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Casimir microsphere diclusters and three-body effects in fluids
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Our previous paper [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-
dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was
illustrated via a dicluster configuration of nontouching objects consisting of two spheres immersed in a fluid and
suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical
experiment and consider the influence of nonadditive, three-body, and nonzero-temperature effects on the stability
of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable
silicon-teflon spherical diclusters to those consisting of layered microspheres, such as the hollow core (spherical
shells) considered here.
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I. INTRODUCTION

In this paper, we investigate the influence of nonadditive
(three-body) and nonzero-temperature effects on our earlier
prediction that the Casimir force (which arises from quan-
tum electrodynamic fluctuations [1–4]) can enable dielectric
objects (microspheres) with certain material dispersions to
form stable nontouching configurations (diclusters) in fluids
[5,6]. Such microsphere interactions are predicted to possess
a variety of unusual Casimir effects, including repulsive
forces [7–9], a strong interplay with material dispersion [5],
and strong temperature dependences [10], and may have
applications in microfluidic particle suspensions [11,12]. A
typical situation considered in this paper is depicted in Fig. 1,
consisting of silicon and teflon microspheres suspended in
ethanol above a gold substrate. Although our earlier work
considered pairs of microspheres suspended above a substrate
in the additive or pairwise approximation, summing the exact
two-body sphere-sphere and sphere-substrate interactions, in
this paper we perform exact three-body calculations. In Sec.
II, we explicitly demonstrate the breakdown of the pairwise
approximation for sufficiently small spheres, in which an
adjacent substrate modifies the equilibrium sphere separation,
but we also identify experimentally relevant regimes in
which pairwise approximations [and even a parallel-plate
proximity-force approximation (PFA) [13]] are valid. In
Sec. III, we also consider temperature corrections to the
Casimir interactions. Although a careful choice of materials
can lead to a large temperature dependence stemming from the
thermal change in the photon distribution [10,14,15], we find
that such thermal-photon effects are negligible (< 2%) for the
materials considered here. However, we show that substantial
modifications to the object separations occur due to Brownian
motion of the microspheres. This effect can be reduced by
lowering the temperature, limited by the freezing point of
ethanol (T ≈ 159 K), or by increasing the sphere diameters.
We propose experimentally accessible geometries consisting
of hollow microspheres (which can be fabricated by standard
methods [16]) whose dimensions are chosen to exhibit a clear
stable nontouching equilibrium in the presence of Brownian

fluctuations. We believe that this work is a stepping stone to
direct experimental observation of these effects.

In fluid-separated geometries, the Casimir force can be
repulsive, leading to experimental wetting effects [17–19]
and even recent direct measurements of the repulsive force
in fluids for sphere-plate geometries [20–22]. In particular,
for two dielectric or metallic materials with permittivity ε1

and ε3 separated by a fluid with permittivity ε2, the Casimir
force is repulsive when ε1 < ε2 < ε3 [7]. More precisely, the
permittivities depend on frequency ω, and the sign of the
force is determined by the ordering of the εk(iκ) values at
imaginary frequencies ω = iκ (where εk is purely real and
positive for any causal passive material [7]). If the ordering
changes for different values of κ , then there are competing
repulsive and attractive contributions to the force. At larger or
smaller separations, smaller or larger values of κ , respectively,
dominate the contributions to the total force, and so the force
can change sign with separation. For example, if ε1 < ε2 < ε3

for large κ and ε1 < ε3 < ε2 for small κ , then the force may
be repulsive for small separations and attractive for large
separations, leading to a stable equilibrium at an intermediate
nonzero separation. Alternatively, for a sphere-plate geometry
in which the sphere is pulled downward by gravity, a purely
repulsive Casimir force (which dominates at small separations)
will also lead to a stable suspension. These basic ideas were
exploited in our previous work [5] to design sphere-sphere
and sphere-plate geometries exhibiting a stable nontouching
configuration. The effects of material dispersion are further
modified by an interplay with geometric effects (which set
additional length scales beyond that of the separation), as
well as by nonzero-temperature effects, which set a Mat-
subara length scale 2πkT/h̄ [15] that can further interact
with dispersion to yield strong temperature corrections [10].
Experimentally, stable suspensions are potentially appealing in
that one would be measuring static displacements rather than
force between microscale objects. The stable configurations
may be further modified, however, by three-body effects in
sphere-sphere-plate geometries and by Brownian motion of
the particles within the potential well created by the Casimir
interaction, and these effects are studied in detail in the present
paper.
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FIG. 1. (Color online) Schematic of two-sphere dicluster geome-
try consisting of two dielectric spheres of radii R1 and R2 separated by
a center-center distance d from each other, and suspended by heights
h1 and h2, respectively, above a dielectric plate.

