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Fluctuating-surface-current formulation of radiative heat transfer: Theory and applications
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We describe a fluctuating-surface current formulation of radiative heat transfer between bodies of arbitrary
shape that exploits efficient and sophisticated techniques from the surface-integral-equation formulation of
classical electromagnetic scattering. Unlike previous approaches to nonequilibrium fluctuations that involve
scattering matrices—relating “incoming” and “outgoing” waves from each body—our approach is formulated in
terms of “unknown” surface currents, laying at the surfaces of the bodies, that need not satisfy any wave equation.
We show that our formulation can be applied as a spectral method to obtain fast-converging semianalytical
formulas in high-symmetry geometries using specialized spectral bases that conform to the surfaces of the bodies
(e.g., Fourier series for planar bodies or spherical harmonics for spherical bodies), and can also be employed as
a numerical method by exploiting the generality of surface meshes/grids to obtain results in more complicated
geometries (e.g., interleaved bodies as well as bodies with sharp corners). In particular, our formalism allows
direct application of the boundary-element method, a robust and powerful numerical implementation of the
surface-integral formulation of classical electromagnetism, which we use to obtain results in new geometries,
such as the heat transfer between finite slabs, cylinders, and cones.
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I. INTRODUCTION

Quantum and thermal fluctuations of charges in otherwise
neutral bodies lead to stochastic electromagnetic (EM) fields
everywhere in space. In systems at equilibrium, these fluc-
tuations give rise to Casimir forces (generalizations of van
der Waals interactions between macroscopic bodies), which
have recently become the subject of intense theoretical and
experimental work.1–3 In nonequilibrium situations involving
bodies at different temperatures, these fields also mediate
energy exchange from the hotter to the colder bodies, a
process known as radiative heat transfer. Although the basic
theoretical formalism for studying heat transfer was laid out
decades ago,4–7 only recently have experiments reached the
precision required to measure them at the microscale,8–15

sparking renewed interest in the study of these interactions in
complex geometries that deviate from the simple parallel-plate
structures of the past.16–23 In this manuscript, we present
a novel formulation of radiative heat transfer for arbitrary
geometries based on the well-known surface-integral-equation
(SIE) formulation of classical electromagnetism,24–27 which
extends our recently developed fluctuating surface-current
(FSC) approach to equilibrium Casimir forces28 to the
nonequilibrium problem of energy transfer between bodies
of unequal temperatures. Unlike the scattering formulations
based on basis expansions of the field unknowns best suited
to special29–35 or noninterleaved periodic30,36–38 geometries,
or formulations based on expensive, brute-force time-domain
simulations39 and Green’s functions calculations,40,41 this
approach allows direct application of the boundary element
method (BEM): a mature and sophisticated SIE formulation of
the scattering problem in which the EM fields are determined
by the solution of an algebraic equation involving a smaller set
of surface unknowns (fictitious surface currents in the surfaces
of the objects24,26,27).

A terse derivation of our FSC formulation for heat transfer
was previously published in Ref. 42. The primary goals of this
paper are to provide a more detailed presentation of this deriva-

tion and to generalize our previous formula for the heat transfer
between two bodies to other situations of interest, including
geometries consisting of multiple and/or nested bodies. We
also demonstrate that the FSC framework can be applied as a
spectral method to obtain semianalytical formulas in special
geometries with high symmetry, as well as for purely numerical
evaluation using BEM, which we exploit to obtain new results
in a number of complicated geometries that prove challenging
for semianalytical calculations. Although our formulation here
employs similar guiding principles as our previous work on
equilibrium Casimir phenomena28,43—both are based on the
SIE framework of classical EM scattering—the heat-transfer
case is by no means a straightforward extension of force
calculations, because generalizing the equilibrium framework
to nonequilibrium situations requires very different theoretical
techniques. For example, the fact that in Ref. 28, we considered
only equilibrium fluctuations made it possible for us to directly
exploit the fluctuation-dissipation theorem for EM fields,44

which relates the field-field correlation function at two points
to a single Green’s function between those two points. In
contrast, although a fluctuation-dissipation theorem exists in
the nonequilibrium problem, the field-field correlation func-
tions are in this case determined by a product of two Green’s
functions integrated over the volumes of the bodies.21,44 A
key step in our derivation below is a correspondence between
this volume integral (involving products of fields) and an
equivalent surface integral involving the fictitious surface
currents and fields of the SIE framework, that was not required
in the equilibrium case.

The heat radiation and heat transfer of bodies with sizes
and/or separations comparable to the thermal wavelength can
deviate strongly from the predictions of the Stefan-Boltzmann
law.4,45 For instance, in the far field (object separations d

much greater than the thermal wavelength λT = h̄c/kBT ),
radiative heat transfer is dominated by the exchange of
propagating waves and is thus nearly insensitive to changes
in separations (oscillations from interference effects typically
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being small5,46). In the less-studied near-field regime (d � λT ),
not only are interference effects important, but otherwise-
negligible evanescent waves also contribute flux through
tunneling.22,23 Such near-field effects have been most com-
monly studied in planar geometries, where the monotonically
increasing contribution of evanescent waves with decreasing
d results in orders-of-magnitude enhancement of the net
radiative heat transfer rate (exceeding the far-field black-body
limit at submicrometer separations23). This enhancement was
predicted theoretically5,22,23 and observed experimentally47–49

decades ago in various planar structures, and has recently
become the subject of increased attention due to its po-
tential application in nanotechnology, with ramifications
for thermal photovoltaics50,51 and thermal rectification,52–55

nanolithography,56 thermally assisted magnetic recording,57

and high-resolution surface imaging.14,58,59 Thus far, there
have been numerous works focused on the effects of material
choice in planar bodies,20,60 including studies of graphene
sheets,61 hyperbolic62 and anisotropic materials,36 and even
materials exhibiting phase transitions,63 to name a few. Along
the same lines, many authors have explored transfer mediated
by surface polaritons in thin films64–67 and 1D-periodic planar
bodies.68 Despite decades of research, little is known about
the near-field heat-transfer characteristics of bodies whose
shapes differ significantly from these planar, unpatterned struc-
tures. Theoretical calculations were only recently extended to
handle more complicated geometries, including spheres,29,33

cylinders,32 and cones69 suspended above slabs, dipoles
interacting with other dipoles40,70–74 or with surfaces,46,75–77

and also patterned/periodic surfaces.30,31,39,42,78–80

General-purpose methods for modeling heat transfer be-
tween bodies of arbitrary shapes can be distinguished in at
least two ways, in the abstract formulation of the heat-transfer
problem and in the basis used to “discretize” the formulation
into a finite number of unknowns for solution on a computer
(or by hand).81 Theoretical work on heat transfer has mainly
centered on “scattering-matrix’ formulations, which express
the heat transfer in terms of the matrices relating incoming
and outgoing wave solutions from each body.30–32,37,38,78

