Therefore, the poles are s = −1, −7 and the pole diagram is

Re

Im

-2-7 -1 -i

i

Example 7. Give the pole diagram for the system

ẍ+ 4ẋ+ 6x = ẏ,

where we consider y(t) to be the input and x(t) to be the output.

answer: The system is (D2+4D+6)x = Dy, so the transfer function isW (s) = Q(s)/P (s) =
s/(s2 + 4s+ 6). This has poles at the roots of the denominator, i.e. s = −2±

√
2 i.

Re

Im

-2 -1 1 2
-2i

i
2i

Figure: Pole diagram for the system in ẍ+ 4ẋ+ 6x = ẏ.

5 Poles and Stability

Recall that the LTI system
P (D)x = f (2)

has an associated homogeneous equation

P (D)x = 0 (3)

For this system we have the following stability criteria. 1. The system is stable if every
solution to (3) goes to 0 as t → ∞. In words, the unforced system always returns to
equilibrium.

2. Equivalently, the system is stable if all the roots of the characteristic equation have
negative real part.



18.031 Pole Diagrams 6

Assume f(t) is the input, so the transfer function for the system in (2) is
1

P (s)
. Thus,

the poles of the system are just the characteristic roots. Comparing this with the stability
criterion 2, gives us another way of expressing the stability criteria.

3. The system is stable if all its poles have negative real part.

4. Equivalently, the system is stable if all its poles lie strictly in the left half of the complex
plane, i.e. Re(s) < 0.

Criterion 4 tells us how to see at a glance if the system is stable, as illustrated in the
following example.

Example 8. Each of the following six graphs is the pole diagram of an LTI system. Say
which of the systems are stable.

Re

Im

-3 -1 1 3

-3i

i

3i
(a)

Re

Im

-3 -1 1 3

-3i

i

3i
(b)

Re

Im

-3 -1 1 3

-3i

i

3i
(c)

Re

Im

-3 -1 1 3

-3i

i

3i
(d)

Re

Im

-3 -1 1 3

-3i

i

3i
(e)

Re

Im

-3 -1 1 3

-3i

i

3i
(f)

answer: (a), (c) and (e) have all their poles in the left half-plane, so they are stable. The
others do not, so they are not stable.

6 Poles and Amplitude Response

In this section we will explore how the pole diagram gives us a sense of the amplitude
response, that is of the gain g(ω). We will see that the pole diagram gives us a useful
graphical tool for spotting resonant or near-resonant frequencies of LTI systems.

We will go into more detail below. In brief we will make the following argument.

1. We have seen that the graph of |W (s)| is large near the poles of W .

2. Thus, the pole diagram provides a crude graph of |W (s)|: roughly speaking, |W (s)|
will be large for values of s near the poles.

3. The gain of a system with transfer function W (s) is given by g(ω) = |W (iω)|.
4. Thus, by restricting our attention to the imaginary axis s = iω, the pole diagram also

gives us a crude sense of the gain g(ω).
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We will illustrate the above through a series of examples.

Example 9. The figure below shows the pole diagram of a function W (s). At which of
the points A, B, C on the diagram would you guess |W (s)| is largest?

Re

Im

-1-2 1 2

-2i

-i

i

2i

A

B

C

Pole diagram for Example 9.

answer: Point A is close to a pole and B and C are both far from poles so we would guess
point |W (s)| is largest at point A.

Example 10. The pole diagram of a function W (s) is shown in the figure below. At what
point s on the positive imaginary axis would you guess that |W (s)| is largest?

Re

Im

-1-2 1 2
-i

-2i

-3i

i

2i

3i

Pole diagram for Example 10.

answer: We would guess that s should be close to 3 i, which is near a pole. There is not
enough information in the pole diagram to determine the exact location of the maximum,
but it is most likely to be near the pole.

6.1 Amplitude Response and the System Function

Consider the system
P (D)x = Q(D)f(t). (4)

where we take f(t) to be the input and x(t) to be the output. The transfer function of this
system is

W (s) =
Q(s)

P (s)
. (5)
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When f(t) = B cos(ωt) the Sinusoidal Response Formula gives the following periodic solu-
tion to (4)

xp(t) =
|Q(iω)|
P (iω)

B cos(ωt− φ) where φ = −Arg(Q(iω)/P (iω)). (6)

So as a function of ω the amplitude response or gain is

g(ω) = |W (iω)| = |Q(iω)|
|P (iω)| (7)

Note: In general we only talk about the gain of stable systems. If it’s not stable then
the periodic solution is not relevant because the homogeneous part will go to infinity over
time. Of course, algebraically the function g(ω) = |Q(iω)|/|P (iω)| still makes sense, it just
doesn’t have a lot of physical significance.

