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Abstract: We present a general framework for inverse design of nanopatterned surfaces that
maximize spatially averaged surface-enhanced Raman (SERS) spectra from molecules distributed
randomly throughout a material or fluid, building upon a recently proposed trace formulation
for optimizing incoherent emission. This leads to radically different designs than optimizing
SERS emission at a single known location, as we illustrate using several 2D design problems
addressing effects of hot-spot density, angular selectivity, and nonlinear damage. We obtain
optimized structures that perform about 4× better than coating with optimized spheres or bowtie
structures and about 20× better when the nonlinear damage effects are included.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Surface-enhanced Raman scattering (SERS) [1,2] is a common method to increase the sensitivity
of Raman spectroscopy, [3] with enhancements of Raman signals reaching ∼ 1010 for a single
molecule [4–7], important for a wide variety of sensing applications [8]. In SERS, Raman-active
molecules are placed in the vicinity of a textured surface (e.g. coated with metal nanoparticles
[2]) that provides two multiplicative resonant enhancements: it concentrates the incoming pump
field of frequency ω1 at the molecule’s location, and it also Purcell-enhances the emission at
a shifted frequency ω2. In previous work, we derived general upper bounds on the Raman
enhancement for arbitrarily-shaped structures given the material’s susceptibility, the size of
the scatterer, and the distance to the molecule [9]. Motivated by optimistic results from these
bounds, we used topology optimization (TopOpt) [10,11]—in which every “pixel” of a design is
a degree of freedom (Sec. 3, below)—to inverse-design novel structures maximizing the Raman
enhancement, leading to ∼ 100× improvement over conventional structures [11].

This previous work only analyzed the emission of a single molecule placed at a “hot spot” of
maximal electric-field intensity [10,11]. In many practical experiments, however, the molecules
are distributed randomly in space, either suspended in a fluid or deposited onto a surface, [12,13]
so only a small fraction of the molecules experiences the peak hot-spot enhancement. [14–16]
It is an open question to determine what structures maximize average enhancement over all
molecule locations. Some authors have analyzed the effect of one or two geometric parameters on
averaged enhancement using a simplified metric discussed below [17,18], but neither large-scale
optimization (e.g. TopOpt) nor a comprehensive theoretical approach have been developed. Also,
additional nonlinear effects arise in UV Raman spectroscopy, where extremely high intensities
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(“too hot” hot spots) can damage the molecules and quench emission [15,16], but the implications
of the effect on optimal design have never been analyzed. Spatially distributed SERS emission is
challenging to model rigorously, as it naively requires running a large number of simulations for
molecules at different locations, which is especially problematic for inverse design where many
structures must be simulated over the course of optimization. Building on a recently developed
trace formulation for optimizing incoherent emission processes [19], in this paper we propose an
efficient technique for simulation and inverse design of spatially averaged SERS enhancement
and analyze its results for TopOpt applied to several example problems addressing effects of
hot-spot density, angular selectivity, and nonlinear damage.

In particular, we show that spatially averaged SERS emission in a single direction can be
modeled with only two Maxwell solves (i.e., two numerical solutions of the discretized Maxwell
equations), one for the pump process and another “reciprocal” solve for the average emission
over all molecule locations (Sec. 2.3), easily generalized to support nonlinear damage (Sec.
4.3) and/or anisotropic Raman polarizability. Moreover, this formulation is straightforwardly
compatible with large-scale inverse design, requiring only two additional “adjoint” simulations
[20] to compute the sensitivity of the output power with respect to “every pixel” of the design
(e.g. a material density at every point in TopOpt, Sec. 3). Previous authors employed a simplified∫
|E1 |

4 metric for distributed Raman emission [17,18], where E1 is the pump electric field, and
we show that this is a special case of our framework when the emission is in the same direction
as the pump, the Raman shift is negligible (ω1 ≈ ω2), and the Raman molecule is isotropic. We
also analyze how the ∼ |E1 |

4 nonlinearity favors hot spots and field singularities (from sharp
corners) in 3D, but less so in 2D (Sec. 2.4).