Until the past few years, theoretical predictions of Casimir
forces were limited to a small set of simple geometries
(mainly planar geometries) amenable to analytical solution,
but a number of computational schemes have recently been
demonstrated that are capable of handling complicated (and,
in principle, arbitrary) geometries and materials [23–25]. Here,
since the geometries considered in this paper consist entirely
of spheres and planes, we are able to adapt an existing
technique [25] based on Fourier-like (“spectral”) expansions
that semianalytically exploits the symmetries of this problem.
This technique, formulated in terms of the scattering matrices
of the objects in a basis of spherical or plane waves, was
developed in various forms by multiple authors [25–27], and
we employ the generalization of [25]. Although this process
is described in detail elsewhere [25] and is reviewed for the
specific geometries of this paper in the Appendix, the basic
idea of the calculation is as follows. The Casimir energy can
be expressed via path integrals as an integral

∫ ∞
0 ln det A(κ)dκ

over imaginary frequencies κ , where A is a “T-matrix” related
to the scattering matrix of the system. In particular, one needs
to compute the scattering matrices relating outgoing spherical
waves from each sphere (or plane waves from each plate)
being reflected into outgoing spherical waves (or plane waves)
from every other sphere (or plate), which can be expressed
semianalytically (as infinite series) by “translation matrices”
that reexpress a spherical wave (or plane wave) with one
origin in terms of spherical waves (or plane waves) around
the origin of the new object [25]. This formalism is exact
(no uncontrolled approximations) in the limit in which an
infinite number of spherical or plane waves is considered.
To obtain a finite matrix A, the number of spherical waves
(or spherical harmonics Y�m) is truncated to a finite order
�. Because this expansion converges exponentially fast for
spheres [25,28], we find that � � 10 suffices for < 1% errors
with the geometries in this paper. (Conversion from plane
waves to spherical waves is performed by a semianalytical
formula [25] that involves integrals over all wave vectors,
which was performed by a standard quadrature technique
for semi-infinite integrals [29].) Although it is possible to
differentiate ln det A analytically to obtain a trace expression
for the force [24], in this paper we use the simple expedient

of computing the energy and differentiating numerically via
spline interpolation. Previously, Ref. [30] employed the same
formalism to study a related geometry consisting of vacuum-
separated perfect-metal spheres adjacent to a perfect-metal
plate, where it was possible to employ the method of images to
reduce the computational complexity dramatically. That work
found a three-body phenomenon in which the presence of
a metallic plate resulted on a stronger attractive interaction
between the spheres, and that this effect becomes more
prominent at larger separations [30], related to an earlier
three-body effect predicted for cylindrical shapes [31,32].
Here, we examine dielectric spheres and plate immersed in a
fluid, and therefore we cannot exploit the method of images for
simplifying the calculation, which makes the calculation much
more expensive because of the many oscillatory integrals that
must be performed to convert between plane waves (scattering
off of the plate) and spherical waves (see the Appendix). We
also obtain three-body effects, in this case on the equilibrium
separation distance, but find that the magnitude and sign of
these effects depend strongly on the parameters of the problem.

II. THREE-BODY EFFECTS

To quantify the strength of three-body effects in the sphere-
sphere-plate system of Fig. 1, we begin by computing how
the zero-temperature equilibrium sphere-sphere separation d

varies as a function of the sphere-plate separation h for two
equal-radius spheres, as plotted in Fig. 2. To start with, we
consider very small spheres, with radius R = 25 nm, for which
the three-body effects are substantial. The separation dh at
a given h is normalized by d∞ (d as h → ∞, i.e., in the
absence of the plate). Several different material combinations
are shown (where X-Y -Z denotes spheres of materials X and
Y and a plate of material Z): polystyrene (PS), teflon (Tef), and

0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

ed 
ed 
(h

) 
/

eq
ui

li
br

iu
m

 s
ep

ar
at

io
n

h

ed (h)

60 70 80 90 100 110
70

74

78

82

86

90
  (R=57 nm)

ethanol

R R

ed
 (

h
) 

n
m

 

height  h / ed 

 (R=25nm)
 (R=25nm)

  (R=50nm)

 (R=25nm)

 (R=25nm)

  (R=25nm)

FIG. 2. (Color online) Equilibrium separation de(h)/de(∞) be-
tween two R = 25 nm spheres suspended in ethanol as a function
of their surface-surface separation h from a plate (and normalized
by the equilibrium separation for the case of two isolated spheres,
i.e., h = ∞). de is plotted for various material combinations, denoted
by the designation sphere-sphere-plate, e.g., a PS and silicon sphere
suspended above a gold plate is denoted as PS-Si-Au. Solid (dashed)
lines correspond to stable (unstable) equilibria. (In the case of a gold
plate, the spheres are chosen to have R = 50 nm.) The inset shows
de (in units of nm) for the case of two PS and silicon spheres (R =
57 nm) above a gold plate.
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silicon (Si) spheres with gold (Au), teflon (Tef), and vacuum
(air) plates (the latter corresponding to a fluid-gas interface).
Depending on the material combinations, we find that dh can
either increase or decrease by as much as 15% as the plate is
brought into proximity with the spheres from h = ∞ to h ≈ R.
(We expect even larger deviations when h < R, but small
separations are challenging for this computational method [25]
and our results for h � R suffice here to characterize the
general influence of three-body effects.)