These formulations tend to be closely associated with “spec-
tral’ discretization techniques in which a Fourier-like basis
(Fourier series, spectral harmonics, etc.) is used to expand
the unknowns, because the incoming/outgoing waves must be
expressed in terms of known solutions of Maxwell’s equations,
which are typically a spectral basis of plane waves, spherical
waves, and so on. Such a spectral basis has the advantage that
it can be extremely efficient (exponentially convergent) if the
basis is specially designed for the geometry at hand (e.g.,
spherical waves for spherical bodies29). Scattering-matrix
methods can also be used for arbitrary geometries, e.g., by
expanding arbitrary periodic structures in Fourier series30,37,78

or by coupling to a generic grid/mesh discretization to solve
the scattering problems,39,42,80 but exponential convergence no
longer generally obtains. Furthermore, Fourier or spherical-
harmonic bases of incoming/outgoing waves correspond to
uniform angular/spatial resolution and require a separating
plane/sphere between bodies, which can be a disadvantage
for interleaved bodies or bodies with corners or other features
favoring nonuniform resolution. In contrast to the geometric
specificity encoded in a particular scattering basis, one

extremely generic approach is a brute-force discretization of
space and time, allowing one to solve for heat transfer by
a Langevin approach39 that handles all geometries equally,
including geometries with continuously varying material
properties. The FSC approach lies midway between these
two extremes. Like the scattering-matrix approach, the FSC
approach exploits the fact that one knows the EM solutions
(Green’s functions) analytically in homogeneous regions, so
for piecewise-homogeneous geometries the only remaining
task is to match boundary conditions at interfaces. Unlike
the scattering-matrix approach, however, the FSC approach is
formulated in terms of unknown surface currents rather than
incoming/outgoing waves—the surface currents are arbitrary
vector fields and need not satisfy any wave equation, which
leads to great flexibility in the choice of basis. As described in
this paper, the FSC formulation can use either a spectral basis
or a generic grid/mesh and, as demonstrated in Refs. 42 and 80,
works equally well for interleaved bodies (lacking a separating
plane or even a well-defined notion of “incoming/outgoing’
wave solutions). Moreover, the FSC formulation reduces the
heat-transfer problem to a simple trace formula in terms of
well-studied matrices that arise in SIE formulations of classical
EM, which allows mature BEM solvers to be exploited with
minimal additional computational effort.

The radiative heat transfer between two bodies 1 and 2 at
local temperatures T 1 and T 2 can be written as22,23

H =
ˆ ∞

0
dω [�(ω,T 1) − �(ω,T 2)]�(ω), (1)

where �(ω,T ) = h̄ω/[exp(h̄ω/kBT ) − 1] is the Planck en-
ergy per oscillator at temperature T , and � is an ensemble-
averaged flux spectrum into body 2 due to random currents
in body 1 (defined more precisely below via the fluctuation-
dissipation theorem4,45,82). (Physically, there are currents in
both bodies, but EM reciprocity83 means that one obtains the
same � for flux into body 1 from sources in body 2; this also
ensures that H obeys the second law of thermodynamics.) The
only question is how to compute �, which naively involves a
cumbersome number of scattering calculations.

The main result of this manuscript is the compact trace-
formula for � derived in Sec. II, which involves standard
matrices that arise in BEM calculations and forgoes any need
for evaluation of fields or sources in the volumes of the bodies,
separation of incoming and outgoing waves, integration of
Poynting fluxes, or many scattering calculations. As explained
below in Secs. III D and III C, by a slight modification
of the two-body formula, one can also straightforwardly
compute the spatially resolved pattern of Poynting flux on
the surfaces of the bodies, as well as the emissivity of
an isolated body. Section III A illustrates how important
physical properties such as reciprocity and positivity of heat
transfer manifest in the algebraic structure of the formulas.
In Sec. III E, we generalize the two-body formula to also
describe situations involving multiple and/or nested bodies.
The remaining sections of the paper are devoted to validating
the FSC formalism by checking it against known results in
special geometries consisting of spheres and semi-infinite
plates, as well as applying it to obtain new results in more
complicated geometries consisting of finite slabs, cylinders,
and cones. Specifically, Sec. IV B considers application of
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the FSC formulation in high-symmetry geometries where
the use of special-bases expansions involving Fourier and
spherical-wave eigenfunctions (provided in Appendix A) leads
to fast-converging semianalytical formulas of heat radiation
and heat transfer for spheres and semi-infinite plates. In
Secs. IV C and V, we exploit a sophisticated numerical
implementation of the FSC formulation based on BEM to
check the predictions of the semianalytical formulas in the
case of spheres and to obtain new results in more complex
geometries. Finally, the appendices at the end of the paper
provide additional discussions that supplement and aid our
derivations in Secs. II and III. Specifically, Appendix B
provides a concise derivation of the principle of equivalence
and its application to SIEs, and Appendices C 1 and C 2
provide succinct proofs of reciprocity and positivity of Green’s
functions and SIE matrices, respectively.

II. FSC FORMULATION

In this section, we review the SIE method of EM scattering
and apply it to derive an FSC formulation of radiative heat
transfer between two bodies. The result of this derivation is
a compact trace expression for � involving SIE matrices. We
further elaborate on these results in Sec. III, where we extend
the formulation to handle other situations of interest, including
the emissivity of isolated bodies, distribution of Poynting
flux on the surfaces of the bodies, and heat transfer between
multiple and/or nested bodies.

A. Notation

Let φ = ( E
H ) and σ = ( J

K ) denote six-component volume
electric and magnetic fields and currents, respectively, and
ξ denote six-component surface currents (which technically
have only four degrees of freedom since they are constrained to
flow tangentially to the surfaces). In a homogeneous medium,
fields are related to currents via convolutions (	) with a 6 × 6
homogeneous Green’s tensor 
(x,y) = 
(x − y,0), such that
φ = 
 	 (σ + ξ ), or more explicitly

φ(x) =
ˆ

d3y 
(x,y)[σ (y) + ξ (y)], (2)

where


 =
(

�EE �EH

�HE �HH

)
= ik

(
ZG C

−C 1
Z
G

)

is the Green’s tensor composed of 3 × 3 electric and magnetic
Dyadic Green’s functions (DGFs), determined by the “photon’
DGFs G and C. In the specific case of isotropic media (scalar
ε and μ), G and C satisfy

[∇ × ∇ × −k2]G(k; x,x′) = δ(x − x′)I, (3)

and C = i
k
∇ × G, with wave number k = ω

√
εμ and

impedance Z = √
μ/ε. Our derivation below applies to

arbitrary linear anisotropic permittivity ε and permeability μ,
so long as they are complex-symmetric matrices in order to
satisfy reciprocity84 (see Appendix C 1). The mathematical
consequence of reciprocity, as described in the Appendix, is
that 
 is complex-symmetric up to sign flips. In particular,

(x,x′)T = S
(x,x′)S, where the 6 × 6 matrix S = S−1 flips

T2

ξ2

V 2

φ2−

T1

V 1

φ1− ξ1

φ0−

FIG. 1. (Color online) Schematic depicting two disconnected
bodies described by surfaces ∂V 1 and ∂V 2 and held at temperature T 1

and T 2, respectively. Surface currents ξ 1 and ξ 2 laying on the surfaces
of the bodies give rise to scattered fields φ1− and φ2−, respectively,
in the interior of the bodies, and scattered field φ0− in the intervening
medium 0.

the sign of the magnetic components. This reciprocity property
is a key element of our derivation below.

B. Surface integral equations

Consider the system depicted in Fig. 1, consisting of two
homogeneous bodies, 1 and 2 (volumes V 1 and V 2 and
temperatures T 1 and T 2), separated by a lossless medium
0 (volume V 0) by two interfaces ∂V 1 and ∂V 2, respectively.
Consider also sources σ r located in the interior of V r and
denote the total fields in each region by φr . The homogeneous-
medium Green’s functions for the infinite media in region r

are denoted by 
r . Consider also the decomposition of the
total fields φr in each region r into “incident’ fields φr+
(due to sources within r) and “scattered’ fields φr− (from
interactions with the other regions, including both scattering
off the interface and sources in the other regions). That is, we
can write φr = φr+ + φr−, with φr+ = 
r 	 σ r .