We apply TopOpt to various example problems in 2D to illustrate the key tradeoffs and physical
effects (Sec. 4): normal incidence and emission (Sec. 4.1), 30◦ pump and normal emission
(which performs nearly as well but with a very different design Sec. 4.2), emission with UV-like
nonlinear damage (again leading to very different designs Sec. 4.3), and emission only from a
material-surface coating [13] rather than in a volume/fluid coating (Sec. 4.4). By comparing
TopOpt for periodic surfaces of varying periods, we observe a best density of the resulting hot
spots (Sec. 4.1). We obtain optimized structures that perform about 4× better than coating with
optimized spheres or bowtie structures and about 20× better when the nonlinear damage effects
are considered. Also, we find similar optimized structures when Raman-active molecules are
distributed only on the metal surface, as opposed to throughout a volumetric (fluid) coating.
We believe that this framework sets the stage for future work in 3D (where field singularities
are stronger), TopOpt for dielectric Raman [21] (instead of metal, trading sharper resonances
for weaker localization), and related problems in scintillation detectors (where previous work
optimized emission but not absorption [22]).

2. Model formulation

In this section, we provide a general mathematical framework for optimizing spatially averaged
SERS enhancement. We begin with the numerical model for Raman scattering (Sec. 2.1) and
then show how the trace formulation can be applied to the SERS problem in general (Sec. 2.2).
Next, we consider the special case where the Raman signals are received in a single direction
(Sec. 2.3). Finally, we provide some analysis of the singularities in the SERS problem (Sec. 2.4).

2.1. Numerical model for Raman scattering

Raman scattering can be modeled as a combination of two electromagnetic processes [2]: first,
an incident laser (or equivalent current [23] source J1) produces an electric field E1e−iω1t

at a frequency ω1. This solves the linear Maxwell equations M1E1 = iω1J1, where M1 is
the Maxwell (vector Helmholtz) operator M1 = ∇ × µ−1

1 ∇ × −
ω2

1
c2 ε1 with ε1(x) and µ1(x)
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being the relative electric permittivity and magnetic permeability at frequency ω1. Second, a
molecule at position x0 with a Raman polarizability tensor α produces a dipole current density
J2 = αE1(x0)δ(x − x0)e−iω2t at a frequency ω2, which produces an emission field E2 satisfying
M2E2 = iω2J2, where M2 is the Maxwell operator at the frequency ω2. The difference |ω2 − ω1 |
is the Raman shift, and usually |ω2 − ω1 | ≪ |ω1 |.

Numerically, we discretize this problem (e.g. using finite elements) into a sequence of
finite-sized systems of linear equations:

M1u1 = b1, b2 = Au1, M2u2 = b2, (1)

where u1 (u2) is a vector representing the discretized incident (emission) fields, A is the discretized
Raman polarizability tensor, and b1 (b2) is a vector representing the discretized source term. In
the following, it is algebraically convenient to work with such a discretized (finite-dimensional)
form to avoid cumbersome infinite-dimensional linear algebra, but one could straightforwardly
translate to the latter context as well [24].

Typically, we are interested in maximizing the power radiated into one or more direc-
tions/channels by u2 for a given incident source b1. This can be expressed as quadratic functions
of the emission fields u2 via the Poynting flux. Since the power is always a real-valued quantity,
it corresponds in particular to a Hermitian quadratic form

P = u†

2Ou2 , (2)

where † denotes the conjugate transpose (adjoint), and O = O† is a Hermitian matrix/operator. In
addition, since the power must be non-negative, O must furthermore be a positive semi-definite
Hermitian matrix (i.e., non-negative eigenvalues) in the subspace of permissible u2.

When the Raman-active molecules are distributed randomly in some region, one needs to
solve for the emission field u2 for every single molecule (different α and A) and then take the the
average:

⟨P⟩α = ⟨u†

2Ou2⟩α = ⟨u†

1A†M−†

2 OM−1
2 Au1⟩α, (3)

where ⟨· · · ⟩α denotes an average over all allowed molecule positions x0 and orientations of the
molecule (possibly weighted by some nonuniform probability distribution). Note that the only
terms that depend on the Raman-active molecules are A and A†. Naively, this average could be
computed by a multidimensional quadrature (numerical integral) of Raman solves—that is, we
solve Eq. (1) for many different positions and orientations in order to average explicitly. However,
this could be computationally expensive because of the many Maxwell solves that are required,
and it may be prohibitive in the context of TopOpt where the averaging must be repeated for
many geometric shapes. Instead, we employ a trace formulation proposed in a recent work [19]
to compute this average during TopOpt efficiently.

2.2. Trace formulation for Raman scattering

The trace formulation [19] is motivated by previous works on thermal emission, luminescence,
and related problems [25–27], where methods were developed to model incoherent emission
from many molecules in a large volume as a single matrix trace operation, rather than individual
matrix solves for every emitter point. Here, we briefly introduce this approach and show how it is
applied in the spatially-averaged SERS problem.