Interestingly, depending on the material combination, the
dh can either increase or decrease as a function of h: that is, the
proximity of the plate can either increase or decrease the effec-
tive repulsion. This is qualitatively similar to previous results
for vacuum-separated perfect-metal spheres (plates) [30] in the
following sense. Previously, the attractive interaction between
a sphere and a plate was in general found to enhance the
attraction between two identical spheres as the plate became
closer [30]. (There are certain regimes, not present here,
where the attractive interaction decreases.) Here, we observe
that the sphere-plate interaction changes the sphere-sphere
interaction with the same sign as h becomes smaller: if
the sphere-plate interaction is repulsive, the sphere-sphere
interaction becomes more repulsive (larger d), and vice versa
for an attractive sphere-plate interaction. Since the spheres are
not identical, the three-body effect is dominated by the sign
of the stronger sphere-plate interaction out of the two spheres.
Thus, examining the signs and magnitudes of the pairwise
interactions in all cases of Fig. 2 turns out to be sufficient to
predict the sign of the three-body interaction, although we have
no proof that this is a general rule. (In contrast, for nonspherical
objects such as cylinders, there can be competing three-body
effects that make the sign more difficult to predict, even in
vacuum-separated geometries where all pairwise interactions
are attractive, which can even lead to a nonmonotonic effect
[31,32].)

Figure 2 also exhibits the interesting phenomenon of bifur-
cations, in which stable equilibria (solid lines) and unstable
equilibria (dashed lines) appear or disappear at some critical
h for certain materials and geometries, which is discussed in
more detail in Sec. II A. As the sphere radius R increases, all of
these three-body effects rapidly decrease, eventually entering
an additive regime in which three-body effects are negligible
and in which a parallel-plate PFA approximation eventually
becomes valid, as described in Sec. II B.

A. Bifurcations

In the case of PS and Si spheres suspended above either
a gold or teflon plate, one can observe the emergence or
disappearance of a stable (solid) and unstable (dashed) pair
of equilibria as h decreases from h = ∞, respectively, as
evidenced by the blue curves in Fig. 2 (teflon plate) and
the inset (Au plate). This can be qualitatively explained by
the fact that the isolated sphere-sphere interactions exhibit a
natural bifurcation for sufficiently large spheres, in conjunction
with the fact that the presence of the plate typically acts
to either increase or decrease the sphere-sphere interaction,
depending on the sign of the dominant sphere-plate interaction,
as explained above.
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FIG. 3. Equilibrium separation de(∞) (units of nm) between a Si
sphere and either a teflon (Tef) or polystyrene (PS) sphere immersed
in ethanol as a function of their equivalent radii R. Solid (dashed)
lines denote stable (unstable) equilibria.

In particular, Fig. 3 shows the isolated Si-PS and Tef-Si
sphere-sphere equilibrium separation de as a function of the
radius R of the spheres. As a consequence of its material
dispersion (similar to phenomena observed in [5]), the Si-
PS combination exhibits a bifurcation at R ≈ 55 nm for the
stable and unstable equilibria, such that there is no equilibrium
for larger R (the interaction is purely attractive). The Tef-Si
combination exhibits no such bifurcation (even if we extend the
plot to R = 300 nm), because it has no unstable equilibrium:
the interaction is purely repulsive for small separations and
attractive for large separations. Therefore, if the Si-PS radius
is above or below the 55 nm bifurcation, the presence of the
plate can shift this bifurcation and lead to a bifurcation as a
function of h as in Fig. 2, whereas no such bifurcation with h

appears for Tef-Si.
In the Si-PS-Au case of a gold plate with Si-PS spheres,

the sphere-plate interactions turn out to be primarily repulsive,
which should push the bifurcation in Fig. 3 to the right (shrink-
ing the attractive region) as h decreases. Correspondingly, if we
choose a radius R = 57 nm just to the right of isolated-sphere
bifurcation, then as h decreases, the Si-PS-Au combination
should push the bifurcation past R = 57 nm, leading to the
creation of a stable (unstable) pair for small h, and precisely
this behavior is observed in the inset of Fig. 2. Conversely,
for the Si-PS-Tef case of a teflon plate with Si-PS spheres,
the sphere-plate interaction is primarily attractive, and the
opposite behavior occurs: by choosing a radius R = 25 nm
to the left of the isolated-sphere bifurcation, decreasing h

increases the attraction and moves the bifurcation to the left
in Fig. 3, eventually causing the disappearance of the stable
(unstable) equilibrium at R = 25 nm. Correspondingly, for the
Si-PS-Tef curve in Fig. 2, we see the disappearance of a stable
(unstable) pair for sufficiently small h.

B. The additive regime

In general, three-body effects can expected to disappear
in various regimes where key parameters of the interaction
become small. First, for large radii, where h (the sphere-plate
separation) and d (the sphere-sphere separation) become small
compared to R, eventually the Casimir interaction is dominated
by nearest-surface interactions, or the PFA, in which the force
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can be approximated by additive surface-surface “parallel-
plate” forces [13,33,34]. To damp the Brownian fluctuations as
described in the next section, we actually propose to use much
larger (R > 5 µm) spheres, and we quantify the accuracy of
the PFA in this regime below. Second, as h becomes large
compared to d, the effect of the plate becomes negligible and
three-body effects disappear; this is apparent in Fig. 2, where
de → de(∞) when h � de. Third, in the limit where one of the
spheres is much smaller than the other sphere, then the smaller
sphere has a negligible effect on the sphere-plate interaction
of the larger sphere, and at least some of the three-body effect
disappears, as described below. In fact, we find that even for
a situation in which one sphere is only a few times smaller
than the other, the three-body effects tend to be negligible. For
the sphere-radius regime considered in our previous work, we
argue below that equal-height suspension of the two spheres
leads to a strong asymmetry in sphere radii that tends to
eliminate three-body effects.

