Laplace transfom: t-translation rule
18.031, Haynes Miller and Jeremy Orloff

1 Introductory example

Consider the system & + 3z = f(t), where f is the input and x the response. We know its
unit impulse response is

0 fort <0 3t
w(t) = = u(t)e .
Q {egt fort >0 Q
This is the response from rest IC to the input f(¢) = d(¢). What if we shifted the impulse
to another time, say, f(¢f) = d(t — 5)? Linear time invariance tells us the response will also
be shifted. That is, the solution to

& +3z=06(t—2), withrest IC (1)
is
0 for t < 2
t)=w(t—2) = =t —2)e 3072
2(t) = wl ) {eBt for t > 2 W Je

In words, this is a system of exponential decay. The decay starts as soon as there is an
input into the system. Graphs are shown in Figure 1 below.
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Figure 1. Graphs of w(t) and z(t) = w(t — 2).

We know that L(d(t—a)) = e~**. So, we can find X = L(z) by taking the Laplace transform
of Equation 1.

e—?s
(s+3)X(s) = e % = X(s) = 513 = 6_2SW(S),

where W = Lw. So delaying the impulse until ¢ = 2 has the effect in the frequency domain
of multiplying the response by e~2%. This is an example of the t-translation rule.

2 t-translation rule

The t-translation rule, also called the t¢-shift rule gives the Laplace transform of a function
shifted in time in terms of the given function. We give the rule in two forms.

Lu(t —a)f(t—a);s) = e “F(s) (2)
L(u(t = a)f(t); s) = e WL(f(t+a);s). (3)
For completeness we include the translation formulas for u(t — a) and §(t — a):
Lu(t—a)) = e */s (4)
L6t —a) = e . (5)
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Remarks:
1. Formula 3 is ungainly. The notation will become clearer in the examples below.
2. Formula 2 is most often used for computing the inverse Laplace transform, i.e., as

u(t —a)f(t—a) =L (e *F(s)).

3. These formulas parallel the s-shift rule. In that rule, multiplying by an exponential on
the time (t) side led to a shift on the frequency (s) side. Here, a shift on the time side leads
to multiplication by an exponential on the frequency side.

Proof: The proof of Formula 2 is a very simple change of variables on the Laplace integral.

Clult—a)f(t—a); s) = /Oo ult — a) f(t — a)e=" dt
0
= /OO f(t—a)e*tdt (u(t—a)=0fort < a)
= /00 F(r)e* 9 dr  (change of variables: 7=t —a)
0
— —as —S8T d
e /0 f(r)e T
= e PF(s).

Formula 3 follows easily from Formula 2. The easiest way to proceed is by introducing a
new function. Let g(t) = f(t + a), so

ft)=g(t—a) and G(s)=L(g) = L(f(t+a)).
We get
L(u(t —a)f(t); s) = L(u(t —a)g(t —a)) = e"G(s) = e"“L(f(t + a); 5).
The second equality follows by applying Formula 2 to g(£).

52 4+ w?

answer: First ignore the exponential and let

fit)y = £ ("") _ sin(w)

52 + w?

—as
Example 1. Find £} (we) .

Using the shift Formula 2 this becomes

£ (“"6_> —u(t—a)f(t— a) = u(t — a) sinw(t — a).

52 4+ w?

1
Example 2. £ (u(t — 3)t; s) = e 2°L(t + 3; 5) = e ( + 3)‘

Example 3. L(u(t —3)- 1 s) = ¢ L(L; 5) = ¢ /s,
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0 fort <2

Example 4. Find L(f) for f(t) =
AP ind £(f) for £(2) {ﬂ for ¢ > 2.

answer: In order to use the ¢-shift rule we have to write f(¢) in u-format:
f(t) = u(t —2)t2.

So, Formula 3 says

L) = e 2L((t+2)% ) = 2 (823 + 24 4> .

s2 s

cos(t) for0<t<2m

Example 5. Find £ fo t) =
P o (f) for 7(1) {0 for t > 2m.

answer: Again we first put f(¢) in u-format. Notice the the function

1 forO<t<?2

ult) —ult —2) = {O elsewhere.
Therefore

f(t) = (u(t) — u(t — 2m)) cos(t) = u(t) cos(t) — u(t — 2m) cos(t).
Using the t-translation formula 3 we get

_ S
s241

—927s 5 —27s S
- L t+27)) = — .
e (COS( )) e &2 1

£(5) s2+1

The last equality holds because cos(t 4 27m) = cos(t).