The key idea is to rewrite our scalar objective Eq. (3) as a “1 × 1” trace, and then employ the
cyclic-shift trace property [28] to group the Au1 terms together:

⟨P⟩α = tr
[︂
⟨u†

1A†M−†

2 OM−1
2 Au1⟩α

]︂
= tr

⎡⎢⎢⎢⎢⎢⎢⎣M
−†

2 OM−1
2 ⟨Au1u†

1A†⟩α⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
B

⎤⎥⎥⎥⎥⎥⎥⎦ . (4)
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We now derive a simple, tractable expression for the correlation matrix B = ⟨Au1u†

1A†⟩α arising
in the Raman trace, noting that u1 = M−1

1 b1 is a fixed vector independent of A. Recall that, for
a single molecule at position x0, the term b2 = Au1 represents the source current generated by
the Raman polarizability tensor, discretized in a particular numerical scheme for Maxwell’s
equations. In particular we consider the expansion of the Raman source current in a finite-element
basis [29]:

(b2)n =

∫
Ω

[αE1δ(x − x0)] · ûn(x)dΩ, (5)

where ûn(x) is the real vector-valued finite element basis function (Nedelec elements in 3D, or v̂nẑ
with scalar Lagrange elements v̂n in 2D for z-polarized fields) [29], and Ω is the computational
domain. We can then write the components of the correlation matrix B as

Bmn = ⟨(b2)m(b2)n⟩α =

∬
ûm(x)TCα(x, x′)ûn(x′)dΩdΩ′, (6)

where Cα(x, x′) = ⟨α(x)E1(x)E†

1(x
′)α†(x′)⟩α = ⟨α(x)E1(x)E†

1(x)α
†(x)⟩α δ(x − x′) because the

emission process is incoherent: different points in space emit with uncorrelated phases.
The simplest case is that of isotropic (scalar) Raman polarizability α, in which case

⟨α(x)E1(x)E†

1(x)α
†(x)⟩α = ⟨|α(x)|2⟩αE1(x)E†

1(x). Defining |α0(x)|2 = ⟨|α(x)|2⟩α as the mean-
square polarizability at each point (i.e. the Raman polarizability multiplied by the probability
of the molecule being at that point), we obtain Cα(x, x′) = |α0(x)|2E1(x)E†

1(x
′)δ(x − x′) and

consequently:

Bmn =

∫
|α0(x)|2ûT

mE1E†

1ûndΩ . (7)

For the more general case of an anisotropic Raman polarizability tensor α, the expression
⟨α(x)E1(x)E†

1(x)α
†(x)⟩α must be averaged over all possible orientations of the molecule, corre-

sponding to a average of QαQTE1E†

1(x)Q
Tα†Q over all possible 3 × 3 rotation matrices Q. If all

orientations are equally likely, this rotation average can be computed analytically with the help of
formulas derived in Ref. [30].

Once the correlation matrix B is determined, we can then apply different techniques developed
in our previous work [19] to combine the trace estimation problem with the TopOpt for different
scenarios depending on the number of input and output channels. In this paper, we focus on the
case where the emitted Raman signals are received in a single direction/channel, which means
the objective matrix O now becomes rank 1, and the trace formulation also simplifies to two
Maxwell solves, one forward and one reciprocal, as discussed below.

2.3. Single-channel simplification

For spatially incoherent Raman emission into a single direction/channel, the average power of all
the emitters can be computed with a single “reciprocal” solve. This was derived in a very general
setting by our previous work [19] and is closely related to the well-known Kirchhoff’s law of
thermal radiation (reciprocity of emission and absorption) [31] as well as analogous results for
light-emitting diodes [32] or scintillation [22]. In this section, we apply the algebraic framework
of Ref. [19] to the specific case of Raman emission.

The power emitted into a single direction can be expressed as a mode overlap integral of the
emitted field u2 and a planewave mode o, which is algebraically of the form ∥o†u2∥

2 [33]. In
terms of the quadratic form Eq. (2), the objective matrix O is now simply a rank-1 matrix O = oo†
[19], and the objective trace Eq. (4) reduces to

⟨P⟩α = tr
[︂
M−†

2 oo†M−1
2 B

]︂
= u′

2
†Bu′

2, (8)

where u′
2 = M−†

2 o corresponds to solving a conjugate transposed Maxwell problem with a
“source” o at the output location – closely related to electromagnetic reciprocity [31]. Note that
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matrix B is constructed from the pump field u1, so Eq. (8) requires only two Maxwell solves –
pump field u1 = M−1

1 b1 and reciprocal field u′
2 = M−†

2 o – to obtain the averaged power.
The formulation can be further simplified when the Raman-active molecule is isotropic.