To begin with, let us consider sphere radii on the order of
102 nm, as in our previous work [5]. We wish to make a bound
dicluster, at some separation d, of two spheres (Si and teflon)
that are suspended above a gold substrate by Casimir repulsion
in balance with gravity. Furthermore, suppose that we wish to
suspend both spheres at the same equilibrium height he, and
therefore choose the radii of the two spheres to equate their he

values. In Fig. 4, we plot he as a function of radius R for the
isolated sphere-plate geometries (d → ∞). For example, with
an Si sphere of radius R = 100 nm, the (stable) equilibrium
height is he = 298.17 nm, whereas to obtain the same he value
for teflon, one needs a much larger teflon sphere of radius R =
217.2 nm, primarily because the Casimir repulsion is stronger
for teflon. If, instead of a pairwise calculation, we perform an
exact three-body calculation of the he values for these radii
at the equilibrium sphere-sphere separation de = 92.8 nm, we
find that the he values change by < 1%. Conversely, if we keep
he fixed and compute the three-body change in de (compared to
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FIG. 4. (Color online) Center-surface Le (solid lines) and surface-
surface he (dotted lines) equilibrium separation (units of nm) of a
teflon (red) or Si hollowed sphere (shown in the inset) suspended in
ethanol above a gold plate, as a function of radius R (units of nm).
The equilibria are plotted for different values of the fill fraction α,
defined as the ratio of the spherical-shell thickness over the radius
of the sphere. Solid (dashed) lines correspond to stable (unstable)
equilibria.

h → ∞), again we find that the change is < 1%. As mentioned
above, the small size of the Si sphere makes it unsurprising that
the Si sphere does not change the equilibrium he of the much
larger teflon sphere. Furthermore, the sensitivity of the sphere-
sphere force Fd to the teflon h is equal to the sensitivity of the
teflon sphere-plate force Fh to d, thanks to the equivalence
∂Fd/∂h = −∂2U/∂d∂h = ∂Fh/∂d, where U is the energy.
Therefore, one would also not expect the finite value of he for
the Si sphere to modify the equilibrium de. Size asymmetry
alone, however, does not explain why the finite he of the teflon
sphere does not affect the sphere-plate interactions of the Si
sphere. Even if the Si sphere were of infinitesimal radius, the
Casimir-Polder energy in the Si sphere would be determined
by a Green’s function at the Si location [2], and if the Si sphere
is at a comparable distance de ∼ he from both the teflon plate
and the sphere, one would in general expect the response to a
point-dipole source at the Si location (the Green’s function) to
depend nonadditively on the teflon sphere and the plate even
for an infinitesimal Si sphere. However, in the present case
we do not observe any nonadditive effect on the Si sphere he,
because the factor of 3 (approximately) difference between he

and de is already sufficient to eliminate three-body effects (as
in Fig. 2).

Figure 4 also exhibits a bifurcation of stable (solid lines)
and unstable (dashed lines) equilibria that causes the stable
h equilibrium to vanish for Si at large radii. To utilize
larger spheres to reduce the effects of Brownian motion in
the next section, one can consider instead a geometry of
hollow air-filled spherical shells with outer radius R and
shell thickness αR (so that α = 1 gives a solid sphere). Such
hollow microspheres are readily fabricated with a variety of
materials [16]. As Fig. 4 shows, decreasing the shell thickness
α pushes the bifurcation to larger R, and also increase he by
making the sphere more buoyant. This modification allows
us to consider R ≈ 10 µm in the next section, where the
PFA should be accurate. For only 3 µm spheres and 500 nm
separations in fluids, we previously found that the correction
to the PFA (which scales as d/R to lowest order [35–37]) was
only about 15%. For the three times larger radii and somewhat
smaller separations in the next section, the corrections to the
PFA are typically < 5%, sufficient for our current purposes.

III. NONZERO TEMPERATURE AND EXPERIMENTS

In this section, we address a number of questions of
consequence to an experimental realization of the teflon-
silicon two-sphere dicluster of Fig. 1. In particular, we consider
several ways in which a nonzero temperature can disrupt the
observation of stable equilibria. A nonzero temperature will
manifest itself in at least two important ways. First, there will
be a change in the Casimir force between the objects due to the
presence of real (nonvirtual) photons in the system. Second,
the inclusion of nonzero temperature will cause the spheres
to experience Brownian motion arising from the thermal
agitations in the fluid [38]. We consider the influence of both
of these effects on the observability of stable particle clusters
and suspensions.

At zero temperature, the Casimir force F is determined
by an integral F = ∫ ∞

0 dξf (ξ ) of a complicated integrand
f (ξ ) evaluated at imaginary frequencies ξ [2]. At T > 0,
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the integral is replaced by a finite sum over Matsubara
frequencies ωn = 2πnkT /h̄, arising from the poles of the
coth photon distribution along the imaginary frequency axis
[15,39], leading to a force FT given by

FT = 2πkT

h̄

[
f (0+)

2
+

∞∑
0

f

(
2πkT

h̄
n

)]
, (1)

which is exactly a trapezoidal-rule approximation to the
zero-temperature force with a discretization error determined
by the Matsubara wavelength λT = 2πc/ξT = h̄/kT [40].
Because the integrand f (ξ ) is smooth and typically varies on
a scale much slower than 1/λT , where λT = 7.6 µm at room
temperature T = 300 K, the finite-T correction to the zero-
temperature Casimir force is often negligible [3]. However, in
fluids, as is the case here, larger temperature effects have been
obtained [10] by dispersion-induced oscillations in f (ξ ), and
so we must check our previous zero-temperature predictions
against finite-T calculations. For the Tef-Si-substrate case
considered here, we find that T > 0 corrections to the T = 0
forces are no more than 2% over the entire range of separations
considered here, and hence they can be neglected.