3 A longer example

The fish population in a lake is not reproducing fast enough and the population is decaying
exponentially with decay rate k. A program is started to stock the lake with fish. Three
different scenarios are discussed below.

Example 6. A program is started to stock the lake with fish at a constant rate of r units
of fish/year. Unfortunately, after 1/2 year the funding is cut and the program ends. Model
this situation and solve the resulting DE for the fish population as a function of time.

answer: Let z(t) be the fish population and let A = z(07) be the initial population.
Exponential decay means the population is modeled by

T+ kx=f(t), z(07)=A (6)

where f(t) is the rate fish are being added to the lake. In this case

r for0<t<1/2
£l - /
0 forl/2<t.
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First we write f in u-format: f(¢) =7 (1 —u(t —1/2)) and find the Laplace transform of
the equation.

F(s) = L(f)(s) = - — “e~*/*.

s s
Next we find the Laplace transform of the equation and solve for f.
sX —x(07)+ kX = F(s)

(s+k)X —A="_(1-e/?)
s
A r

X(s) = s+ k * s(s+k) (1=e™.

To find z(t) we temporarily ignore the factor of e*/? and take Laplace inverse of what’s
left. (using partial fractions).

A r T
-1 At -1 _ Tkt
£ (s—l—k) c £ s(s+k) k:( e

The t-translation formula then says

£ <;EZ_+/;)> - %u(t— 1/2) (1—6*’“(*1/2)).

Putting it all together we get (in u and cases format).

x(t) = Ae M4 % (1 _ e*’“t> _ %u(t ~1/2) (1 - e*’f@*l/?))
v

(1—e k) for 0 <t <1/2
(e7F 4 e k(t=1/2))  for 1/2 < t.

Example 7. (Periodic on/off) The program is refunded and they have enough money to
stock at a constant rate of r for the first half of each year. Find x(¢) in this case.

answer: All that’s changed from Example 6is the input function f(t). We write it in
cases-format and translate that to u-format so we can take the Laplace transform.

for0<t<1/2
for1/2 <t <1
for 0 <t <3/2
for3/2 <t <2

S 3 O 3

= r(l—u(t—;)—i-u(t—l)_u(t_2)"’"')

The computations from here are essentially the same as in the previous example. We sketch
them out.
A r

<1—6_5/2+6_5—6_35/2+...>, so X = + (1—6_5/2+e_s—
s+k s(s+k)

L(f) =

w |3
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Thus,

,
7 |(
+ u(t —1)(1 — e R0y —y(t — 3/2)(1 — e RE=3/2) 4

o(t) =Ae ™M 4 — (1 — ™M) —u(t — 1/2)(1 — e FE1/2)

and in cases format:

AeFt r— %e*kt for 0 <t < %
Aemht — T (e7kt _ =k(t=1/2)) for 1 <t<1
x(t) = Ae—kt L r _ 1 (p=kt _ —k(t—1/2) —k(t—n) 1
e +E_E(e —e +...+e ) forn <t<n+3
Ae=kt — 2 (e=ht — e ht=1/2) [ — ekt 1/2) forn 4l <t <n41
-

Note that the pattern in the formula for the response alternates between the periods of
stocking and not stocking. In particular, notice that the constant term 7/k is only present
during periods of stocking.

Example 8. (Impulse train) The answer to the previous example is a little hard to read.
We know from experience that impulsive input usually leads to simpler output. In this
scenario suppose that once a year r/2 units of fish are dumped all at once into the lake.
Find z(t) in this case.

answer: Once again, all that’s changed from Example 6 is the input function f(¢). In this
case we have

f(t):g((5(t)+6(t—1)+5(t—2)+5(t—3)+...).

This is called an impulse train. Its Laplace transform is easy to find.

r
F(s) = B (I+e +e > +e ™ +..).
One nice thing about delta functions is that they don’t introduce any new terms into the
partial fractions part of the problem.

sX(s)—x(07)+kX(s) = (1+e_$+e_2s+e_3s—|—...).

A T

=X = SR T

N3

(I+e*+e>+e™+..).

Laplace inverse is easy:

£_1<sik>:e_kt - £_1<se+k>:u(t_n)e_k(t_n)'

Thus,

2(t) = AeF + ge—kt n gu(t ~1)e k=D 4 gu(t —9)e k=) 4 gu(t _3)e k-3 o

Here are graphs of the solutions to examples 6 and 8 (with A = 0, K = 1, r = 2). Notice
how they settle down to periodic behavior.
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Fig. 1. Graphs from example 2 (left) and example 3 (right).
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