Inserting Eq. (7) into Eq. (8), we obtain

⟨P⟩α =
∫

|α0(x)|2 |E1(x)|2 |E′
2(x)|

2 dΩ , (9)

where α0(x) indicates the distribution of molecules, E1(x) is the pump field constructed from u1,
and E′

2(x) is the reciprocal field constructed from u′
2. Therefore the averaged power is just an

overlap integral of the molecular distribution, the pump field intensity, and the reciprocal field
intensity.

From Eq. (9), we can also see that the equation further simplifies if (i) the pump and emission
directions are the same and (ii) we make an approximation of a negligible Raman shift (ω1 ≈ ω2),
in which case one can take E′

2 ≈ E1. For isotropic Raman polarizability whose mean |α0 |
2 is

constant in some volume V and zero elsewhere, this leads to the
∫
V |E1 |

4 figure of merit used in
several previous works [17,18] for Raman power (which is often presented heuristically, but has
also been justified using reciprocity [34]).

2.4. Corner singularities and hot spots

It is common knowledge that SERS tends to favor geometries with “hot spots” where high
field intensities arise from geometric singularities such as sharp tips/cusps, bowtie antennas, or
touching spheres, especially for single-molecule SERS where the enhancement theoretically
diverges in the limit of arbitrarily sharp tips (in the continuum macroscopic Maxwell equations
with local materials). However, it is less clear whether the average Raman enhancement of many
volume-distributed emitters still favors such hot spots, since the effect of a field singularity might
be spatially averaged out. In this section, we analyze the effect of corner singularities on average
Raman enhancement in 2D and 3D for the single-channel isotropic-Raman case of Eq. (9).

Field singularities at sharp corners are frequency-independent and can be analyzed purely
using electrostatics [35], so the pump E1 and reciprocal E′

2 fields have identical scaling near a
sharp tip. Therefore, without loss of generality, we can analyze the simplified metric

∫
|E1 |

4 in
the neighborhood of a sharp tip.

For a 2D sharp corner in a dielectric or metallic material ε enclosing an angle ϕ<π, the field
singularity of the field E1 is a fractional power law in the distance r from the tip [35]:

E1 ∼ rt−1 , (10)

where the exponent 1/2<t<1 depends on ε and ϕ via a transcendental equation [35], which
simplifies to t = π

2π−φ for a perfect electric conductor. The contribution of this singularity to∫
|E1 |

4 then scales as
∫

r4(t−1)r dr ∼ r4t−2, but t>1/2 =⇒ 4t − 2>0, so the integral is finite and
the singularity is integrable. Hence, in 2D there is no reason for optimization to favor arbitrarily
sharp tips. (The same is true for “2D edges” in 3D.) In Sec. 4.1, we correspondingly show that
the topology-optimized geometry does not exhibit sharp features, even without manufacturing
constraints to prohibit such features [36], and performs better than optimized touching spheres or
bowtie antennas with a field singularity. The optimized fields still exhibit “hot spots” with high
intensity, but no singularities.

In 3D, the field singularity at sharp tips (e.g. cones or corners) is stronger than in 2D. For
example, the fields at the tip of a 3D cone with angle ϕ<π also exhibit a singularity E1 ∼ rt−1 but
with a stronger power law 0<t<1 (e.g. t = 1

2 log(8/φ)>0 for perfect conductors) [37]. The integral
then becomes

∫
r4(t−1)r2 dr ∼ r4t−1, which diverges for t<1/4 (sufficiently small ϕ). Therefore,
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we expect that 3D topology optimization of incoherent Raman emission will favor arbitrarily
sharp tips, limited only by the imposition of manufacturing constraints [36].

