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Preliminaries
• Course website: http://math.mit.edu/~stoopn/18.031/ 

• Two psets, one 1h exam (50/50 grade) 

• Exam: 1h, during class, Thursday Feb. 2, 3-4pm 

• Pass/fail 

• Pset 1 available on Stellar. 

• 18.03 knowledge assumed 

• Class readings on website

http://math.mit.edu/~stoopn/18.031/


Course contents
• Define the notions of stability, gain, phase lag, frequency response 

and system function for LTI systems. 

• Analyze LTI systems in the frequency domain 

• Transfer function and block diagrams 

• Interpret the pole diagram of a system in terms of stability, gain 
and resonance 

• Laplace transform of a function 

• Inverse Laplace transform to compute the unit impulse response 
of a system modeled by a differential equation. 

• Examples from electrical and mechanical engineering.



System control…



Day 1: 18.03 ReviewLecture 1: 18.03 review

0. Learning objectives

After completing this lecture the student will be able to

1. find a basis of solutions to a homogeneous linear constant coe�cient
ODEs, in terms of exponentials and sinusoids, and determine whether the
equation is stable or not;

2. find a particular solution to a linear constant coe�cient ODE with right
hand side made up of exponentials and sinusoids;

3. use the principle of superposition to find the general solution in terms of
these first two procedures;

4. model mechanical systems using di↵erential equations, using the language
of input signals and system response and the standard form P (D)x = Q(D)y
in terms of characteristic polynomials.

5. determine the complex gain of a system and extract from it the gain and
phase lag.

This lecture is a review, so many explanations are very brief. In partic-
ular, we assume that you understand complex numbers.

1. Motivation.

In this introductory lecture we will review some of the key ideas from 18.03.1.
You’ll refresh your skill at modeling systems using ordinary di↵erential equa-
tions and the input/output model, at finding solutions of these equations,
and in interpreting these solutions in terms of the original system. The key
word is “complex gain.”

2. A mass/spring/dashpot system.

To gain an appreciation for the kind of question we are discussing, study
the Mathlet below. It represents a mass/spring/dashpot system. We are
interested in how the yellow mass moves. The spring is attached to a wall,
and the far end of the dashpot is being moved.

In analyzing any system, we have to specify the input signal and the
output signal or system response. Here we declare the position of the dashpot
piston to be the input signal y(t), and the position of the mass, x(t), to be
the system response. The applet specifies that the input signal is sinusoidal;
indeed it is given by cos(!t), with amplitude 1 and angular frequency !.
What you observe is that the motion of the mass, the system response, is
also sinusoidal, with the same period. This sinusoidal system response is
the “steady state response.”

We can adjust the angular frequency ! using a slider. The Mathlet
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Mathlet Amplitude & Phase 2nd order II

http://mathlets.org/mathlets/amplitude-and-phase-2nd-order-ii/


Activity 1

reminds us that the period is given by 2⇡/!, so that large ! means small
period, and ! = 1 means period 2⇡. The angular period is measured in
radians per second. The angular frequency determines the frequency; it is
!/2⇡, measured in cycles per second, or Hertz. We will always prefer the
angular frequency because it makes our formulas neater.

There are three “system parameters”: the massm, the damping constant
b, and the spring constant k. The mass is fixed at m = 1, but the other two
can be adjusted using the sliders. Spend a few minutes now playing with
this Javascript Mathlet. You can animate it with the [>>] key under the
graphing window.

[[Amplitude and Phase, Second Order II]]

3. Activity.

Use the Mathlet to answer the following questions.

1. What does the blue curve represent?

2. What does the yellow curve represent?

The gain of this system is

gain =
amplitude of system response

amplitude of input signal
.

In this Mathlet, the amplitude of the input signal is fixed at 1, so the gain
equals the amplitude of the sinusoidal system response.

3. Take b = 1.0, k = 2.0, and ! = 1.00, and measure the gain. (Note: you
can set the sliders to certain values by clicking on the hashmarks.)

4. Stay with these values of b and k, but vary !. What is the maximum
gain you observe for this system?

5. Now pick some other value of b and k, and vary the input frequency
!. What is the maximum gain in these cases? Care to formulate a general
conjecture?

6. The angular frequency at which the gain is maximal is the “resonant
angular frequency” !r. Set b = 1.0 and k = 1.0. Measure the value of !r.
Same question for k = 2.0 and k = 4.0. Please suggest a formula for !r in
terms of k, for this value of b.

7. Now select at least one other value for b, and make the same measure-
ments. Based on these experiments, please suggest a formula for !r that
might be valid for all values of b and k.