The presence of Brownian motion proves a much more dif-
ficult experimental complication to overcome. First, Brownian
motion will lead to random fluctuations in the position of the
spheres, making it hard to measure their stable separations in
an experiment [38]. Second, and more importantly, sufficiently
large fluctuations can drive the Si sphere to “tunnel” past its
unstable equilibrium position with the gold plate, leading to
stiction [38] since the Si-Au interaction is purely attractive for
small separations. The remainder of this section will revolve
around the question of how and whether one can overcome
both of these difficulties to observe suspension in experiments.
In particular, we consider observation of the average separation
of the spheres over a sufficiently long time, but not so long
that stiction occurs, and we analyze the separation statistics
and the stiction time scale. First, however, we describe how
the parameters are chosen so that Brownian fluctuations are
not so severe.

The sphere geometry that we consider is depicted in
Fig. 5: a hollow spherical shell suspended by a surface-surface
separation h above a layered substrate, consisting of a thin
indium tin oxide (ITO) film of thickness H deposited on a gold
substrate, where the purpose of the ITO layer is to eliminate the
Si-sphere instability as explained below. The thickness of the
shell is denoted as t = αR, where α is a convenient fill-fraction
parameter. We consider hollow spheres in order to increase R

and thereby reduce Brownian fluctuations. In particular, both
the Brownian fluctuations and the probability of stiction in the
case of the silicon sphere are reduced by increasing the strength
of the Casimir force, which can be achieved by increasing R

since the Casimir force scales roughly with surface area, and
below we consider radii from 1 to 10 µm. In this regime, as
quantified in the previous section, simple PFA is sufficient
to accurately compute the forces and separations. However,
because the gravitational force scales as R3, for large R the
gravitational force will overcome the Casimir force and push
the Si sphere past its unstable equilibrium into stiction. To
reduce the gravitational force while keeping the surface area
fixed, we propose using a hollow Si sphere. We find that

L e

he

t=αR

g
R

H

FIG. 5. (Color online) Geometry of a hollow air-filled core sphere
suspended above a layered plate with layer thickness H . Explicitly
shown is the thickness dimension as a function of α.

in addition to hollowing the spheres, it is also beneficial to
deposit a thin ITO film on top of the gold substrate (the
permittivity of ITO is modeled via an empirical Drude model
with plasma frequency ωp = 1.47 × 1015 rad/s and decay
rate γ = 1.53 × 1014 rad/s). The ITO layer acts to decrease
the equilibria separations and therefore increase the Casimir
interactions between the spheres and the substrate. However,
because the Casimir force between teflon (silicon) and ITO
is attractive (repulsive) at small separations, respectively,
increasing H pushes the Si-substrate unstable equilibrium
to smaller separations while introducing a teflon-substrate
unstable equilibrium that gets pushed to larger separations.
In what follows, we find that H from 14 to 30 nm is sufficient
to obtain experimentally feasible suspensions, although here
we only consider the case of H = 15 nm.

The effect of hollowing the spheres is shown in the top
panel of Fig. 6: smaller α values push the stable (unstable)
bifurcation of teflon out to larger R. Hollowing the silicon
sphere is not necessary because silicon has no unstable
equilibrium (in this configuration it is repulsive down to zero
separation). However, as shown in the bottom panel of Fig. 6,
hollowing the silicon sphere does change its he at a given R. For
example, one can choose a Tef (α = 0.142) and a Si (α = 0.14)
to obtain the same equilibrium surface-to-center height Le over
a wide range of sphere radii, as shown in the upper-right inset
of Fig. 6. Alternatively, one can choose a hollow teflon sphere
to match the equilibrium surface-surface separations he for
equal sphere radii, as shown in the lower-right inset of Fig. 6.

A. Statistics of Brownian motion

As mentioned above, Brownian motion will disturb the
spheres by causing them to move randomly about their stable
equilibrium positions, and this can cause the Si sphere to move
past its unstable equilibrium point, inducing it to stick to
the plate. To quantify the range of motion of both spheres
about their equilibria, we consider the statistical properties of
their fluctuations. In particular, we consider the average plate-
sphere separations 〈h〉T and average sphere-sphere separations
〈d〉T near room temperature (T = 300 K), determined by an
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FIG. 6. (Color online) Surface-surface equilibrium height he

(units of nm) for the hollowed-sphere geometry of Fig. 5, consisting
of either a Si (top) or teflon (bottom) hollowed sphere (fill fraction α)
suspended in ethanol above an H = 15 nm ITO layered gold plate,
as a function of sphere radius R (in units of µm). Solid (dashed) lines
correspond to stable (unstable) equilibria. he is plotted for different
values of α, denoted in the figure. The top inset plots the center-surface
separation Le (in units of nm) as a function of R of a hollowed teflon
(red lines) and Si (blue lines) sphere suspended again above a gold
plate, for α = 0.14 (0.142). The lower inset shows he for both teflon
and Si spheres for R ∈ [8.6,10] µm.