The core idea in the SIE formulation is the principle of
equivalence,24,85–89 whose derivation is briefly reprized in
Appendix B, which states that the scattered field φr− can be
expressed as the field of some fictitious electric and magnetic
surface currents ξ r located on the boundary of region r , acting
within an infinite homogeneous medium r . In particular, one
can write

φ0 = φ0+ + 
0 	 (ξ 1 + ξ 2), (4)

φr = φr+ − 
r 	 ξ r , (5)

for r = 1,2, with fictitious currents ξ r completely determined
by the boundary condition of continuous tangential fields
at the body interfaces. Specifically, equating the tangential
components of the total fields at the surfaces of the bodies, we
find the integral equations:

(
0 + 
r ) 	 ξ r + 
0 	 ξ 3−r |∂V r = φr+ − φ0+|∂V r , (6)

which can be solved to obtain ξ r from the incident fields.
This is the “PMCHW” surface-integral formulation of EM
scattering.24,90,91

Let {βr
n} be a basis of six-component tangential vector

fields on the surface of body r , so that any surface current
ξ r can be written in the form ξ r (x) = ∑

n xr
nβ

r
n(x) for N coef-

ficients {xr
n}. (In BEM, βn is typically a piecewise-polynomial
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“element” function defined within discretized patches of each
surface, most commonly the “RWG” basis functions.92,93

However, one could just as easily choose βn to be a spherical
harmonic or some other “spectral” Fourier-like basis, as shown
in Sec. IV B. The key point is that βn is an arbitrary basis of
surface vector fields; unlike scattering-matrix formulations, it
need not consist of “incoming” or “outgoing” waves nor satisfy
any wave equation.) Taking the inner product of both sides of
Eq. (6) with βr

m (a Galerkin discretization94), one obtains a
matrix “BEM” equation of the form:

W−1x = s, (7)

where x = ( x1

x2 ) represents the expansion of the surface

currents, ξ r = ∑
n xr

nβ
r
n, s = ( s1

s2 ) describes the effect of the

incident fields sr
m = 〈βr

m,φr+ − φ0+〉, and

(
W 11 W 12

W 21 W 22

)−1

︸ ︷︷ ︸
W−1

=
(

G0,11 G0,12

G0,21 G0,22

)
︸ ︷︷ ︸

Ĝ0

+
(

G1

0

)
︸ ︷︷ ︸

Ĝ1

+
(

0
G2

)
︸ ︷︷ ︸

Ĝ2

(8)

describes interactions with matrix elements G
r,ij
mn = 〈βi

m,
r 	

β
j
n 〉 among the basis functions. Ĝ0 represents multibody

interactions between basis functions on both bodies, via waves
propagating through the intervening medium 0. Gr represent
self-interactions via waves propagating within a body, given by

Gr
mn ≡ Gr,rr

mn = 〈
βr

m,
r 	 βr
n

〉
. (9)

Here, 〈·,·〉 denotes the standard inner product 〈ϕ,ψ〉 = ´
ϕ∗ψ ,

with the ∗ superscripts denoting the conjugate-transpose
(adjoint) operation.

A key property of the Green’s function is reciprocity, as
summarized and derived in Appendix C 2, and this property
is reflected in symmetries of the matrices Ĝ and W . For
simplicity, let us begin by considering the case of real-valued
basis functions βn. Let S be the matrix such that Sx flips
the signs of the magnetic components (assuming that we
either have separate basis functions for electric and magnetic
components, as in the RWG basis, or more generally that the
basis functions come in βn and Sβn pairs). Note that S−1 =
S = ST = S∗. In this case, as reviewed in Appendix C 2,
it follows that WT = SWS and ĜT = SĜS. Once we have
derived our heat-transfer formula for such real-valued basis

functions, it is straightforward to generalize to complex-valued
bases as described in Sec. III B.

C. Flux spectrum

Our goal is to compute the flux spectrum � into V 2 (the
absorbed power in body 2) due to dipole current sources σ 1

in V 1 (integrated over all possible positions and orientations).
We begin by considering �σ 1 , or the flux into body 2 due
to a single dipole source σ 1 within body 1, corresponding
to φ1+ = 
1 	 σ 1, with φ0+ = φ2+ = 0. In the SIE (7), this
results in a source term s with s1

m = 〈β1
m,
1 	 σ 1〉 and s2 = 0.

As derived in Appendix B, the Poynting flux can be computed
using the fact that ξ is actually equal to the surface-tangential
fields,25 ξ = ( n × H

−n × E ), where n is the outward unit-normal

vector. It follows that the integrated flux − 1
2 Re

‚
2(E × H) ·

n = 1
4 Re〈ξ 2,φ0〉. (This can also be derived as the power

exerted on the surface currents by the total field, with an
additional 1/2 factor from a subtlety of evaluating the fields
exactly on the surface.89) Hence

�σ 1 = 1
4 Re〈ξ 2,φ0〉 = 1

4 Re〈ξ 2,φ2〉 = 1
4 Re〈ξ 2,−
2 	 ξ 2〉,

where we used the continuity of φ0 and φ2 and the fact
that φ2+ = 0. Substituting ξ 2 = ∑

n x2
nβ

2
n and recalling the

definition of G2 in Eq. (8), we obtain

�σ 1 = − 1
4 Re(x2∗G2x2) = − 1

4 Re(x∗Ĝ2x)

= − 1
4 [x∗(symĜ2)x] = − 1

4 s∗W ∗(symĜ2)Ws

= − 1
4 Tr[ss∗W ∗(symĜ2)W ],

where sym G = 1
2 (G + G∗) denotes the Hermitian part of G.

Computing �σ 1 is therefore straightforward for a single
source σ 1. However, the total spectrum

� = 〈�1〉 = − 1
4 Tr[〈ss∗〉W ∗(symĜ2)W ] (10)

involves an ensemble-average 〈· · · 〉 over all sources σ 1 and
polarizations in V 1. While this integration can be performed
explicitly, we instead seek to simplify matters so that the
final expression for � involves only surface integrals. The key
point is that ss∗ is an N × N matrix describing interactions
among the N surface-current basis functions. The ensemble
average 〈ss∗〉 is also an N × N matrix, which we would like
to express in terms of a simple scattering problem involving the
SIE Green’s function matrices, hence eliminating any explicit
computations over the interior volume V 1.

Defining the Hermitian matrix Ĉ = 〈ss∗〉, it follows that its
only nonzero entries lie in the upper-left N1 × N1 block C1 =
〈s1s1∗〉 and are given by C1

mn = 〈s1
ms1

n〉 = 〈〈β1
m,
1 	 σ 1〉〈
1 	

σ 1,β1
n〉〉, or

C1
mn =

〈‹
d2x

˚
d3yβ1

m(x)T
1(x,y)σ 1(y)
‹

d2x′
˚

d3y′σ 1(y′)∗
1(x′,y′)∗β1
n(x′)

〉

=
‹

d2x
˚

d3yβ1
m(x)T
1(x,y)

‹
d2x′

˚
d3y′〈σ 1(y)σ 1(y′)∗〉
1(x′,y′)∗β1

n(x′)

= 4

π

‹
d2x

˚
d3y

‹
d2x′β1

m(x)T
1(x,y)[ωImχ (y)]
1(x′,y)∗β1
n(x′), (11)
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where in the third line we have performed an integration over
all dipole positions by employing the fluctuation-dissipation
theorem82 for the current-current correlation function,

〈σ 1(y)σ 1(y′)∗〉 = 4

π
ωImχ (y,ω)δ(y − y′), (12)

and where we omitted the dependence on the Planck energy
distribution �(ω,T ), which has been factored out into Eq. (1),
and where Imχ denotes the imaginary part of the 6 × 6
material susceptibility tensor, so that Imχ = ( Imε 0

