18.031 Day 2

Plan

- Another oscillator
- Resonant tuning
- Bode & Nyquist plots
- Transfer/system function
- Short note on Block diagrams (see class 2 reading)
- Pole diagrams
- Mascot

Recall: gain, complex gain & phase lag Given: $P(D)x = Q(D)e^{i\omega t}$. Gen. sol.: $x_{gen} = x_h + x_p$

Why not care about homogeneous part of solution? => Because it's a transient!

Stability

When homogeneous part dies off exponentially: STABLE system

What makes system stable? E.g:

Roots of
$$P(s): s = \frac{1}{2}(-1 \pm i\sqrt{7})$$

$$x_h = e^{-t/2} \left[a_1 \cos(\sqrt{7t/2}) + a_2 \sin(\sqrt{7t/2}) \right]$$
transients

Re(s)<0 for all roots s of P(s) <=> STABLE

Sparton radio Model 652X from 1940-1942

Modeling an AM radio

Basic process of modeling a system:

(1) Draw a diagram of the system.

(2) Identify and give symbols for the parameters of the system.

(3) Declare the input signal and the system response.

(4) Write down a differential equation relating the input signal and the system response, using Newton's "F = ma" in the mechanical case or Kirkhoff's laws in the electrical case.

(5) Rewrite the equation in standard form.

RLC and mechanical systems

Mechanical		Electrical	
displacement	x	voltage drop	V
mass	m	inductance	L
damping constant	b	resistance	R
spring constant	k	1/capacitance	1/C

 $m\ddot{x} + b\dot{x} + kx = b\dot{y} \qquad L\ddot{V}_R + R\dot{V}_R + (1/C)V_R = R\dot{V}$

Mathlet

 $m\ddot{x} + b\dot{x} + kx = b\dot{y} \qquad L\ddot{V}_R + R\dot{V}_R + (1/C)V_R = R\dot{V}$

We already know:

Maximum gain g=1 for any fixed b,k

Maximum gain at $\omega = \omega_r \sim \sqrt{k/m}$ (indep. of b!)

Can tune radio to "target channel" by changing k (or m)!

Would be nice to "visualize" how system reacts to different frequencies in a plot!

Mathlet: Bode plots

Plot of (real) gain $g(\omega) = |G(\omega)|$

Plot of phase gain $-\phi = \operatorname{Arg}(G(\omega))$

Often: double-logarithmic axes for gain plot ("dB")!

AKA: Amplitude-response curve

Activity: Verify our observations mathematically!

- Here are the observations you have made about this system, translated into the notation of the RLC circuit. The Mathlet fixes m = 1, which corresponds to setting L = 1.
 - 1. The maximum gain is 1, independent of the values of R, and C.
 - 2. The maximum gain occurs at $\omega_r = \sqrt{1/C}$, independent of R.
 - 3. The phase lag at $\omega = \omega_r$ is $\phi(\omega_r) = 0$, while for $\omega < \omega_r$ the phase lag is *negative*: the system response appears to run *ahead* of the input signal.
 - 4. As R decreases, the pass-band narrows.

Mathlet: Nyquist plots

Plot of complex gain in complex plane Yellow: magnitude of G, ie. real gain. $g(\omega) = |G(\omega)|$

Green: $-\phi = \operatorname{Arg}(G(\omega))$

=> phase gain

Curve parameterized by w!

So far:
$$P(D)x = Q(D)e^{i\omega t}$$
.
We only considered sinusoidal input so far. What about more general exponential inputs like e^{st} with s complex?
E.g.: $s = -1/10 + i\pi$ input: $e^{-t/10}\cos(\pi t)$
But derivation of ERF (see notes) also works if s is complex! So:
System $P(D)x = Q(D)e^{st}$ system response $x_p = H(s)e^{st}$

 $H(s) = \frac{Q(s)}{P(s)}$ system function or transfer function

System function extends concept of gain to any complex s. "Gain is system function along imaginary axis s=iw."

Powerful tool to understand a system's behavior to more complicated inputs (in fact, to ALL inputs - later). See also Block diagrams

How can get a qualitative feeling for H(s)?

=> Idea: Graph IH(s)I in the complex plane!

Tuned mass damper