ensemble average over a Boltzmann distribution. For example,
〈h〉T is given by

〈h〉T =
∫ ∞

0 dz z exp[U (z)/kT ]∫ ∞
0 dz exp[U (z)/kT ]

, (2)

where U (z) is the total energy (gravity included) of the
sphere-plate system at a surface-surface height z. (A similar
expression yields 〈d〉T .) In the case of teflon, the short-range
attraction means that the suspension is only metastable under
fluctuations; here, we only average over separations prior to
stiction by restriction z to be � the unstable equilibrium, and
consider the stiction time scale separately below. In addition
to the average equilibrium separations, we are also interested
in quantifying the extent of the fluctuations of the spheres,
which we do here by computing the 95% confidence interval
{σ−,σ+}, defined as the spatial region over which the sphere
is found with 95% probability around the equilibria, where
σ± denotes the lower (upper) bound of that interval. These
results are shown in Fig. 7 for h, with d shown in the inset,
in which shaded regions indicate the confidence intervals, as
a function of R, where α is chosen to yield approximately
equal he (α = 0.142 for teflon and α = 0.13 for Si). (Note that
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FIG. 7. (Color online) Average 〈h〉 (thick lines) and equilibrium
he (thin lines) height (in units of nm) of a hollowed teflon (blue lines)
and Si (red lines) sphere suspended above an H = 15 nm ITO layered
gold plate, for α = 0.142 (0.13), as a function of sphere radius R (in
units of µm). Solid (dashed) lines correspond to stable (unstable)
equilibria. The red (blue) shaded regions indicate positions where the
teflon (Si) spheres are found with 95% probability. The inset shows
〈d〉 (thick line) and de (thin line) separations as a function of their
radius for two equal radii teflon Si spheres. The gray shaded region
indicates the separations in which the teflon and Si spheres are found
with 95% probability.

the horizontal separation 〈d〉 is a purely Casimir interaction
and the difference here from α = 1 is negligible in the PFA
regime.) As predicted above, the Brownian fluctuations of the
spheres vanish as R → ∞ and are dramatically suppressed
for R >∼ 5 µm, where one finds 〈h〉 ≈ he. In addition, we find
that the teflon sphere can safely avoid the unstable equilibrium
and stiction in the sense that the unstable equilibrium is far
outside the confidence interval; the time scale of the stiction
process is quantified below. The asymmetrical nature of the
confidence interval results from the fact that the Casimir
energy decreases as a function of z, and as a consequence the
Brownian excursions favor the +z direction. The fluctuations
in 〈d〉 are substantially larger than those in 〈h〉 (nor is there any
obvious reason why they should be comparable, given that the
nature of the sphere-sphere equilibrium is completely different
from the sphere-plate equilibrium), making the precise value
of de potentially harder to observe.

Instead of considering the Brownian statistics as a function
of R, we can instead consider the statistics as a function of
α for fixed radii ≈ 10 µm (chosen to obtain nearly equal
sphere-center heights Le), as shown in Fig. 8. One key point
is that there is a minimum allowed α: if α is too small,
the buoyant force (assuming an air-filled hollow sphere) will
eventually become positive and the sphere will float, although
this limitation is removed if one could infiltrate the hollow
sphere with the fluid. For the teflon sphere, there is also an
upper limit to α for a given R to avoid stiction, as discussed
previously.

B. Stiction and tunneling rates

As mentioned above, the stable equilibrium for the teflon
sphere is actually only metastable. Because the Casimir force
is attractive for small separations, given a sufficiently long
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FIG. 8. (Color online) Average 〈h〉 (thick line) and equilibrium
he (thin line) height (in units of nm) of a hollowed Si (top) and teflon
(bottom) sphere of radii R = 10 (9.915) µm suspended in ethanol
above an H = 15 nm ITO layered gold plate, as a function of fill
fraction α (indicated in Fig. 5). Shaded regions indicate h positions
where the Si (teflon) spheres are found with 95% probability. Solid
(dashed) lines indicate stable (unstable) equilibria. For reference,
we state the equilibrium de and average 〈d〉 horizontal separations
between R = 10 (9.915) µm Si (Tef) spheres in the top figure.

observation time τ the sphere will “tunnel” (via Brownian
fluctuations) past the energy barrier 
 posed by the unstable
equilibrium and stick to the plate (stiction). Given the energy
barrier, the temperature T , and the viscous drag on the particle,
we can apply standard methods [38,41,42] to compute the time
scale for stiction. This calculation, which is described in detail
below, shows that for various values of the fill factor α the
expected time τ to stiction (which increases exponentially
with 
/kT ) can vary dramatically, but can easily be made on
the order of years.