0 Imμ ), which
is related to material absorption.

Equation (11) closely resembles an absorbed power in the
volume of body 1, since absorbed power for a field φ is
1
2

´
φ∗(ωImχ )φ.83 To make this analogy precise, some careful

algebraic manipulation is required, and the abovementioned
reciprocity relations [
(x,x′)T = S
(x,x′)S, WT = SWS,
etc.] play a key role. In particular, the fact that C1 is Hermitian
implies that the matrix is completely determined by the values
of x1∗S(C1)TSx1 for all x1, where we have inserted the
sign-flip matrices S and the transposition for later convenience.
Interpreting x1 as the basis coefficients of a surface current
ξ 1 = ∑

n x1
nβ

1
n on ∂V 1, we find

x1∗S(C1)TSx1 = 〈|x1∗Ss1|2〉 = 〈|ξ 1,S
1 	 σ 1|2〉
=
‹

d2x
˚

d3y
‹

d2x′
˚

d3y′ξ 1(x)∗S
1(x,y)〈σ 1(y)σ 1(y′)T〉
1(x′,y)TSξ 1(x′)

= 4

π

‹
d2x

˚
d3y

‹
d2x′ξ 1(x)∗S
1(x,y)[ωImχ (y)]S
1(x′,y)ξ 1(x′)

= 4

π

‹
d2x

˚
d3y

‹
d2x′ξ 1(x)∗S
1(x,y)S[ωImχ (y)]
1(x′,y)ξ 1(x′)

= 4

π

‹
d2x

˚
d3y

‹
d2x′[
1(y,x)ξ 1(x)]∗[ωImχ (y)][
1(x′,y)ξ 1(x′)]

= 4

π
〈
1 	 ξ 1,(ωImχ )
1 	 ξ 1〉, (13)

where in the first and fourth lines, we invoked reciprocity (from
above) and in the third line, we assumed that S commutes
with Imχ , which is true for reciprocal media. (The only way
that S would not commute with Imχ would be if there were
a chiral susceptibility coupling electric and magnetic fields
directly, also called a bianisotropic susceptibility, which breaks
reciprocity.95) Letting φ1 = 
1 	 ξ 1 be the field due to the
surface current ξ 1, it follows that

x1∗S(C1)TSx1 = 4

π
〈φ1,(ωImχ )φ1〉. (14)

But, as noted above, 1
2 〈φ1,ω(Imχ )φ1〉 (where the inner product

〈·,·〉 is now over the volume V 1) has a simple meaning: it is the
absorbed power in V 1 from the currents ξ 1, or equivalently,
the time-average power density dissipated in the interior of
body 1 by the field φ1 produced by ξ 1.

Computing the interior dissipated power from an arbitrary
surface current turns out to be somewhat complicated, since
one needs to take into account the possibility that the equivalent
surface currents arise from sources both outside and inside
V 1. If, on the other hand, we could restrict ourselves to
equivalent currents ξ 1 that are outside of V 1, then we can use
the result from above that the incoming Poynting flux (the ab-
sorbed power) is simply − 1

4 Re〈ξ 1,φ1〉 = − 1
4x1∗(symG1)x1.

Substituting this into Eq. (14), we would be immediately
led to the identity x1∗S(C1)TSx1 = − 2

π
Re (x1∗G1x1), and

this gives an expression for C1 in terms of G1. It turns out
that indeed, we need not handle arbitrary ξ 1 since the Ĉ

matrix is never used by itself—it is only used in the trace

expression

� = − 1
4 Tr[ĈW ∗(symĜ2)W ] = − 1

4 Tr[· · · ]T

= − 1
4 Tr[SWSS(symĜ2)SSW ∗SĈT]

= − 1
4 Tr[SW (symĜ2)W ∗SĈT ]

= − 1
4 Tr[SĈTSW (symĜ2)W ∗], (15)

using reciprocity. As shown in Sec. III A, the standard definite-
ness properties of the Green’s functions (currents do nonnega-
tive work) imply that symĜr is negative semidefinite and hence
admits a Cholesky factorization96 symĜr = −Û r∗Û r . It fol-
lows that Eq. (15) can be written as − 1

4 Tr[X∗SĈTSX], where
X = WÛ 2∗ are the “currents” due to “sources” represented by
the columns of Û 2∗, which are all of the form ( 0

s2 ): currents

from sources in V 2 alone. So, effectively, SĈTS is only used
to evaluate the power dissipated in V 1 from sources in V 2,
and by the same Poynting-theorem reasoning from above, it
follows that S(C1)TS = − 2

π
symG1, and hence

Ĉ = − 2

π
symS(Ĝ1)TS = − 2

π
symĜ1 (16)

by the symmetry of Ĝ1. Substituting this result into Eq. (10)
then gives the heat-transfer formulation summarized in the
next section.

D. Heat-transfer formula

The result of the above derivation is that the ensemble-
averaged flux from V 1 to V 2 can be expressed in the compact
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form

� = 1

2π
Tr[(symĜ1)W ∗(symĜ2)W ] (17)

= 1

2π
Tr[(symG1)W 21∗(symG2)W 21], (18)

with W 21 relating incident fields at the surface of body 2 to the
equivalent currents at the surface of body 1. Our simplified
expression is computationally convenient because it only
involves standard matrices that arise in BEM calculations,26

with no explicit need for evaluation of fields or sources
in the volumes,29,39,40 separation of incoming and outgoing
waves,30–32,37,38,78 integration of Poynting fluxes,39 or any
additional scattering calculations.

III. GENERALIZATIONS

In this section, we study the positivity and symmetries of
the two-body heat-transfer formula above and consider gen-
eralizations to include other situations of interest. Following
similar arguments as those employed in the previous section,
we derive formulas for the emissivity of isolated bodies, the
spatial distribution of Poynting flux on the surfaces of bodies,
and the heat transfer between multiple and nested bodies. In
Sec. III B, we show that abandoning our choice of real-β basis
functions above in favor of complex-β functions does not
change the final formula for �, so long as the βs come in
complex conjugate pairs.

A. Positivity and reciprocity

In addition to its computational elegance, Eq. (18) al-
gebraically captures crucial physical properties of the flux
spectrum: � is positive-definite � � 0 and symmetric with
respect to 1 ↔ 2 exchange, as required by reciprocity. Of
course, the positivity of � is immediately clear from the Rytov
starting point of fluctuating currents inside the bodies: the
absorbed power in one body from sources in the other body
is simply ∼´

(ωImε)|E|2 � 0 (since ω Imε � 0 for passive
media83,84). Hence positivity must hold for any formulation
that is mathematically equivalent to the Rytov picture. How-
ever, it is still useful and nontrivial to understand how this
positivity manifests itself algebraically in a given formulation.
For example, Ref. 35 showed how positivity manifests itself
in a scattering-matrix framework. In our FSC framework,
positivity turns out to correspond to the fact that � can be
interpreted as a kind of matrix norm.

As derived above, the standard definiteness properties
of the Green’s functions (currents do nonnegative work)
imply that symGr is negative semidefinite and hence admits
a Cholesky factorization symGr = −Ur∗Ur , where Ur is
upper-triangular. It follows that

� = 1

2π
Tr[U 1W ∗U 2∗U 2WU 1∗]

= 1

2π
Tr[Z∗Z] = 1

2π
‖Z‖2

F , (19)

where Z = U 2WU 1∗, is a weighted Frobenius norm of the
SIE matrix W , which from above we know is necessarily
non-negative.

