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Plan
• Another oscillator 

• Resonant tuning 

• Bode & Nyquist plots 

• Transfer/system function 

• Short note on Block diagrams (see class 2 reading) 

• Pole diagrams 

• Mascot



Recall: gain, complex gain & phase lag

(where G(!) is a complex number to be determined, depending on ! and
the system parameter). Making the substitution,

P (D)zp = P (D)G(!)ei!t = G(!)P (i!)ei!t ,

so
G(!)P (i!)ei!t = Q(i!)ei!t .

Cancelling the exponential and dividing through, we find

G(!) =
Q(i!)

P (i!)
.

This complex number is the complex gain. It contains both the gain of
the system and the phase lag:

g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)
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complex gain
xp = Re(zp) = |G| cos(!t� �)

(where G(!) is a complex number to be determined, depending on ! and
the system parameter). Making the substitution,
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G(!)P (i!)ei!t = Q(i!)ei!t .

Cancelling the exponential and dividing through, we find

G(!) =
Q(i!)

P (i!)
.

This complex number is the complex gain. It contains both the gain of
the system and the phase lag:

g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)
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gain phase lag

Why not care about homogeneous part of solution? => Because it’s a transient!

12. Complex Gain.

The combination of complex replacement and ERF e�ciently delivers critical
information about the sinusoidal solutions of equations of the form

P (D)x = (a sinusoid)

or, more generally, of the form

P (D)x = Q(D)(a sinusoid)

This method leads to sinusoidal solutions of the form

xp(t) = Re (Ge

i!t)

where ! is the angular frequency of the input sinusoid andG is some complex
constant.

The smart way to find the amplitude of this sinusoid is to express G in
polar form: say

G = |G|e�i�
, so � = � arg(G) .

Then
z(t) = Ge

i!t = |G|e�i�
e

i!t = |G|ei(!t��)
.

The real part of this is
|G| cos(!t� �) ,

which has amplitude |G|.
For example, the amplitude of the sinusoidal solution we found above is

1

|P (3i)| =
1

|� 6 + 7i| =
1p
85

.

In more detail, the method replaces a sinusoidal input signal by a com-
plex exponential signal ei!t. So we have the equation

P (D)x = Q(D)ei!t .

But
Q(D)ei!t = Q(i!)ei!t ,

and we are looking for solutions of the form

zp = G(!)ei!t
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Given: xgen = xh + xpGen. sol.:



Stability
When homogeneous part dies off exponentially: STABLE system

What makes system stable? E.g:

xh = e

�t/2
h
a1 cos(

p
7t/2) + a2 sin(

p
7t/2)

i

Re(s)<0  for all roots s of P(s)       <=>      STABLE

transients

Roots of P (s) : s =
1

2

(�1± i
p
7)



Sparton radio Model 652X from 1940-1942





Modeling an AM radio

tions. Some of your discoveries will be addressed in Lecture 2. This system
is interesting; as we will show in Lecture 2, it is a mechanical analogue of
an extremely simple AM radio receiver, and the analysis we carry out de-
termines important features of the radio, such as the frequency it is tuned
to and how sharp the tuning is.

Notation. Almost always, in this course, the indendent variable is time,
denoted t. Functions of time might be denoted x(t), y(t), z(t), f(t); or, for
short, x, y, z, f . We will use the notation

ẋ =
dx

dt

, ẍ =
d

2
x

dt

2
.

4. Modeling the system.

An important part of 18.03.1, and of this course, is the process of modeling
a mechanical or electrical system using ordinary di↵erential equations. The
basic process has the following steps.

(1) Draw a diagram of the system.

(2) Identify and give symbols for the parameters of the system.

(3) Declare the input signal and the system response.

(4) Write down a di↵erential equation relating the input signal and the
system response, using Newton’s “F = ma” in the mechanical case or
Kirkho↵ ’s laws in the electrical case.

(5) Rewrite the equation in standard form.

In our case:

(1) Here is a diagram of the system we are studying.

[[ Image ]]

(2) We have already named the relevant system parameters, on the diagram.
In fact we’ll do a slightly more general case, letting the mass m vary as well
as the spring constant k and the damping constant b.

(3) The input signal is given by the position of the dashpot piston; we will
write y(t) or just y for this function of time. We have to declare also which
is the positive direction for y: It becomes positive when the piston moves
up. The system response we are interested in is the position of the mass,
which we will write x(t). It also becomes positive when the mass moves up.
We also declare x = 0 to be the position at which the spring is relaxed.
Thus when x > 0 the spring is compressed and exerts a force pointing left,
while if x < 0 it is extended and exerts a force pointing right.

3

Basic process of modeling a system:



RLC and mechanical systems

We’re done. But before we discuss consequences, recall the equation we
discussed in Lecture 1 describing the spring/mass/dashpot system driven
through the spring:

mẍ+ bẋ+ kx = bẏ .