It is worth contrasting the Raman case, in which the field singularity is squared by the
conjunction of pump and emission enhancement, with spontaneous emission in cases with
non-optical pumping, such as light-emitting diodes [32], scintillation from high-energy particles
[22], or thermal emission. In such cases, if the excitation is nearly uniform in the vicinity of a sharp
tip, then the emitted power scales as

∫
|E′

2 |
2 from the reciprocal field alone. The contribution

of a corner singularity is then ∼
∫

r2(t−1)r dr ∼ r2t in 2D (t>1/2) and ∼
∫

r2(t−1)r2 dr ∼ r2t+1

in 3D (t>0), both of which vanish as r → 0. In consequence, one does not expect arbitrarily
sharp corners/tips to be favored when optimizing spatially averaged emission alone or a spatially
averaged local density of states, LDOS. Indeed our previous work on topology optimization of
incoherent emission [19] or scintillation [22] did not exhibit arbitrarily sharp corners, in contrast
to the “bowtie antenna” singularities that typically arise when optimizing emission/LDOS from
a single emitter location [38,39]. Similar considerations apply to optimization of photovoltaic
cells, since maximizing absorption is equivalent to maximizing spatially averaged emission via
Kirchhoff’s law.

3. Density-based topology optimization

In this section, we briefly review the technique of density-based TopOpt [40], which is used to
solve the inverse design problem of tailoring the surface geometry to maximize our Raman-power
objective from the previous section.

In density-based TopOpt, a continuous design field (density) ρ(x) ∈ [0, 1] is defined on the
spatial “design” domain. This design field is first passed through a smoothing filter to regularize
the optimization problem that sets a filter lengthscale rf , as otherwise one may obtain arbitrarily
fine features as the spatial resolution is increased. (Additional steps are required to impose strict
manufacturing constraints [36]). The smoothing convolves ρ with a low-pass filter to obtain a
smoothed density ρ̃ [40]. There are many possible filtering algorithms, but in a finite-element
method (FEM) setting, especially with complicated nonuniform meshes, it is convenient to
perform the smoothing by solving a simple “damped diffusion” PDE, also called a “Helmholtz”
filter [41]:

−r2
f ∇

2 ρ̃ + ρ̃ = ρ ,
∂ρ̃

∂n

|︁|︁|︁|︁
∂ΩD

= 0 ,
(11)

where rf is the lengthscale parameter, and n is the normal vector at the boundary ∂ΩD of the
design domain ΩD. This filter essentially makes ρ̃ a weighted average of ρ over a radius of
roughly rf [41].

Next, one employs a smooth threshold projection on the intermediate variable ρ̃ to obtain a
“binarized” density parameter ˜̃ρ that tends towards values of 0 or 1 almost everywhere [42]:

˜̃ρ =
tanh(βη) + tanh (β(ρ̃ − η))
tanh(βη) + tanh (β(1 − η))

, (12)

where β is a steepness parameter and η = 0.5 is the threshold. During optimization, one
begins with a small value of β to produce smoothly varying structures, and then one increases
β progressively to binarize the structure [10]; here, we used β = 8, 16, 32, similar to previous
authors.

Finally, one introduces a material, described here by an electric relative permittivity (dielectric
constant) ε(x) in the Maxwell operator M1 or M2, given by:

ε(x) =
[︁
nf + (nmetal − nf) ˜̃ρ(x)

]︁2 , (13)
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where nf is the refractive index of the background fluid (water, nf = 1.33), and nmetal is the complex
refractive index of the design metal (silver) throughout this work. Note that we interpolate the
electric relative permittivity of the material via the refractive index, instead of directly from
the electric relative permittivity, in order to avoid artificial singularities that may arise when
interpolating between negative (metallic) and positive (dielectric) ε [43].

Numerically, we employ a recent free/open-source FEM package, Gridap.jl [44], in the Julia
language [45], which allows us to code highly customized FEM formulations efficiently in a
high-level language. We discretized ρ and { ρ̃, ˜̃ρ} with piecewise-constant (0th-order) and first-
order elements, respectively. During optimization, one must ultimately compute the sensitivity
of the objective function with respect to the degrees of freedom ρ. For each step outlined above
(smoothing, threshold, PDE solve, etc.), we formulate a vector–Jacobian product following the
adjoint method for sensitivity analysis [20] with some help from automatic differentiation [46].
Then these are automatically composed (“backpropagated”) by an automatic-differentiation (AD)
system [47]. In this way, the gradient with respect to all of the degrees of freedom (ρ at every
mesh element) can be computed with only two additional adjoint Maxwell solves [20].

4. Results

In this section, we present various example problems building from a single-channel framework
(Sec. 2.3), illustrating the key tradeoffs and physical effects. We begin with the simplest case
with normal incidence and emission (Sec. 4.1), revealing a best density of the hot spots. Next,
we show that the pump and emission angles can also be considered as design parameters. We
provide an example where the pump field is fixed at angle θ1 = 30◦ and we search for the best
emission angle, which turns out to be roughly normal emission and performs nearly as well as
the normal-incidence pumping but with a very different design (Sec. 4.2). Then we take into
consideration the effect of UV-like nonlinear damage [15] quenching the emission and optimize
with this taken into account, which again leads to very different designs (Sec. 4.3). Finally,
we briefly discuss the case where SERS emission is only from molecules coating the material
surface rather than being distributed throughout the volume of a fluid (Sec. 4.4).