Furthermore, reciprocity (symmetry of � under 1 ↔ 2
interchange) corresponds to simple symmetries of the ma-
trices. As derived in Appendix C 1, 
(y,x)T = S
(x,y)S,
ĜT = SĜS, and WT = SWS, where S = ST = S−1 = S∗ is
the matrix that flips the signs of the magnetic basis coefficients
and swaps the coefficients of βn and βn. It follows that

� = 1

2π
Tr[SWS(symSĜ2S)SW ∗S(symSĜ1S)]

= 1

2π
Tr[(symĜ2)W ∗(symĜ1)W ], (20)

where the S factors cancel, leading to the 1 ↔ 2 exchange.

B. Complex-valued basis functions

For convenience, we assumed above that the basis functions
βn were purely real-valued. However, it easy to generalize the
final result a posteriori to complex-valued basis functions.
The relevant case to consider are basis functions that come in
complex-conjugate pairs βn and βn′ = βn (true for any practi-
cal complex basis). Such a basis can always be transformed into
an equivalent real-valued basis β̃n by the linear transformation
β̃n = 1√

2
(βn + βn′ ) and β̃n′ = i√

2
(βn − βn′ ). In an expansion

ξ = ∑
n xnβn = ∑

n x̃nβ̃n, this is simply a rotation x̃ = Qx

where the matrix Q is easily verified to be unitary (Q∗ = Q−1),
since it is composed of unitary 2 × 2 blocks (operating on
n,n′ complex-conjugate pairs). Given such a unitary change
of basis, we can make a corresponding unitary change to
the G and W matrices from above, G̃ = QĜQ∗ and W̃ =
QWQ∗, to obtain the matrices in the complex basis. By
inspection of the � expression above, all of the Q factors
cancel after the change of basis and one obtains the same
expression in the complex basis with the new G̃ and W̃

matrices.

C. Emissivity of a single body

The same formalism can be applied to compute the
emissivity of a single body. For a single body 1 in medium 0,
the emissivity of the body is the flux �0 of random sources in
V 1 into V 0.23 Following the derivation above, the flux into V 0

is − 1
4 Re〈ξ 1,φ0〉 = − 1

4 〈ξ 1,
0 	 ξ 1〉. The rest of the derivation
is essentially unchanged except that W = (G1 + G0)−1 since
there is no second surface. Hence we obtain

�0 = 1

2π
Tr[(symG1)W ∗(symG0)W ], (21)

which again is invariant under 1 ↔ 0 interchange from the
reciprocity relations (Kirchhoff’s law).

D. Surface Poynting-flux pattern

It is also interesting to consider the spatial distribution of
Poynting-flux pattern, which can be obtained easily because,
as explained above, 1

4 Re[ξ 2(x)∗φ2(x)] is exactly the inward
Poynting flux at a point x on surface 2. It follows that the mean
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contribution �2
n of a basis function βr

n to � is

�2
n = −1

4

〈
Re
[
s∗W ∗e2

ne
2∗
n Ĝ2Ws

]〉
= −1

4
Re
[
e2∗
n Ĝ2W 〈ss∗〉W ∗e2

n

]
= 1

2π
Re
[
e2∗
n Ĝ2W (symĜ1)W ∗e2

n

]
,

where e2
n is the unit vector corresponding to the β2

n component.
This further simplifies to �2

n = F 2
nn, where

F 2 = 1

2π
Re[G2W 21(symG1)W 21∗]. (22)

Note that � = TrF 2. Similarly, by swapping 1 ↔ 2, we obtain
a matrix F 1 such that �1

n = F 1
nn is the contribution of β1

n to
the flux on surface ∂V 1.

E. Multiple and nested bodies

In this section, we extend the FSC formalism above to situ-
ations involving multiple and nested bodies. For simplicity, we
only consider an additional medium 3, since generalizations
to include additional bodies or levels of nesting readily follow.
Because the derivation is almost identical to the two-body case,
we only focus on those aspects that differ.

1. Multiple bodies

Consider the system depicted in Fig. 2, consisting of three
disconnected bodies at different temperatures. Applying the
principle of equivalence, one finds

φ0 = φ0+ + 
0 	 (ξ 1 + ξ 2 + ξ 3), φr = φr+ − 
r 	 ξ r ,

for r = 1,2,3, with fictitious currents ξ r determined by the
boundary conditions of continuous tangential fields at the body
interfaces. Equating the tangential components of the fields at

T2

ξ2
φ2−

T1 ξ1
φ1−

φ0− ξ3

φ3
T 3

V 1

V 2

V 3

FIG. 2. (Color online) Schematic depicting three disconnected
bodies described by surfaces ∂V 1, ∂V 2, and ∂V 3, and held at
temperature T 1, T 2, and T 3, respectively. Surface currents ξ 1, ξ 2,
and ξ 3, laying on the surfaces of the bodies give rise to scattered
fields φ1−, φ2−, and φ3−, respectively, in the interior of the bodies,
and scattered field φ0− in the intervening medium 0.

the surfaces of the bodies, one obtains the integral equations:

(
0 + 
r ) 	 ξ r +
∑
i 
=r

(
0 	 ξj )|∂V r = φr+ − φ0+|∂V r , (23)

along with the corresponding SIE matrix:⎛
⎜⎝W 11 W 12 W 13

W 21 W 22 W 23

W 31 W 32 W 33

⎞
⎟⎠

−1

︸ ︷︷ ︸
W−1

=

⎛
⎜⎝G0,11 G0,12 G0,13

G0,21 G0,22 G0,23

G0,31 G0,32 G0,33

⎞
⎟⎠

︸ ︷︷ ︸
Ĝ0

+

⎛
⎜⎝G1

0

0

⎞
⎟⎠

︸ ︷︷ ︸
Ĝ1

+

⎛
⎜⎝ 0

G2

0

⎞
⎟⎠

︸ ︷︷ ︸
Ĝ2

+

⎛
⎜⎝ 0

0

G3

⎞
⎟⎠

︸ ︷︷ ︸
Ĝ3

. (24)

The derivation of the flux spectrum for any given pair of
bodies mirrors exactly the derivation in Sec. II, with the
only difference being the modified SIE matrix W . The final
expression for the flux spectrum into V j due to random
currents in V i 
=j is given by

�ij = 1

2π
Tr[(symGi)Wji∗(symGj )Wji], (25)

which again is invariant under i ↔ j interchange.

2. Nested bodies

Consider now the system depicted in Fig. 3, involving
three bodies at different temperatures with one of the bodies
(medium 2) containing another (medium 3). Applying the
principle of equivalence again, one finds

φ0 = φ0+ + 
0 	 (ξ 1 + ξ 2),

φ2 = φ2+ − 
2 	 (ξ 2 − ξ 3),

φr = φr+ − 
r 	 ξ r ,

T2

ξ2

φ2−

T1

ξ1
φ1−

φ0−

φ3−

T3ξ3

V 1

V 2
V 3

FIG. 3. (Color online) Similar three-body geometry as that
depicted in Fig. 2 but with body 3 now embedded in the interior
of body 2. Here, the scattered field φ2− includes contributions from
both ξ 2 and ξ 3.
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for r = 1,3, with fictitious currents ξ r determined by the
boundary conditions of continuous tangential fields at the body
interfaces. Equating the tangential components of the fields at
the surfaces of the bodies, one obtains the following integral
equations:

(
0 + 
1) 	 ξ 1 + 
0 	 ξ 2|∂V 1 = φ1+ − φ0+|∂V 1 ,

(
0 + 
2) 	 ξ 2 + 
0 	 ξ 1 − 
2 	 ξ 3|∂V 2 = φ2+ − φ0+|∂V 2 ,

(
2 + 
3) 	 ξ 3 − 
2 	 ξ 2|∂V 3 = φ3+ − φ2+|∂V 3 ,

where ∂V 2 denotes the interface between V 2 and V 0, from
which one obtains the corresponding SIE matrix:⎛
⎜⎝W 11 W 12 W 13