These two equations are formally identical in the way they relate input and
system response. This reflects a rough parallel between mechanical and
electrical systems, in which

Mechanical Electrical
displacement x voltage drop V

mass m inductance L
damping constant b resistance R
spring constant k 1/capacitance 1/C

Rather than trying to develop this as a formal equivalence, though, I think
it’s best to focus on the fact that the mathematics is identical up to change
of notation.

Questions.

Please develop a model for the same series system, but now with system
response defined as the voltage drop across the capacitor. For homework as-
sociated with Lecture 1, you modeled a spring/mass/dashpot system driven
through the spring (as represented in the Mathlet ....). Please compare these
two equations.

2. Frequency response

Let’s now study the bahavior of the AM radio receiver we modeled in the
previous segment.

[[Image]]

The environment is filled with radio waves, electromagnetic oscillations
vibrating at di↵erent frequencies. Each AM radio station broadcasts in a
small range of frequences centered at a nominal broadcast frequency. Tuning
the radio to that frequency means that the receiver should suppress all
frequencies except those near to this nominal frequency, and let frequencies
near that one pass through to the speaker.

We want to design our radio receiver so that its system response to the
frequency of the radio station we want to listen to is much larger than the
response of other frequencies.

In terms of gain, we can say that we want the gain to be greatest for a
specific input frequency – call it !r. The range of frequencies that is allowed
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interested in the case in which it is sinusoidal!

The meaning of each of the other components is specified by how the
voltage decrease across it is related to the current flowing through it. For us,
these relationships define the components. The impact of each component
is determined by the constant appearing in these relationships.

Inductor: VL(t) = Lİ(t).

Resistor: VR(t) = RI(t).

Capacitor: CV̇C(t) = I(t).

These are related by Kirko↵’s voltage law (“KVL”): The voltage gain
across the power source must equal the sum of the voltage drops across the
other components:

V = VL + VR + VC .

(3) Declare the input signal and the system response. We will declare the
voltage increase V (t) produced by the power source as the input signal. For
system response, we are interested in the loudness of the speaker, which is
proportional to the voltage drop across the resistor. So we declare VR to be
the system response.

This means that we want to set up a di↵erential equation relating V (t)
to VR(t).

(4) Write down a di↵erential equation relating the input signal and the

system response, using Newton’s “F = ma” in the mechanical case or

Kirkho↵ ’s laws in the electrical case. Because V̇C appears in the definition
of a capacitor, it is natural to di↵erentiate the KVL. Then we can rewrite
everything in terms of the single variable I;

V̇ = V̇L + V̇R + V̇C = LÏ +Rİ + (1/C)I .

To make this into an equation relating the input signal V to the system
response VR, we just have to remember that VR = RI. So multiply through
by R and make this substitution, along with its consequences V̇R = Rİ and
V̈R = RÏ:

RV̇ = LV̈R +RV̇R + (1/C)VR .

(5) Rewrite the equation in standard form. Input and output are already
separated; to put this in standard form we just swap sides:

LV̈R +RV̇R + (1/C)VR = RV̇ .

2

We’re done. But before we discuss consequences, recall the equation we
discussed in Lecture 1 describing the spring/mass/dashpot system driven
through the spring:

mẍ+ bẋ+ kx = bẏ .

These two equations are formally identical in the way they relate input and
system response. This reflects a rough parallel between mechanical and
electrical systems, in which

Mechanical Electrical
displacement x voltage drop V

mass m inductance L
damping constant b resistance R
spring constant k 1/capacitance 1/C

Rather than trying to develop this as a formal equivalence, though, I think
it’s best to focus on the fact that the mathematics is identical up to change
of notation.

Questions.

Please develop a model for the same series system, but now with system
response defined as the voltage drop across the capacitor. For homework as-
sociated with Lecture 1, you modeled a spring/mass/dashpot system driven
through the spring (as represented in the Mathlet ....). Please compare these
two equations.

2. Frequency response

Let’s now study the bahavior of the AM radio receiver we modeled in the
previous segment.
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The environment is filled with radio waves, electromagnetic oscillations
vibrating at di↵erent frequencies. Each AM radio station broadcasts in a
small range of frequences centered at a nominal broadcast frequency. Tuning
the radio to that frequency means that the receiver should suppress all
frequencies except those near to this nominal frequency, and let frequencies
near that one pass through to the speaker.

We want to design our radio receiver so that its system response to the
frequency of the radio station we want to listen to is much larger than the
response of other frequencies.

In terms of gain, we can say that we want the gain to be greatest for a
specific input frequency – call it !r. The range of frequencies that is allowed
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Mathlet

interested in the case in which it is sinusoidal!
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small range of frequences centered at a nominal broadcast frequency. Tuning
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frequency of the radio station we want to listen to is much larger than the
response of other frequencies.