Note: This relation holds for all stable LTI systems. That is, if the system function is
W (s) then

g(ω) = |W (iω)|. (8)

Using equation (8) and the language of amplitude response we will now re-do Example 10
to illustrate how to use the pole diagram to estimate the practical resonant frequencies of
a stable system.

Example 11. The figure below shows the pole diagram of a stable LTI system. At
approximately what frequency will the system have the biggest response?

Re

Im

-1-2 1 2
-i

-2i

-3i

i

2i

3i

Pole diagram for Example 11(same as in Example 10).

answer: Let the transfer function be W (s). Equation 8 says the amplitude response g(ω) =
|W (iω)|. Since iω is on the positive imaginary axis, the amplitude response g(ω) will be
largest at the point iω on the imaginary axis where |W (iω)| is largest. This is exactly the
point found in Example 10. Thus, we choose iω ≈ 3i, i.e. the practical resonant frequency
is approximately ω = 3.

Note: Rephrasing this in graphical terms: we can graph the magnitude of the system
function |W (s)| as a surface over the s-plane. The amplitude response of the system g(ω) =
|W (iω)| is given by the part of the system function graph that lies above the imaginary
axis. This is all illustrated beautifully by the mathlet Amplitude Response: Pole Diagram:
http://mathlets.org/mathlets/amplitude-response-pole-diagram/

http://mathlets.org/mathlets/amplitude-response-pole-diagram/
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7 Zeros of the system function

For the system functionH(s) = Q(s)/P (s) the roots ofQ(s) are the values where |H(s)| = 0.
The zeros of the system also give us important information about the system. If an input
frequency is near a zero then we would expect the gain to be small. It is common practice
to mark the zeros on the pole diagram with a circle.

Example 12. The pole-zero diagram below shows zeros at −0.3± 2i, −0.3± 3i and poles
at −0.6± 1.8i, −0.6± 3.2i. One system function with these zeros and poles is

H(s) =
(s+ 0.3− 2i)(s+ 0.3 + 2i)(s+ 0.3− 3i)(s+ 0.3 + 3i)

(s+ 0.6− 1.8i)(s+ 0.6 + 1.8i)(s+ 0.6− 3.2i)(s+ 0.6 + 3.2i)

We also show the Bode gain plot for this system.

Re

Im

−1−2−3 1 2 3
−i

i

−2i

2i

−3i

3i

0 2 4 6

0.
4

0.
7

1.
0

w

ga
in

Note that when iω is near the zeros the gain is small. The poles were chosen to raise the
gain as soon iω is outside the range [2i, 3i]. One final thing to note: because the number of
zeros equals the number of poles the gain goes asymptotically to a non-zero value (in this
case 1) as ω gets large. The net result is a band-stop filter: any input with frequency in the
frequency band [2,3] is suppressed because the gain is near 0. Other frequencies are passed
through because the gain is near 1.

A beautiful mathlet relating zero-pole diagrams with Bode and Nyquist plots is http:

//mathlets.org/mathlets/bode-and-nyquist-plots/.

Challenge: Use this mathlet to design a filter with 3 poles and 3 zeros that filters out
frequencies in the range [0, 2] and has gain near one for ω > 2.

8 Laplace transform and the pole diagram of a function

The Laplace transform gives us another view of a signal by transforming it from a function
of t, say f(t), to a function F (s) of the complex frequency s. Once we have F (s) can look
at its the pole diagram and see what it tells us about f(t) as a function of time

8.1 Exponential Growth Rate

If a > 0, the exponential function f1(t) = eat grows rapidly to infinity as t→∞. Likewise
the function f2(t) = eat sin bt is oscillatory with the amplitude of the oscillations growing

http://mathlets.org/mathlets/bode-and-nyquist-plots/
http://mathlets.org/mathlets/bode-and-nyquist-plots/
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exponentially to infinity as t → ∞. In both cases we call a the exponential growth rate of
the function.

The formal definition is the following

Definition: The exponential growth rate of a function f(t) is the smallest value a such
that

lim
t→∞

f(t)

ebt
= 0 for all b > a. (9)

In words, this says f(t) grows slower than any exponential with growth rate larger than a.

Example 13.
1. e2t has exponential growth rate 2.

2. e−2t has exponential growth rate -2. A negative growth rate means that the function is
decaying exponentially to zero as t→∞.

3. f(t) = 1 has exponential growth rate 0.