Figure 1 is a sketch of the single-channel SERS design problem in 2D. The Raman-active
molecules are distributed uniformly in a fluid (water) background above a periodically patterned
metal (silver) surface with period L. Since the Raman signal is proportional to the density of the
molecules (indicated by the Raman polarizability α0(x)), we chose |α0(x)|2 = 1− ˜̃ρ for simplicity.
An incident planewave (Hz-polarized, λ1 = 532 nm) at angle θ1 excites the molecules, and the
Raman-shifted power (λ2 = 549 nm) at angle θ2 is measured and optimized. The design region
is an L × H (200 nm) rectangular domain, in which the material can either be fluid (i.e. with
molecules) or metal (i.e. without molecules). We sweep the optimization over different periods L
to find a best period, which corresponds to a best density of hot spots. An infinitely thick layer of
molecules would emit infinite power in the absence of water absorption and pump depletion, but
since we are only interested in optimizing near-field enhancement we limit the Raman-active
molecules to a half-wavelength layer of thickness HR = (λ1 + λ2)/(4nf) above the design domain.

4.1. Normal incidence and emission

In this example we consider the case when the incident pump and measured emission are both
normal to the surface (θ1 = θ2 = 0◦). We maximize this power P of the emitted Raman signal at
different periods L, normalized to a baseline power for a flat metal surface (metal half-space).
Since this optimization problem is non-convex, TopOpt may easily converge to different local
optima from different initial geometries [20]. In Fig. 2, we plot only the local optima with largest
power we found for each period (from 100 nm to 500 nm with a sampling of 50 nm spacing) for
20 different random starting structures. We find that the largest local optima have very similar
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Design Domain

Metal

L

1 2

1
2

Raman Molecule

Fluid

Periodic Boundary

H

H
R

Fig. 1. Sketch of the 2D Raman scattering design problem. The Raman-active molecules
are distributed uniformly in fluid (water, nf = 1.33) background near a periodically patterned
metal (silver) surface with period L. The incident planewave (Hz-polarized, λ1 = 532 nm,
green) at angle θ1 excites the molecules, and the Raman-shifted signal (λ2 = 549 nm, blue)
at angle θ2 is measured and optimized. A half-wavelength molecular layer of thickness
HR = (λ1 + λ2)/(4nf) is placed above the design domain of height H = 200 nm.

performance, within ∼ 10%, giving us some confidence that there are unlikely to be dramatically
better local optima yet to be found.

As shown in the inset of Fig. 2, the optimized patterns share a small “notch” feature that creates
a hot spot (localized resonance), and some of them exhibit spontaneous symmetry breaking: the
resulting pattern is asymmetric although the problem is mirror-symmetric [48]. This “notch” hot
spot is different from the field singularity arising from sharp corners where the field theoretically
diverges. Here, the minimum length-scale of those notches is about 10 nm (note that this is 2
times of the filter size of 5 nm, thus the notch size is not constrained by filter size). The best
density of those hot spots is found to be at period L = 400 nm, which is nearly the wavelength
λvacuum

√︂
1
εf
+ 1

εmetal
= 375 nm of surface plasmons at a flat silver–air interface [49]. We also did

a similar optimization in the UV regime with λ1 = 400 nm and λ2 = 437 nm (not shown here),
and the best period L = 300 nm was also found to be close to the surface-plamson wavelength
241 nm. Intuitively, periodic perturbations with this wavelength implement a grating coupler
between normal-incident radiation and a surface-plasmon resonance [49,50], but of course the
period changes as the surface is deformed substantially. We also performed an optimization for a
doubled period of L = 800 nm (not shown), and unsurprisingly found that it converges to two hot
spots in each unit cell with similar performance to the single-hotspot L = 400 nm design.

To gain a better understanding of how the optimized surface performs, we also compare to a
surface coated with optimized spheres – optimized over both the sphere diameter and period.
As shown in Fig. 3(a), the optimized spheres are of diameter 310 nm and have period equal to
their diameters (i.e. touching). The performance of our TopOpt surface is about 4× better than
that of the optimized spheres. A similar optimization was carried out for a bowtie structure, and
the optimized bowtie performs slightly worse than the optimized spheres. From the pump field
displayed below the pattern in Fig. 3, we can also see that the notch hot spot in the optimized
surface is more spread out than the singular hot spot produced by tangent spheres—as predicted
in Sec. 2.4, 2D distributed SERS emission does not favor singularities at points or cusps.
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nm. The pumping fields |E1 | are displayed below the pattern. The reciprocal fields |E′
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similar because of the small Raman shift.