In this lecture we will remind you of the process of modeling systems
like this, and of how to answering these and many other analogous ques-
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Modeling the system

tions. Some of your discoveries will be addressed in Lecture 2. This system
is interesting; as we will show in Lecture 2, it is a mechanical analogue of
an extremely simple AM radio receiver, and the analysis we carry out de-
termines important features of the radio, such as the frequency it is tuned
to and how sharp the tuning is.

Notation. Almost always, in this course, the indendent variable is time,
denoted t. Functions of time might be denoted x(t), y(t), z(t), f(t); or, for
short, x, y, z, f . We will use the notation

ẋ =
dx

dt

, ẍ =
d

2
x

dt

2
.

4. Modeling the system.

An important part of 18.03.1, and of this course, is the process of modeling
a mechanical or electrical system using ordinary di↵erential equations. The
basic process has the following steps.

(1) Draw a diagram of the system.

(2) Identify and give symbols for the parameters of the system.

(3) Declare the input signal and the system response.

(4) Write down a di↵erential equation relating the input signal and the
system response, using Newton’s “F = ma” in the mechanical case or
Kirkho↵ ’s laws in the electrical case.

(5) Rewrite the equation in standard form.

In our case:

(1) Here is a diagram of the system we are studying.

[[ Image ]]

(2) We have already named the relevant system parameters, on the diagram.
In fact we’ll do a slightly more general case, letting the mass m vary as well
as the spring constant k and the damping constant b.

(3) The input signal is given by the position of the dashpot piston; we will
write y(t) or just y for this function of time. We have to declare also which
is the positive direction for y: It becomes positive when the piston moves
up. The system response we are interested in is the position of the mass,
which we will write x(t). It also becomes positive when the mass moves up.
We also declare x = 0 to be the position at which the spring is relaxed.
Thus when x > 0 the spring is compressed and exerts a force pointing left,
while if x < 0 it is extended and exerts a force pointing right.
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Basic process of modeling a system:

Standard form:              
“Stuff containing output x(t), x’(t) etc. = everything else: input“ 

Example from AP2II: see board



Activity 2

tions. Some of your discoveries will be addressed in Lecture 2. This system
is interesting; as we will show in Lecture 2, it is a mechanical analogue of
an extremely simple AM radio receiver, and the analysis we carry out de-
termines important features of the radio, such as the frequency it is tuned
to and how sharp the tuning is.

Notation. Almost always, in this course, the indendent variable is time,
denoted t. Functions of time might be denoted x(t), y(t), z(t), f(t); or, for
short, x, y, z, f . We will use the notation

ẋ =
dx

dt

, ẍ =
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Review of 18.03
• Operator notation, characteristic polynomial 

• Sinusoidals 

• Complex exponential 

• Solution of homogeneous equations 

• Exponential response formula (ERF)



Activity 3

Example. Find a solution to the equation

ẍ+ 2ẋ+ 2x = 3e�3t
.

The characteristic polynomial is P (s) = s

2 + 2s + 2, and the exponential
constant is r = �3. So P (�1) = (�3)2 + 2(�3) + 2 = 5, and

xp =
e

�3t

5
.

Check it!

The ERF merges beautifully with the theory of complex exponentials.
This is because of the way you di↵erentiate a complex-valued function of
time, such as ert (for r complex): You di↵erentiate real and imaginary parts
separately; they form the real and imaginary parts of the derivative. So if
the coe�cients of a polynomial P (s) are real, then

ReP (D)f(t) = P (D)Re f(t) .

The consequence of this is that if we have a linear di↵erential equation

P (D)x = cos(!t)

with constant real coe�cients, then its solutions are the real parts of solu-
tions of a di↵erent equation, a “complex replacement”:

P (D)z = e

i!t
.

11. Activity.

Find the general solution of the equation

ẍ+ 2ẋ+ 2x = cos(3t) .

Solution. A complex replacement is

z̈ + 2ż + 2z = e

3it
.

Since P (2i) = (3i)2 + 2(3i) + 2 = �7 + 6i, ERF gives solution

zp =
e

3it

�7 + 6i
.
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To recover a solution to the original equation, we need to take the real part
of this. This time we will do this using the rectangular representation of
complex numbers; later we’ll see that it’s an even better idea to use the polar
representation. So we use Euler’s formula and rationalize the denominator:

zp =
�7� 6i

49 + 36
(cos(3t) + i sin(3t))

and the real part is

xp =
�7

85
cos(3t)� �6

85
sin(3t) =

1

85
(�7 cos(3t) + 6 sin(3t)) .

