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Tuned mass damper

https://www.youtube.com/watch?v=xqELmBNyWfU



Mass 1 alone

Coupled damped oscillators and the 18.031 Mascot

Tuned mass dampers

A tuned mass damper is a system of coupled damped oscillators in which one oscillator is
regarded as primary and the second as a control or secondary oscillator. If tuned properly
the maximum amplitude of the primary oscillator in response to a periodic driving force
will be lowered and much of the energy will be absorbed by the secondary oscillator.

This is used for example in tall buildings to limit the swaying of the building in the wind.
People are sensitive to this swaying, so by adding a tuned mass damper the building sways
less and the damper, which no one can feel, vibrates instead. Another application is to
stabilize laboratory tables supporting experiments that are sensitive to vibrations.

The 18.031 mascot is an example of such a system. The figure below represents an idealized
version of it. The first mass m1 is attached on one side to a wall by a spring and damper and
on the other side it is attached to a second mass m2 by another spring and damper. The
spring and damping constants k1, k2, c1, c2 are indicated on the figure. A force f1(t) pushes
on the first mass. The absolute positions of the masses are given by x1 and x2, arranged so
that the spring between them is relaxed when x1 = x2 and the spring connecting the first
mass to the wall is relaxed when x1 = 0.
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We will regard first mass as the building, or the table – it’s being shaken by some force,
and we wish to control the amplitude of its resulting oscillation – so the system response
of interest is x1. The second mass is presumably smaller, and the behavior of x2 is of only
secondary interest.

The system of di↵erential equations

Newton’s F = ma and the usual assumptions about linear damping and spring force lead
to the following di↵erential equations governing the motion of the system.

m1ẍ1 + b1ẋ1 + k1x1 � b2(ẋ2 � ẋ1) � k2(x2 � x1) = f1(t)
m2ẍ2 + + b2(ẋ2 � ẋ1) + k2(x2 � x1) = 0

Let’s rearrange these equations to put all the x1’s on one side and all the x2’s on the other:

(m1ẍ1 + b1ẋ1 + k1x1) + (b2ẋ1 + k2x1) = f1(t) + b2ẋ2 + k2x2

m2ẍ2 + b2ẋ2 + k2x2 = b2ẋ1 + k2x1.
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Mechanical parameters: 
m1 = 0.85     b1 = 14       k1 = 1950 
m2 = 0.3       b2 = 0.4      k2 = 947.5



System function for x1
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mass by suitably tuning the parameters in the secondary system. But Q2 enters into the
top branch. However, in practice the damping term b2 is very small, and if we can make
the spring constant k2 small relative to the quantities occuring in the primary system, the
model is essentially an example of feedback control.

It’s easy enough to use (4) to eliminate X2 from (3). Then using the fact that P2 � Q2 =
m2s

2, we find

X1 =
P2

P1P2 +m2s
2
Q2

F1

This has the expected form: in the frequency domain, the output signal X1 is a certain
function of s times the input signal; the transfer function for this system is

G1(s) =
P2

P1P2 +m2s
2
Q2

Exercises: (a) Obtain this result using Black’s formula.

(b) Draw the analogous block diagram assuming that x2 is the system response of interest.
What is the transfer function for it?

This formula contains several interesting pieces of information.

1. The zeros of the transfer function for this closed loop system occur precisely at the
poles of the transfer function for the secondary oscillator – namely, at the roots of the
characteristic polynomial P2(s) = m2s

2 + b2s+ k2.

Suppose that the secondary oscillator is lightly damped; in fact, for simplicity, suppose
that it is undamped. Then these roots will be ±i!2, where !2 =

p
k2/m2 is the natural

frequency of the secondary oscillator. Now drive the system with a sinusoidal force with
angular frequency !. If you now adjust the parameters m2 and k2 of the secondary oscillator
so that !2 = !, then the mass in the primary oscillator will be stationary: G1(i!) = 0.
This is ideal! An amazing feature of this result is that it can be made to function no matter
what the secondary mass is. In reality there’s always some damping, of course, but if it’s
small then the promary mass becomes nearly stationary when the driving frequency is near
the natural frequency !2.

Exercise: What’s the downside to using very small mass for the secondary oscillator?

2. The transients of this system are of the form e

rt where r is a pole of G1(s) (assuming
all these poles are simple). For almost all choices of system parameters, the roots of the
numerator will di↵er from the roots of the denominator. (Actually, you can check that
they definitely di↵er as long as m2 6= 0 and k2 6= 0.) In that case, the poles of G1(s) are
precisely the roots of the denominator, P1(s)P2(s) + m2s

2
Q2(s). This is a fourth degree

polynomial (as long as m1 6= 0 as well!) so there are four independent transients. This
makes sense, since there are four degrees of freedom in choosing initial conditions: you can
set the position and the velocity of each of the two masses. This is a fourth order system.

3. The rational function G1(s) has numerator of degree 2. When |s| is either very small or
very large, the system behaves very much the way the main oscillator behaves – as if the
secondary oscillator was just not there: The gain rolls o↵ as a constant multiple of !�2 as
! ! 1. One says that the degree of the system is 2 in this case. This again makes sense –
if the vibration is too fast, the secondary oscillator just sees a blur.
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Comparing with experimental data



Improving the model
• Take electric circuit driving the system into account:

Experiment: Input is Vin(t), measured output is Vout(t)

External forcing f1 itself is the response of an electric system!



Electric system

What is system 
function from 
Vin(t) to f1(t)?



Electric system

↵ = 1250

R = 1

L = 5 · 10�3

kf = 1

Electrical 
parameters