W 21 W 22 W 23

W 31 W 32 W 33

⎞
⎟⎠

−1

︸ ︷︷ ︸
W−1

=

⎛
⎜⎝G0,11 G0,12

G0,21 G0,22

0

⎞
⎟⎠

︸ ︷︷ ︸
Ĝ0

+

⎛
⎜⎝G1

0

0

⎞
⎟⎠

︸ ︷︷ ︸
Ĝ1

+
⎛
⎝0

G2 −G2,23

−G2,32 G2,33

⎞
⎠

︸ ︷︷ ︸
Ĝ2

+

⎛
⎜⎝ 0

0

G3

⎞
⎟⎠

︸ ︷︷ ︸
Ĝ3

. (26)

Although he derivation of the flux spectrum for any given pair
of bodies closely mirrors the derivation in Sec. II C, important
deviations arise due to the difference in topology. In what
follows, we only focus on those steps that differ significantly.
The asymmetry of the geometry also means that we must
consider � for each pair separately.

First, we compute the flux spectrum �13 into V 3 (the
absorbed power in 3) due to dipole current sources in V 1.
The flux into body 3 due to a single dipole source σ 1 inside
body 1 is given by

�13
σ 1 = 1

4 Re〈ξ 3,φ2〉 = 1
4 Re〈ξ 3,φ3〉

= 1
4 Re〈ξ 3,−
3 	 φ3〉

= − 1
4 Re(x3∗G3x3).

After ensemble averaging over σ 1 as before, we obtain

�13 = 1

2π
Tr[(symG1)W 31∗(symG3)W 31]. (27)

Second, we compute the flux spectrum �12 into V 2 (the
absorbed power in body 2) due to dipole current sources in V 1.
Direct application of Poynting’s theorem at ∂V 2 in this case
does not yield �12 but rather the quantity we denote as �1(2):
the flux into the entire region contained by ∂V 2 from sources
in V 1, which includes absorption in both V 2 and V 3. It follows
that �12 = �1(2) − �13. So, it only remains to compute �1(2),
starting with the flux from a single σ 1 source, given by

�
1(2)
σ 1 = 1

4 Re〈ξ 2,φ0〉 = 1
4 Re〈ξ 2,φ2〉

= 1
4 Re〈ξ 2,−
2 	 (ξ 2 − ξ 3)〉

= − 1
4 Re[x2∗(G2x2 − G2,23x3)],

with the additional x3 term stemming from absorbed power in
body 3. We ensemble average as before and obtain

�12 = �1(2) − �13

= 1

2π
Tr[(symG1)W 21∗(symG2)W 21

− (symG1)sym(W 21∗G2,23W 31)] − �13. (28)

Finally, we compute the flux spectrum �32 into V 2 (the
absorbed power in body 2) due to dipole current sources in V 3.
�23 can be computed by subtracting the flux �3(2) leaving body
2 through ∂V 2 from the flux �3(3) entering body 2 through
∂V 3. Specifically, for a single dipole σ 3, we find

�32
σ 3 = 1

4 Re〈ξ 3,φ2〉 − 1
4 Re〈ξ 2,φ2〉

= 1
4 Re〈ξ 3,φ3〉 − 1

4 Re〈ξ 2,φ2〉
= 1

4 Re〈ξ 3,−
3 	 ξ 3〉 − 1
4 Re〈ξ 2,−
2 	 (ξ 2 − ξ 3)〉

= − 1
4 Re(x3∗G3x3)︸ ︷︷ ︸

�
3(3)

σ3

+ 1
4 Re[x2∗(G2x2 − G2,23x3)]︸ ︷︷ ︸

−�
3(2)

σ3

.

The final result is the expression

�32 = �3(3) − �3(2), (29)

with

�3(2) = 1

2π
Tr[(symG3)W 23∗(symG2)W 23

+ (symG3)sym(W 23∗G2,23W 33)] (30)

�3(3) = 1

2π
Tr[(symG3)W 33∗(symG3)W 33]. (31)

For example, the heat transfer between V 1 and the com-
bined V (2) = V 2 ∪ V 3 is given by

H 1(2) =
ˆ

�T 1�1(2) − �T 2�12 − �T 3�13, (32)

where the integral is taken over all positive frequencies ω and
�T ≡ �(ω,T ). In the special case T 2 = T 3, the expression
reduces to the expected form:

H 1(2) =
ˆ

(�T 1 − �T 2 )�1(2). (33)

As before, we obtain reciprocity relations �ij = �ji between
every pair of bodies, but these relations are no longer
apparent merely by inspection of �ij . Because each body
is topologically distinct, �ji is no longer obtained from �ij

merely by interchanging i and j , but instead must be derived
separately (using analogous steps). Upon carrying out this
derivation, we verify that �ij = �ji as required. Furthermore,
the positivity of �ij appears harder to derive algebraically from
the final expression than in the non-nested cases, and we do not
do so in this work. (Although it follows from the second law
of thermodynamics, the scattering-matrix proof of positivity35

should apply to nested bodies with minimal modification.)

IV. VALIDATION

We now apply our FSC formulation to obtain results
obtained previously using other scattering formulations in
several high-symmetry geometries. In Sec. IV A, we discuss
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the choice of basis, contrasting BEMs that use a generic
surface mesh with spectral methods that use a Fourier-like
basis, and point out that the latter are actually closely related
to scattering-matrix methods in the case of high-symmetry
geometries. In Sec. IV B, we derive semianalytical expressions
of heat radiation and heat transfer for spheres and plates, using
surface spherical-harmonics and Fourier bases to describe
the SIE surface unknowns, and show that these agree with
previous formulas derived using other formulations.9,34,35,97

In Sec. IV C, we present a general-purpose numerical im-
plementation of the FSC formulation based on a standard
triangular-mesh discretization of the surfaces of the bodies
known as the BEM “RWG” method; we check it against
previous heat-transfer methods by computing the heat transfer
between spheres.

A. Choice of basis

The standard approach for solving the SIEs above is to
discretize them by introducing a finite set of basis functions
βn defined on the surfaces of the bodies. As noted above,
an important property of SIE formulations is that βn is an
arbitrary basis of surface vector fields: unlike scattering-matrix
formulations,30–32 they need not satisfy any wave equation,
nor encapsulate any global information about the scattering
geometry, nor consist of “incoming” or “outgoing” waves into
or out of the bodies. This lack of restriction on βn is a powerful
property of the SIE formalism.