4. cos t has exponential growth rate 0. This follows because lim
t→∞

cos t

ebt
= 0 for all positive b.

5. f(t) = t has exponential growth rate 0. This may be surprising because f(t) grows to
infinity. But it grows linearly, which is slower than any positive exponential growth rate.

6. f(t) = et
2

does not have an exponential growth rate since it grows faster than any
exponential.

8.2 Poles and Exponential Growth Rate

We have the following theorem connecting poles and exponential growth rate.

Theorem: The exponential growth rate of the function f(t) is the largest real part of all
the poles of its Laplace transform F (s).

Example 14. We’ll check the theorem in a few cases.

1. f(t) = e3t clearly has exponential growth rate equal to 3. Its Laplace transform is
1/(s − 3) which has a single pole at s = 3,and this agrees with the exponential growth
rate of f(t).

2. Let f(t) = t, then F (s) = 1/s2. F (s) has one pole at s = 0. This matches the exponen-
tial growth rate zero found in (5) from the previous set of examples.

3. Consider the function f(t) = 3e2t + 5et + 7e−8t. The Laplace transform is F (s) =
3/(s− 2) + 5/(s− 1) + 7/(s+ 8), which has poles at s = 2, 1, −8. The largest of these
is 2. (Don’t be fooled by the absolute value of -8, since 2 > −8, the largest pole is 2.)
Thus, the exponential growth rate is 2. We can also see this directly from the formula
for the function. It is clear that the 3e2t term determines the growth rate since it is the
dominant term as t→∞.

4. Consider the function f(t) = e−t cos 2t+3e−2t The Laplace transform is F (s) = s
(s+1)2+4

+
3

s+2 . This has poles s = −1 ± 2i, -2. The largest real part among these is -1, so the
exponential growth rate is -1.

Note that in item (4) in this set of examples the growth rate is negative because f(t) actually
decays to 0 as t→∞. We have the following
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Rule:
1. If f(t) has a negative exponential growth rate then f(t)→ 0 as t→∞.

2. If f(t) has a positive exponential growth rate then f(t)→∞ as t→∞.

Example 15. Use the pole diagram to determine the exponential growth rate of the inverse
Laplace transform of each of the functions in Example 5.

answer:
(a) The largest pole is at -2, so the exponential growth rate is -2.
(b) The largest pole is at 2, so the exponential growth rate is 2.
(c) The poles are ±2i, so the largest real part of a pole is 0. The exponential growth rate
is 0.
(d) The largest real part of a pole is -3. The exponential growth rate is -3.
(e) The largest real part of a pole is -2. The exponential growth rate is -2.
(f) The largest real part of a pole is 2. The exponential growth rate is 2.

Example 16. Each of the pole diagrams below is for a function F (s) which is the Laplace
transform of a function f(t). Say whether
(i) f(t)→ 0 as t→∞
(ii) f(t)→∞ as t→∞
(iii) You don’t know the behavior of f(t) as t→ 0,

Re

Im

-3 -1 1 3

-3i

i

3i
(a)

Re

Im

-3 -1 1 3

-3i

i

3i
(b)

Re

Im

-3 -1 1 3

-3i

i

3i
(c)

Re

Im

-3 -1 1 3

-3i

i

3i
(d)

Re

Im

-3 -1 1 3

-3i

i

3i
(e)

Re

Im

-3 -1 1 3

-3i

i

3i
(f)

Re

Im

-3 -1 1 3

-3i

i

3i
(g)

answer: (a) Exponential growth rate is -2, so f(t)→ 0.

(b) Exponential growth rate is -2, so f(t)→ 0.

(c) Exponential growth rate is 2, so f(t)→∞.

(d) Exponential growth rate is 0, so we can’t tell how f(t) behaves.

Two examples of this: (i) if F (s) = 1/s then f(t) = 1, which stays bounded; (ii) if F (s) =
1/s2 then f(t) = t, which does go to infinity, but more slowly than any positive exponential.

(e) Exponential growth rate is 0, so don’t know the behavior of f(t).

(f) Exponential growth rate is 3, so f(t)→∞.

(g) Exponential growth rate is 0, so don’t know the behavior of f(t). (e.g. both cos t and
t cos t have poles at ±i.
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8.3 An example of what the poles don’t tell us about a function

Consider an arbitrary function f(t) with Laplace transform F (s) and a > 0. Shift f(t) to
produce g(t) = u(t− a)f(t− a), which has Laplace transform G(s) = e−asF (s). Since e−as

does not have any poles, G(s) and F (s) have exactly the same poles. That is, the poles
can’t detect this type of shift in time.
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