The energy barrier 
/kT is plotted versus the teflon sphere
radius R for various α in Fig. 9, and can easily be made > 10
to obtain a very long metastable lifetime. As we discussed
earlier, the 
 increases with R at first because this increases the
Casimir force, but it has a maximum at some R where gravity
begins to dominate. Decreasing α decreases the gravitational
force and therefore increases both the maximum 
 and the
corresponding R. A typical energy landscape U (z) is shown
in the inset, exhibiting a local minimum at a height he and an
unstable equilibrium (maximum) at hu. Also noted in the inset
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FIG. 9. (Color online) Energy barrier 
/kT of a hollowed teflon
sphere suspended in ethanol above an H = 15 nm ITO layered gold
plate at T = 300 K, as a function of sphere radius R (in units of µm)
and for different values of fill fraction α. The inset shows the energy
landscape U/kT as a function of the surface-surface height h (units
of nm) for a teflon sphere of radius R = 10 µm with a fill fraction of
α = 0.142.

is the “tunneling” height h∗ > he at which U (h∗) = U (hu).
Figure 9 also shows the energy barrier 
/kT of a silicon
sphere (α = 0.1288 ≈ αc, R = 10 µm) in the absence of the
ITO layer (H = 0) to be significantly smaller than that of
teflon. Of course 
/kT in this case could be made larger
merely by choosing α ≈ αc, but we find (below) that achieving
experimentally realizable lifetimes severely limits the range of
realizable α, i.e., it requires that the Si thickness be known to
within a few nanometers.

Because 
 � kT , the lifetime τ of a Brownian particle
trapped around a local minimum of a potential U (z) can be
approximated by [41]

τ = e
/kT

[(
1 + γ

4ω2

)1/2
− γ

2ω

]−1 2π

�
ζ

(
γ S

kT

)
, (3)

where γ is the viscous drag coefficient (drag force = −γ

velocity), ω and � characterize the curvature of U (z) at the
energy maximum and minimum, respectively [as defined in
Eq. (5)], ζ (δ) is a transcendental function defined in Eq. (6),
and S is an integral of the potential barrier defined by Eq. (4).
Let m be the mass of the sphere. The drag coefficient for a
sphere of radius R in a fluid with viscosity η is γ = 6πRη/m

[43], where a typical viscosity is η ≈ 1.17 ± 0.06 mPa s for
ethanol [44]. The other quantities are given by

S = 2
∫ hc

hu

dz
√

−2mU (z), (4)

ω =
√

U ′′(hu)

m
, � =

√
U ′′(he)

m
, (5)

ζ (δ) = exp

[
− 2

π

∫ π/2

0
dz ln

(
1 − e−δ/4 cos2 z

)]
. (6)

Combining these formulas and choosing different values of R

and α to obtain different barriers 
 and landscapes U (z) as in
Fig. 9, the lifetime τ can be designed to take on a wide range of
values. The exponential dependence on 
 means that τ rapidly
transitions from very short to very long as α changes, but can
easily be made large. For example, with R = 8.5 µm and
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α < 0.15, one obtains τ > 40 days. [Conversely, for suffi-
ciently large α one could design experiments where stiction
occurs on an arbitrarily fast time scale, but in this 
 ∼ kT

regime the approximations of Eq. (3) are no longer valid.]
Strictly speaking, this is a conservative estimate of the time

scale because the drag coefficient γ for a sphere above a plate is
larger than that of an isolated sphere. As the sphere approaches
the plate, the drag is dominated by the “lubrication” problem
of the fluid squeezed between the sphere and the plate, and the
drag increases dramatically [45].

IV. CONCLUSION

Even including thermal motion of the particles and the finite
lifetime of metastable suspensions, the stable suspension and
separation of particle diclusters appears to be experimentally
feasible. In the experimentally relevant regimes, these effects
consist primarily of pairwise sphere-sphere and sphere-plate
interactions; while three-body effects become significant for
smaller spheres, the increased Brownian fluctuations for small
spheres make such an experiment challenging. Although
the systems considered here consisted of silicon and teflon
spheres above layered substrate in ethanol, many other material
combinations could potentially be explored to modify these
phenomena, including multimaterial sphere systems such as
multilayer spheres or patterned substrates that could exhibit
unusual effective dispersion phenomena. Although we consid-
ered hollow (air core) spheres, one could also use fluid-filled
spheres or similar modifications to modify the effect of gravity.
Alternatively, one could use nonspherical geometries such as
disks, which have both a surface area and volume proportional
to R2 so that gravity does not dominate asymptotically. We
have recently demonstrated computational methods capable
of accurate modeling of such geometries, and find that the
additional rotational degrees of freedom can lead to additional
phenomena such as transitions in the stable orientation with
separation [46]. In general, the possibility of both repulsion and
stable equilibria in fluids (whereas the latter are not possible
in vacuum [47] but do exist in critical Casimir fluids [48,49])
opens the possibility of a rich and currently little explored
territory for Casimir physics, and it is likely that many effects
remain to be discovered.

APPENDIX

In what follows, we write down an expression for the
Casimir energy of the system in Fig. 1 in terms of the scattering
and translation matrices of the individual objects (spheres and
plates) of the geometry. A similar expression was derived
in [30] in the case of perfect-metal vacuum-separated objects,
for which an additional simplification, based on the method of
images, was possible [50]. Here, we consider the more general
case of fluid-separated dielectric objects.

The starting point of the Casimir-energy expression is the
well-known scattering-matrix formalism, derived in [25,26],
in which the Casimir energy U between an arbitrary set of
objects can be written as

U = h̄c

2π

∫ ∞

0
dκ ln detMM−1

∞ , (A1)

where M−1
∞ = diag(F1,F2,...) and the matrix M is given by

M =

⎛
⎜⎝
F−1

1 X12 X13 · · ·
X21 F−1

2 X23 · · ·
· · · · · · · · · · · ·

⎞
⎟⎠ , (A2)

where Fi(κ) is the matrix of inside or outside scattering
amplitudes of the ith object, and Xij is the translation matrix
that relates the scattering matrix of the ith and j th objects, as
described in [25]. Here, the plate is labeled by the index i = 1,
whereas the left and right spheres are labeled as i = 2 and 3,
respectively.