There are two main categories of basis functions that one
could employ: spectral bases or boundary-element bases. A
spectral basis consists of a Fourier-like complete basis of non-
localized functions, such as spherical harmonics or Chebyshev
polynomials,94 which are truncated to obtain a finite basis.
BEMs instead first discretize each surface into a mesh of
polygonal elements (e.g., triangles) and describe functions
piecewise by low-degree polynomials in each element.24,25,27

Spectral bases have the advantage that they can converge
exponentially fast for smooth functions,94 or in this case for
smooth interfaces, but they are not as well suited to handle
singularities such as corners, and moreover represent surfaces
with essentially uniform spatial resolution. A BEM basis, on
the other hand, is more flexible because it can use a nonuniform
mesh to concentrate spatial resolution where it is needed,25,26

and furthermore the localized nature of the basis functions has
numerical advantages in assembling and applying the W and
G (Green’s function) matrices.98,99 The most common BEM
technique employs a mesh of triangular elements (panels)
with vector-valued polynomial basis functions called an RWG
(Rao–Wilson–Glisson) basis,93 where each basis function is
associated with each edge of the mesh and is nonzero over
a pair of triangles sharing that edge. Many years of research
have been devoted to the efficient assembly of the G matrices
for the RWG basis (by evaluating the singular panel integrals
of 
),100–102 and to fast methods for solving the resulting linear
equations.99,103

For a handful of highly symmetric geometries, however,
spectral bases have an additional advantage: a special basis
can be chosen such that most of the matrix elements can
be computed analytically (and many of the G matrices are
diagonal as a consequence of orthogonality). This has a close

connection to scattering methods, because whenever there
is a known incoming/outgoing wave basis (e.g., spherical
waves), one can construct an equivalent set of surface-current
basis functions (e.g., spherical harmonics) by the principle of
equivalence. (In fact, the principle of equivalence can be used
to derive an exact equivalence between our � expressions
and the analogous expressions from the scattering-matrix
formulation, which we do not show here.) In the example
of interactions between two spherical bodies, if we employ a
(vector) spherical-harmonic basis on each body, then the Gr

self-interaction matrices are diagonal and the G0,rr ′
interaction

matrix is given by “translation matrices” that relate spherical-
wave bases at different origins.104 In this way, by choosing
a geometry-specific basis, the FSC formulation can retain
all of the efficiency of the scattering-matrix methods, while
preserving the flexibility to employ a different basis as needed.

B. Spectral basis

In this section, we explicitly apply our FSC formulation
with a spectral basis in three high-symmetry geometries for
which the matrix elements can be evaluated semianalytically:
radiation of an isolated plate and an isolated sphere, and
heat transfer between two parallel plates. In each case, we
reproduce known solutions that were derived previously using
scattering-matrix formulations.9,34,35,97 The main purpose of
this section is to illustrate how the FSC formulation with
a spectral basis allows semianalytical calculations similar to
scattering-matrix formulations (albeit only in the handful of
high-symmetry geometries where exact wave solutions can
be constructed in each body). To begin with, we review the
well-known spectral representation of the homogeneous DGF

 in bases specialized to particular coordinate systems.

1. Basis of Helmholtz solutions

We wish to work with solutions of Maxwell’s equations
known analytically within each body and which are orthogonal
when evaluated on the interfaces. These solutions, evaluated
at the interface of each body, will then provide a basis of
surface-tangential vector fields in which the G matrices can
be evaluated analytically or semianalytically. In particular, we
wish to work with solutions M and N of the vector Helmholtz
equation (equivalent to Maxwell’s equations in a homogeneous
isotropic medium),105

(∇2 + k2)

(
M

N

)
= 0, (34)

with M = −i/k∇ × N and N = i/k∇ × M denoting purely
electric and purely magnetic vector fields. [Note that M and N
come in two flavors, depending on whether on solves Eq. (34)
for outgoing or incoming boundary conditions.] Furthermore,
we seek solutions of Eq. (34) in a coordinate system that
allows separation of variables into “normal” and “tangential”
components to some surface ∂V (which is possible for a
small number of coordinate systems). We let η⊥ represent
the separable coordinate identified as the normal coordinate,
and let η‖ represent the remaining tangential coordinates. The
choice of coordinate system ultimately corresponds to a choice
of basis, or independent solutions labeled by an index n that
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correspond to different scattering channels. Specifically, one
is led to vector fields:105

M±
n (η⊥,η‖) = κ±

n,E(η⊥)Xn(η‖), (35)

N±
n (η⊥,η‖) = κ±

n,M (η⊥)Zn(η‖), (36)

with κ±
n and {Xn,Zn} denoting the normal and tangential

components of the fields and with ± denoting incoming
(+) and outgoing (−) solutions. For example, solutions in
spherical coordinates yield the well-known vector spherical-

wave solutions M±
�,m(r,θ,φ) = R±

� (r)Y�,m(θ,φ), described by
spherical Hankel functions κ±

�,m,E = R±
� and vector spherical

harmonics X�,m = Y�,m in terms of radial and angular coor-
dinates η⊥ = r and η‖ = {θ,φ}, respectively, and labeled by
angular-momentum “quantum” numbers n = {�,m}.

Because Mn and Nn form an orthonormal basis (due to the
self-adjointness of the Helmholtz operator), the homogeneous
photon DGFs G and C of Sec. II A can be expressed in such a
basis as104–106

G(k; x,x′) = η⊥(x̂)η⊥(x̂′)
2ik

δ(x − x′) +
∑

n

{
χn,EM+

n (x) ⊗ M−
n (x′) + χn,MN+

n (x) ⊗ N−
n (x′) η⊥(x) > η⊥(x′)

χn,EM−
n (x) ⊗ M+

n (x′) + χn,MN−
n (x) ⊗ N+

n (x′) η⊥(x) < η⊥(x′),
(37)

and C = i
k
∇ × G, respectively, where the coefficients χn are

determined by taking the Wronskian of the outgoing (−) and
incoming (+) solutions.

The SIE matrices appearing in Eq. (18) involve inner
products of Eq. (37) with basis functions βn defined at the
surfaces of the bodies. (Note that because the Green’s functions
are evaluated on the surface, inclusion of the delta-function
term is crucial.107 Just as the vector fields Mn and Nn form a
convenient basis in which to expand waves propagating inside
and outside ∂V , so too do the tangential components Xn and
Zn form a suitable basis in which to express surface-current
basis functions βn defined on ∂V . In this case, as in the case of
RWG basis functions,26 βn can be chosen to be purely electric
(E) or purely magnetic (M), so that

βn,E =
(

Xn

0

)
, βn,M =

(
0

Zn

)
. (38)

Moreover, the orthogonality relations of the tangential vector
fields, 〈Xm,Xn〉 = 〈Zm,Zn〉 = δmn and 〈Xm,Zn〉 = 0, mean
that only basis functions with the same n and same polarization
have nonzero overlap. These surface currents form a complete
basis and satisfy convenient orthogonality relations with the
corresponding vector fields:

〈Xm,M±
n 〉 = (κ±

n,E|∂V )δmn, (39)

〈Zm,N±
n 〉 = (κ±

n,M |∂V )δmn, (40)

〈Xm,N±
n 〉 = 〈Zm,M±

n 〉 = 0, (41)

with inner products 〈·,·〉 corresponding to surface integrals
over the tangential coordinates evaluated at the surface ∂V ,
i.e., 〈ϕ,ψ〉 = ‚

∂V
d2η‖ J (η⊥,η‖)ϕ∗ψ , where J denotes the

Jacobian factor for the coordinate system.
The combination of these orthogonality relations and the

Green’s function expression of Eq. (37), implies that the
G matrices arising in the SIE formulation for interface
∂V will be diagonal and known analytically in this basis.
Therefore choosing this basis simplifies the calculation of �,
as illustrated in the next sections.