In terms of gain, we can say that we want the gain to be greatest for a
specific input frequency – call it !r. The range of frequencies that is allowed

3

We already know:  
Maximum gain g=1 for any fixed b,k 

! = !r ⇠
p

k/m

Can tune radio to “target channel” by changing k  (or m)!

Would be nice to “visualize” how system reacts to different 
frequencies in a plot!

Maximum gain at                                      (indep. of b!) 



Mathlet: Bode plots

Plot of (real) gain

Plot of phase gain 

(where G(!) is a complex number to be determined, depending on ! and
the system parameter). Making the substitution,

P (D)zp = P (D)G(!)ei!t = G(!)P (i!)ei!t ,

so
G(!)P (i!)ei!t = Q(i!)ei!t .

Cancelling the exponential and dividing through, we find

G(!) =
Q(i!)

P (i!)
.

This complex number is the complex gain. It contains both the gain of
the system and the phase lag:

g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)

14

�� = Arg(G(!))

Often: double-logarithmic 
axes for gain plot (“dB”)!

AKA: Amplitude-response curve



Activity: Verify our observations mathematically!

for g(!). Here’s a summary of what we saw then.

(1) The gain g(!) is the magnitude of the complex gain G(!).

(2) The complex gain is defined as the complex number such that G(!)ei!t

is the exponential system response to input signal ei!t.

(3) If the system is modeled by

P (D)x = Q(D)y

(with input signal y(t) and system response x(t)), then

G(!) =
Q(i!)

P (i!)
.

In our current example, the standard form equation is

mẍ+ bẋ+ kx = bẏ ,

so

G(!) =
bi!

m(i!)2 + b(i!) + k
=

bi!

(k �m!2) + bi!
.

3. Activity: Verifying your observations.

Here are the observations you have made about this system, translated into
the notation of the RLC circuit. The Mathlet fixesm = 1, which corresponds
to setting L = 1.

1. The maximum gain is 1, independent of the values of R, and C.

2. The maximum gain occurs at !r =
p

1/C, independent of R.

3. The phase lag at ! = !r is �(!r) = 0, while for ! < !r the phase
lag is negative: the system response appears to run ahead of the input
signal.

4. As R decreases, the pass-band narrows.

Your assignment is now to verify these observations, using the analysis
of the previous section, and extending them to allow general positive values
for L.

So here are your instructions.

1. First of all, as a precaution, determine whether or not this equation
is stable. (If it’s not, going further down this path is a waste of time.)
Determine the transients.
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Mathlet: Nyquist plots

Plot of complex gain in complex plane

Green: 

(where G(!) is a complex number to be determined, depending on ! and
the system parameter). Making the substitution,

P (D)zp = P (D)G(!)ei!t = G(!)P (i!)ei!t ,

so
G(!)P (i!)ei!t = Q(i!)ei!t .

Cancelling the exponential and dividing through, we find

G(!) =
Q(i!)

P (i!)
.

This complex number is the complex gain. It contains both the gain of
the system and the phase lag:

g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)
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�� = Arg(G(!))

Yellow: magnitude of G, ie. real gain.

=> phase gain

Curve parameterized by w!



System function

(where G(!) is a complex number to be determined, depending on ! and
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Cancelling the exponential and dividing through, we find
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Q(i!)

P (i!)
.

This complex number is the complex gain. It contains both the gain of
the system and the phase lag:

g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)
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complex gain

12. Complex Gain.

The combination of complex replacement and ERF e�ciently delivers critical
information about the sinusoidal solutions of equations of the form

P (D)x = (a sinusoid)

or, more generally, of the form

P (D)x = Q(D)(a sinusoid)

This method leads to sinusoidal solutions of the form

xp(t) = Re (Ge

i!t)

where ! is the angular frequency of the input sinusoid andG is some complex
constant.

The smart way to find the amplitude of this sinusoid is to express G in
polar form: say

G = |G|e�i�
, so � = � arg(G) .

Then
z(t) = Ge

i!t = |G|e�i�
e

i!t = |G|ei(!t��)
.

The real part of this is
|G| cos(!t� �) ,

which has amplitude |G|.
For example, the amplitude of the sinusoidal solution we found above is

1

|P (3i)| =
1

|� 6 + 7i| =
1p
85

.

In more detail, the method replaces a sinusoidal input signal by a com-
plex exponential signal ei!t. So we have the equation

P (D)x = Q(D)ei!t .