4.2. Oblique incidence

In this example (Fig. 4), we consider the case where the incident pump field is fixed at an angle
θ1 = 30◦ and we search for a best surface and emission angle θ2 to maximize the power (per unit
cell) of the emitted signal for a fixed period of L = 400 nm.

In Fig. 4(a), we show the optimized surface, which we find to be best by scanning the power
over all emission angles θ2 (Fig. 4(b)). As it happens, the best emission angle for this structure is
nearly 0◦. The structure again has small notches that create hot spots, but with a very different
design compared to the normal-incident pump in the previous section. The power near θ2 = −30◦,
inverse to the incident direction, is also large, which is expected since the reciprocal field is
similar (for small Raman shift) to the pump field when θ1 = −θ2. On the other hand, the emitted
power at θ2 = 30◦ is very low. From Fig. 4(c), we can see that this occurs because the reciprocal
fields E′

2 excite a localized resonance for both θ2 = −30◦ and 0◦ but not at θ2 = 30◦. After all, the
resonant frequencies of a periodic surface depend on angle, corresponding to a Bloch wavevector.
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4.3. Nonlinear damage

In this example, we consider how to design surfaces that enhance spatially-averaged SERS spectra
without creating very strong localized fields that will damage molecules and quench emission, a
familiar nonlinear phenomenon observed experimentally, especially for UV SERS spectroscopy
[15,16]. Here we assume a threshold magnitude |Eth |, above which the pump fields will damage
the molecules and quench emission. We model this phenomenon by treating the mean Raman
susceptibility |α0 |

2 in Eq. (9) as nonlinear, exponentially decreasing for pump fields larger than
the threshold. We replace |α0 |

2 with

|α0(x)|2

1 + exp
[︁
γ(|E1 |2 − |Eth |2)

]︁ , (14)

where γ is a coefficient that determines the rapidity of the damage threshold. A sharp cutoff
for emission would correspond to γ → ∞, but such a step-function behavior would make
the problem non-differentiable and impractical to optimize. Instead, we use γ = γ0/|Eth |

2,
where γ0 ∈ {1, 10, 100} is progressively increased during optimization, as was done with the β
parameter of binarization reviewed in Sec. 3.

Figure 5(a) shows the optimized surface for a nonlinear damage threshold |Eth | = 10 and a
pump planewave with |E | = 1, assuming normal incidence at λ1 = 532 nm and normal emission
at λ2 = 549 nm. We can see that the pump-field pattern is much more spatially spread out than
the highly concentrated hot spots of the previous sections. For comparison, if we use the previous
structure optimized without a threshold constraint from Sec. 4.1, we find that its performance
rapidly degrades in the presence of nonlinear damage. This is shown in Fig. 5(b): the emitted
power falls rapidly with decreasing damage threshold for the surface and spheres optimized
without this threshold because it is easy for the pump field to damage the molecules in their hot
spots. However, the emitted power from the design with nonlinear damage taken into account
remains constant for powers above the design threshold |Eth | = 10 and only drops for thresholds
lower than this. Moreover, it performs about 20× better than the optimized spheres at |Eth | = 10.
Because for the optimized spheres, a large region around the hot spots above the threshold will
go dark and the fields change more rapidly. However, for the optimized structure with threshold,
the fields are more evenly distributed below the target threshold.
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4.4. Surface emitters

In some experiments, there is a monolayer of Raman-active molecules deposited on the metal
surface [13,15], which increases their exposure to the resonant enhancement. In this case, the
average emission should be computed as a integral over the surface instead of the volume, as in the
examples above. One simple technique to model this is to make the mean Raman polarizability
|α0 |

2 proportional to ˜̃ρ(1 − ˜̃ρ), which is ≈ 0 except near the metal surface. (Here, ˜̃ρ is the
thresholded and filtered density field from Sec. 3. More rigorously, one can employ a double
filtering technique to achieve exact identification of the surface [51–53]). This allows us to take
the surface geometry into account during sensitivity analysis and optimization.