For computational convenience, the determinant in Eq. (A1)
can be reexpressed in terms of standard operations on the block
matrices composing M, and in this case we find that

detMM∞ = det(I − N (1)) det(I − N (2))

× det[I − (I − N (2))−1A(I − N (1))−1B],

where

N (2) = F3X
31F1X

13, A = F3X
32 − F3X

31F1X
12;

(A3)
B = F2X

23 − F2X
21F1X

13, N (1) = F2X
21F1X

12,

where (I − N (1)) and (I − N (2)) yield the individual inter-
action energies of the left and right spheres with the plate,
respectively. Because of the logarithm in Eq. (A1), it is possible
to reexpress the energy as

U = E1(h1) + E2(h2) + Eint(h1,h2,d), (A4)

where

E1(h1) = h̄c

2π

∫ ∞

0
dκ ln det(I − N (1)),

(A5)

E2(h2) = h̄c

2π

∫ ∞

0
dκ ln det(I − N (2)),

are the individual interaction energies of the left (1) and right
(2) spheres above a plate, in the absence of the other sphere,
and Eint(h1,h2,d) is a three-body interaction term given by

Eint = h̄c

2π

∫
dκ ln det[I − (I − N (2))−1

×A(I − N (1))−1B]. (A6)

Finally, for completeness, we write down simplified ex-
pressions for the intermediate matrices N (i), A, and B, in
terms of appropriate and rapidly converging multipole and
Fourier basis, as explained in [25]. The expression for E1,2 was
derived in [25], and thus here we can simply quote the result
for the matrices N (1) and N (2). In particular, [25] expresses
the matrices in terms of a spherical multipole basis, indexed by
the quantum numbers l, m, and P , corresponding to angular
momentum, azimuthal angular momentum, and polarization
[TE (P = E) or TM (P = M)]. The matricesN (i) are given by

N (j )
lmP,l′m′P ′ = δm,m′F ee(j )

lmP,lmP

∫ ∞

0

k⊥dk⊥
2π

e−2hj

√
k2

⊥+κ2

2κ

√
k2
⊥ + κ2

×
∑
Q

DlmP,k⊥QrQD
†
k⊥Q,l′m′P ′(2δQ,P ′ − 1),

(A7)
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where k⊥ is the Fourier momentum parallel to the plate, the
F ee(j )

lmP,lmP are the outside scattering amplitudes of sphere j ,
rQ are the planar reflection coefficients (Fresnel reflection
coefficients in the case of an isotropic plate), and DlmP,k⊥m

are
conversion matrices:

DlmE,k⊥E = DlmM,k⊥M =
√

4π (2l + 1)(l − m)!

l(l + 1)(l + m)!

×|k⊥|
κ

e−imφk⊥ P
′m
l

(√
k2

⊥ + κ2/κ
)
,

DlmM,k⊥E = −DlmE,k⊥M = −im

√
4π (2l + 1)(l − m)!

l(l + 1)(l + m)!

× κ

k⊥
e−imφk⊥ P m

l

(√
k2

⊥ + κ2/κ
)
, (A8)

given in terms of associated Legendre polynomials P m
l and

their derivatives with respect to their corresponding argument
P

′m
l .

Upon a number of algebraic manipulations, similar expres-
sions can be obtained for the matrices A and B, not found in
previous works, and in particular we find that

−AlmP,l′m′P ′ = F ee
R,lmP,lmPU23

lmP,l′m′P ′

+(−1)m
′−mim

′−mF ee
R,lmP,lmP βlmP,l′m′P ′ , (A9)

−BlmP,l′m′P ′ = F ee
L,lmP,lmPU32

lmP,l′m′P ′

+ im
′−mF ee

L,lmP,lmP βlmP.l′m′P ′ , (A10)

where

βlmP,l′m′P ′ =
∫ ∞

0

k⊥dk⊥
(2π )

Jm′−m(Sk⊥)
e−(h2+h3)

√
k2
⊥+κ2

2κ

√
k2
⊥ + κ2

×
∑
Q

DlmP,k⊥QrQD
†
k⊥Q,l′m′P ′(2δQ,P ′ − 1),

(A11)

and where the Jm(Sk⊥) is a Bessel function of the first kind
evaluated at different values of Sk⊥, where S is given by the
projection of the sphere center-center separation onto the plate
axis

S =
√

(d + R1 + R2)2 − (h1 + R1 − h2 − R2)2. (A12)

From a numerical perspective, all that remains to obtain
the Casimir energy in Eq. (A1) is to evaluate the various
matrix entries and perform standard numerical operations,
such as inversion and multiplication, which we perform using
standard free software [51]. For the small matrices that we
consider, most of the time is spent evaluating the various
matrix elements, which can be numerically expensive due to
the integration of the oscillatory Bessel functions in A and
B, although specialized methods for oscillatory and Bessel
integrals are available that may accelerate the calculation
[52,53].
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