Notice that we have also found a solution to the companion equation

ÿ + 2ẏ + 2y = sin(3t)

– namely the imaginary part of zp:

yp =
�6

85
cos(3t) +

�7

85
sin(3t) = � 1

85
(6 cos(3t) + 7 sin(3t)) .

We’re not done yet. We were asked for the general solution. By the
principle of superposition, we get the general solution by starting with any
“particular” solition and adding the general solution to the corresonding ho-
mogeneous equation. In this case the corresponding homogeneous equation
is

ẍ+ 2ẋ+ 2 = 0 .

We solve this by using the characteristic polynomial again, but in a di↵erent
way: we find its roots. Since P (s) = s

2+2s+2 doesn’t factor in an obvious
way, you can use the quadratic formula, or, as I prefer, complete the square:

P (s) = s

2 + 2s+ 2 = (s+ 1)2 + 1

which is zero when (s + 1)2 = �1, or s + 1 = ±i, or s = �1 ± i. So there
are two complex exponential solutions . . . but since we are interested in real
solutions, we can extract from them two independent real solutions,

e

�t cos t and e

�t sin t .

So our general solution is

x =
1

85
(�7 cos(3t) + 6 sin(3t)) + ae

�t cos t+ be

�t sin t .
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Gain
Consider more general case:

12. Complex Gain.

The combination of complex replacement and ERF e�ciently delivers critical
information about the sinusoidal solutions of equations of the form

P (D)x = (a sinusoid)

or, more generally, of the form

P (D)x = Q(D)(a sinusoid)

This method leads to sinusoidal solutions of the form

xp(t) = Re (Ge

i!t)

where ! is the angular frequency of the input sinusoid andG is some complex
constant.

The smart way to find the amplitude of this sinusoid is to express G in
polar form: say

G = |G|e�i�
, so � = � arg(G) .

Then
z(t) = Ge

i!t = |G|e�i�
e

i!t = |G|ei(!t��)
.

The real part of this is
|G| cos(!t� �) ,

which has amplitude |G|.
For example, the amplitude of the sinusoidal solution we found above is

1

|P (3i)| =
1

|� 6 + 7i| =
1p
85

.

In more detail, the method replaces a sinusoidal input signal by a com-
plex exponential signal ei!t. So we have the equation

P (D)x = Q(D)ei!t .

But
Q(D)ei!t = Q(i!)ei!t ,

and we are looking for solutions of the form

zp = G(!)ei!t
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(where G(!) is a complex number to be determined, depending on ! and
the system parameter). Making the substitution,

P (D)zp = P (D)G(!)ei!t = G(!)P (i!)ei!t ,

so
G(!)P (i!)ei!t = Q(i!)ei!t .

Cancelling the exponential and dividing through, we find

G(!) =
Q(i!)

P (i!)
.

This complex number is the complex gain. It contains both the gain of
the system and the phase lag:

g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)
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plex exponential signal ei!t. So we have the equation

P (D)x = Q(D)ei!t .

But
Q(D)ei!t = Q(i!)ei!t ,

and we are looking for solutions of the form

zp = G(!)ei!t
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(where G(!) is a complex number to be determined, depending on ! and
the system parameter). Making the substitution,

P (D)zp = P (D)G(!)ei!t = G(!)P (i!)ei!t ,

so
G(!)P (i!)ei!t = Q(i!)ei!t .

Cancelling the exponential and dividing through, we find

G(!) =
Q(i!)

P (i!)
.

This complex number is the complex gain. It contains both the gain of
the system and the phase lag:

g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)
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xp = Re(zp) = |G| cos(!t� �)
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.
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g(!) = |G(!)| , �(!) = � arg(G(!)) .

(The negative of the argument, because we are talking about the phase lag
rather than the phase gain.)

13. Activity

Recall that we modeled our system by means of the di↵erential equation

mẍ+ bẋ+ kx = bẏ

where y(t) is the input signal and x(t) is the system response. (Your exper-
iments only dealt with the case m = 1, but you should now let m take on
any positive value.) We are interested in the case

y(t) = cos(!t) .

You took the specific values m = 1, b = 1, k = 2, and ! = 1, and
estimated the gain of the steady state solution to be 0.71. Your assignment
now is to use the methods we have developed to check this, and get an exact
value for the gain. So here are your instructions.

1. Specialize the equation above to the given values of m, b, k, and !.

2. Write down a complex replacement for this equation. (That is, replace y

by e

it.)

3. Find an exponential solution z(t).

4. Use the trick above to find the amplitude of the real part of the exponen-
tial solution. (You don’t have to write down the real part of z(t) explicitly,
since we are only interested in its amplitude.)
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