Figure 6 shows the optimized surface for spatially-averaged SERS emission and the corre-
sponding pump fields. We can see that the surface also has “notch” structures, but with a smaller
minimum lengthscale of about 5 nm compared to the volume-averaged TopOpt surface in Sec.
4.1, and performs about 3× better than the optimized spheres when averaged over the surface.
One thing to be noted is that the surface integral could diverge in principle at sharp corners, as
can be seen from the

∫
|E1 |

4 metric (Sec. 2.4). Here, the design does not seem to exhibit sharp
corners, probably because we imposed a soft minimum lengthscale by setting a smoothing filter
radius of rf = 2 nm. However, one might ultimately need to impose manufacturing constraints
and/or nonlinear damage thresholds to prevent inverse design from favoring singular structures
for surface emission, even in 2D.
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Fig. 6. Optimized (silver) surface for surface-average instead of volume-average at period
L = 400 nm, for an pump field at λ1 = 532 nm and emission field at λ2 = 549 nm.
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5. Conclusion

We presented a general framework for optimizing spatially-averaged SERS enhancement, requiring
only two Maxwell solves per optimization step for emission in a single direction. We explored
this technique with a number of 2D examples to illustrate the computational technique as well as
the basic phenomena of best hot-spot densities, angular dependence, and the effect of nonlinear
damage. The next step is to carry these techniques into 3D, where the same computational
principles apply but radically different structures may arise due to the stronger singularities at
sharp 3D tips (Sec. 2.4). In 3D, these singularities mean that the imposition of manufacturing
constraints [36] and/or nonlinear thresholding will play a key role. Because only a small range
of geometries have previously been explored for this problem, it is possible that substantial
practical improvements may be uncovered by TopOpt for 3D SERS, especially in less-explored
circumstances such as distinct input/output directions, nonlinear damage, or even integrated
SERS with waveguide channels [10].

Another important complementary problem is the development of theoretical upper bounds
to distributed SERS emission, generalizing earlier work bounding emission at a single location
[9], as well as related efforts to bound the “density” of resonant modes (e.g. for solar cells [54]).
Computationally, there are a wide variety of nonlinear-optics problems that may potentially be
optimized using techniques involving coupled linear Maxwell solves, from scintillation processes
[22] to harmonic generation [55]. Balancing the tradeoffs between multiple physical processes is
precisely where large-scale optimization has the greatest advantages over intuitive human design.
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1. Erratum

1.1. Non-integrable geometric singularities in 2d

In the vicinity of sharp geometric wedges, "hot-spots" in the electric field emerge. Sec. 2.4.
Corner singularities and hot spots describes field singularities of the electric field E1 as a
fractional power law in the distance r from the tip of a geometric singularity as described in [1]:

E1 ∝ rt−1 (1)

t can be solved via a transcendental equation depending on the angle ϕ and ε. The original
manuscript [2] correctly states that the singularity is always integrable in 2d (but not 3d) for
dielectrics (Re ε>0). However, non-integrable singularities can be found for metals (Re ε<0) such
as silver at specific 2d angles. For example, a 35° silver 2d corner for λ = 540nm (Re ε = −12.4)
results in a non-integrable singularity with t ≈ 0.3.

Nevertheless, these singularities are weak enough that they do not appear in freeform topology
optimization of metals such as the ones in our paper, because the finite computational “mesh”
resolution is enough to dampen/regularize the singularity. (We find that a sharp corner only arises
from topology optimization if we build a high-resolution corner of the correct angle into the mesh
a priori.) In manufacturable designs, corner singularities are prohibited by imposing lengthscale
constraints [3]. Physical metals also exhibit nonlocal effects at few-nm lengthscales [4] that
suppress corner singularities. As the original manuscript correctly notes, such regularizations
are also necessary to suppress non-integrable corner singularities (even for dielectrics) in 3d.
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1.2. Single-channel simplification: correction to Equation 9

In the case of an isotropic Raman-active molecular distribution, Eq. (8) simplifies to the following
expression for the spatially averaged surface-enhancement:

⟨P⟩α =
∫

|α0(x)|2 |E1(x)∗ · E′
2(x)|

2dΩ (2)

This equation should replace Eq. (9) in the original manuscript, which incorrectly expressed
the integrand as |E1(x)|2 |E′

2(x)|
2.

The numerical simulations in the original manuscript were correct, however, as they employed
the correct expression above. Moreover, the further simplification to |E1(x)|4 (for the E1 = E′

2
case where the pump and emission frequencies and angles coincide) remains correct. Therefore,
the results and conclusions of the paper are unaffected.
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