But
Q(D)ei!t = Q(i!)ei!t ,

and we are looking for solutions of the form

zp = G(!)ei!t

13

So far:

We only considered sinusoidal input so far. What about more 
general exponential inputs like         with s complex?est

Questions. 1. We have seen that when b (or R) is small the resonant
peak is narrow; that is, as soon as ! di↵ers much from !r, the gain becomes
very small. Make a prediction about how the Nyquist trajectory will be
traversed, based on this observation. That is, will G(!) move at steady rate
along its trajectory, or will it move faster in some portions than in others?

2. Show that the Nyquist plot, for this system, is given by a circle of radius
1/2 with center at the complex number 1/2 (minus the origin).

The Nyquist plot forms the basis for an important test of the stability of
a system, the “Nyquist criterion.” This is beyond the scope of this course,
but you can find out about it elsewhere.

5. The System Function

We have seen that an LTI system generally does something very simple to
certain input signals, namely those of the form ei!t. It simply multiplies such
a signal by a complex, the complex gain G(!). In terms of the di↵erential
equation the compelx gain is given by the formula

G(!) =
Q(i!)

P (i!)
.

Both these facts encourage the following question: what is the exponen-
tial system response to a more general exponential input signal, one of the
form

est , s a complex constant ?

This is a reasonable question. For example, the input signal might be a
damped sinusoid, something like e�t/10 cos(⇡t).

Exactly the same reasoning we used earlier leads to perfectly parallel
conclusions. We will use a di↵erent letter to denote the multipicative factor,
in order to avoid confusion with the special case given by the complex gain.

The exponential sytem response of an LTI system to the input
signal est, for s any complex constant, is of the form

H(s)est.

If the LTI system is controlled by the di↵erential equation

P (D)x = Q(D)y

then

H(s) =
Q(s)

P (s)
.
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E.g.: s = �1/10 + i⇡ input:

But derivation of ERF (see notes) also works if s is complex! So:
System                                     P (D)x = Q(D)est xp = H(s)estsystem response
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This is a reasonable question. For example, the input signal might be a
damped sinusoid, something like e�t/10 cos(⇡t).

Exactly the same reasoning we used earlier leads to perfectly parallel
conclusions. We will use a di↵erent letter to denote the multipicative factor,
in order to avoid confusion with the special case given by the complex gain.

The exponential sytem response of an LTI system to the input
signal est, for s any complex constant, is of the form

H(s)est.

If the LTI system is controlled by the di↵erential equation

P (D)x = Q(D)y

then

H(s) =
Q(s)

P (s)
.
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system function or transfer function



System function & gain

System function extends concept of gain to any complex s. 
“Gain is system function along imaginary axis s=iw.”

Questions. 1. We have seen that when b (or R) is small the resonant
peak is narrow; that is, as soon as ! di↵ers much from !r, the gain becomes
very small. Make a prediction about how the Nyquist trajectory will be
traversed, based on this observation. That is, will G(!) move at steady rate
along its trajectory, or will it move faster in some portions than in others?

2. Show that the Nyquist plot, for this system, is given by a circle of radius
1/2 with center at the complex number 1/2 (minus the origin).

The Nyquist plot forms the basis for an important test of the stability of
a system, the “Nyquist criterion.” This is beyond the scope of this course,
but you can find out about it elsewhere.

5. The System Function

We have seen that an LTI system generally does something very simple to
certain input signals, namely those of the form ei!t. It simply multiplies such
a signal by a complex, the complex gain G(!). In terms of the di↵erential
equation the compelx gain is given by the formula

G(!) =
Q(i!)

P (i!)
.

Both these facts encourage the following question: what is the exponen-
tial system response to a more general exponential input signal, one of the
form

est , s a complex constant ?

This is a reasonable question. For example, the input signal might be a
damped sinusoid, something like e�t/10 cos(⇡t).

Exactly the same reasoning we used earlier leads to perfectly parallel
conclusions. We will use a di↵erent letter to denote the multipicative factor,
in order to avoid confusion with the special case given by the complex gain.

The exponential sytem response of an LTI system to the input
signal est, for s any complex constant, is of the form

H(s)est.

If the LTI system is controlled by the di↵erential equation

P (D)x = Q(D)y

then

H(s) =
Q(s)

P (s)
.
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(where G(!) is a complex number to be determined, depending on ! and
the system parameter). Making the substitution,

P (D)zp = P (D)G(!)ei!t = G(!)P (i!)ei!t ,

so
G(!)P (i!)ei!t = Q(i!)ei!t .

Cancelling the exponential and dividing through, we find

G(!) =
Q(i!)

P (i!)
.

This complex number is the complex gain. It contains both the gain of
the system and the phase lag:

g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)

14

Powerful tool to understand a system’s behavior to more 
complicated inputs (in fact, to ALL inputs - later). See also 
Block diagrams 

How can get a qualitative feeling for H(s)?

=> Idea: Graph |H(s)| in the complex plane!



Tuned mass damper