2. Heat-transfer formulation

Expression of the homogeneous Green’s function in the
interior of each high-symmetry body r in the basis specialized
for that body yields a block-diagonal self-interaction matrix Gr

with matrix elements Gr
mn,QQ′ = 〈βr

m,Q,
r 	 βr
n,Q′ 〉 ∼ δmn,

where Q denotes polarization. In contrast, the lack of any
orthogonality relations between wave solutions constructed
for different, unrelated bodies means that the interaction
matrices Ĝ0,rr ′

are dense, i.e., the matrix elements G
0,rr ′
mn,QQ′ =

〈βr
m,Q,
0 	 βr ′

n,Q′ 〉 generally do not vanish. The outgoing fields
into the intervening medium 
r 	 βr

m,Q due to currents in body
r are still known analytically from Eq. (37), described in terms
of the wave solutions specialized to body r (albeit evaluated
in the exterior medium 0), but in order to take inner products
with βr ′

n,Q for a body r ′ we need to “translate” the solutions
centered on r to the different basis of waves centered on r ′ 
= r .
Such change of bases are often performed via “translation”
and “conversion” matrices that are well-known and tabulated
for most shapes of interest,104 and immediately yield the SIE
interaction matrices G0,rr ′

.
For the remainder of the section, we restrict ourselves

to situations involving either a single body or two identical
bodies described by a common set of basis functions, in which
case the individual SIE matrices are block-diagonal in n and
polarization. In particular, the G matrices for a given n are
given by

Ĝ0 =

⎛
⎜⎜⎜⎜⎝

G
0,11
⊥ G

0,12
⊥

G
0,21
⊥ G

0,22
⊥

G
0,11
‖ G

0,12
‖

G
0,21
‖ G

0,22
‖

⎞
⎟⎟⎟⎟⎠ ,

Ĝ1 =

⎛
⎜⎜⎜⎝

G1
⊥

0

G1
‖

0

⎞
⎟⎟⎟⎠ , Ĝ2 =

⎛
⎜⎜⎜⎝

0

G2
⊥

0

G2
‖

⎞
⎟⎟⎟⎠ ,

where G⊥ and G‖ = G⊥(E → H ) are 2 × 2 block matrices

G⊥,nn =
(

〈Xn,�
EE 	 Xn〉 〈Xn,�

EH 	 Zn〉
〈Zn,�

HE 	 Xn〉 〈Zn,�
HH 	 Zn〉

)
. (42)
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Here, the subscripts ⊥ and ‖ refer to the two decoupled polar-
ization states, corresponding to purely electric E and purely
magnetic M surface currents, respectively. The separability
of the two polarizations means that the flux spectrum � can
be written in the form � = ∑

p �p, with �p denoting the
contribution of the p polarization. From the definitions of the

 functions, it follows that the two are related to one another
by �‖ = �⊥(Z → 1/Z).

In the subsequent sections, we derive semianalytical ex-
pressions for � in special geometries involving isolated and
interacting plates and spheres. The symmetry of these geome-
tries make it convenient to represent the SIE matrices using
Fourier and spherical-wave surface basis functions, described
in Appendix A. Our final expressions agree with previous
formulas derived using the scattering-matrix approach.9,34,35,97

3. Isolated plates

We first consider the radiation of an isolated plate. Using
the appropriate Fourier basis supplied in Appendix A 1 and
the corresponding Green’s function expansion of Eq. (37), the
G⊥ matrices for the plate are given by

G
0,11
⊥ = 1

2

(
Z0
γ0

1

1 − γ0

Z0

)
, G1

⊥ = 1

2

(
Z1
γ1

−1

−1 − γ1

Z1

)
, (43)

where γr =
√

1 − (|k⊥|/kr )2 is the wavenumber in the z

direction normalized by kr . It follows that the flux spectra
for the two polarizations are given by

�⊥ = 1

4π
Tr

⎡
⎣Re

(
γ0

Z0

)
Re
(

γ1

Z1

)
∣∣ γ0

Z0
+ γ1

Z1

∣∣2
⎤
⎦ ,

(44)

�‖ = �⊥

(
Z → 1

Z

)
,

with Tr� = ´
d2k⊥
(2π)2 �(k⊥) corresponding to integration over

the parallel wave vector. Assuming a nondissipative external
medium (Imε0 = Imμ0 = 0), and performing straightforward
algebraic manipulations, one obtains the well-known formula
for the emissivity of the plate:17

�(ω) = 1

8π

ˆ ω

0

d2k⊥
(2π )2

∑
p={⊥,||}

εp(k⊥,ω), (45)

where εp = 1
2 (1 − |rp|2) denotes the directional emissivity of

the plate for the p polarization, expressed in terms of the
Fresnel reflection coefficients:83

r⊥ =
γ0

Z0
− γ1

Z1
γ0

Z0
+ γ1

Z1

, r‖ = r⊥

(
Z → 1

Z

)
. (46)

4. Isolated spheres

We now consider the radiation of an isolated sphere.
Using the appropriate vector spherical wave basis sup-
plied in Appendix A 2 and the corresponding Green’s
function expansion, the G⊥ matrices for the sphere are

given by

G
0,11
⊥ = (z0R)2

(
Z0j�(z0)h�(z0) ij�(z0)h̆�(z0)

−ij�(z0)h̆�(z0) 1
Z0

j̆�(z0)h̆�(z0)

)
, (47)

G1
⊥ = (z1R)2

(
Z1j�(z1)h�(z1) ij̆�(z1)h�(z1)

−ij̆�(z1)h�(z1) 1
Z1

j̆�(z1)h̆�(z1)

)
, (48)

where f̆ (z) ≡ (1/z + d/dz)f , j� and h� are Bessel functions
of the first and second kind, respectively, and zr = krR.
Employing a number of well-known properties of spherical
Bessel functions, such as the Wronskian identity j ′

�(z)h�(z) −
h′

�(z)j�(z) = i/z2, one arrives at the following flux spectra for
the two polarizations:

�⊥ = 1

8π
Tr

⎡
⎣ 1

|z0h�(z0)|2
Im
[

Z0
Z1

j̆�(z1)
j�(z1)

]
∣∣Z0
Z1

j̆�(z1)
j�(z1) − h̆�(z0)

h�(z0)

∣∣2
⎤
⎦ , (49)

�‖ = �⊥

(
Z → 1

Z

)
, (50)

with Tr� = ∑
�,m ��m corresponding to a sum over the

angular-momentum quantum numbers. Assuming vacuum
as the external medium (ε0 = μ0 = 1) and a nonmagnetic
sphere (μ1 = 1), one obtains the well-known formula for the
emissivity of a sphere in vacuum:97

�(ω) = 1

8π

∑
�>1

(2� + 1)

|z0h�(z0)|2

×
⎡
⎣ Im

[
n1

j̆�(z1)
j�(z1)

]
∣∣n1

j̆�(z1)
j�(z1) − h̆�(z0)

h�(z0)

∣∣2 +
Im
[
n∗

1
j̆�(z1)
j�(z1)

]
∣∣n1

h̆�(z0)
h�(z0) − j̆�(z1)

j�(z1)

∣∣2
⎤
⎦ ,

(51)

where n1 = √
ε1 is the index of refraction of the sphere.

5. Two plates

Finally, we consider the heat transfer between two parallel,
semi-infinite plates separated by distance d. Just as in the case
of isolated plates, it is convenient to express the G⊥ matrices in
the Fourier basis supplied in Appendix A 1. Here, in addition
to the self-interaction matrices

G
0,rr
⊥ = 1

2

(
Z0
γ0

1

1 − γ0

Z0

)
, Gr

⊥ = 1

2

(
Zr

γr
−1

−1 − γr

Zr

)
, (52)

for r = 1,2, one obtains the interaction or “translation”
matrices

G12
⊥ = G21

⊥ = 1

2

(
Z0
γ0

1

1 γ0

Z0

)
eik0γ0d , (53)

where the exponential factors above couple or “translate”
waves arising in different origins. Straightforward matrix alge-
bra yields the following flux spectra for the two polarizations:

�⊥ = 1

2π
Tr

⎡
⎣∣∣ γ0

Z0
e2ik0γ0d

∣∣2
|ρ⊥|2

Re
(

γ1

Z1

)
Re
(

γ2

Z2

)
∣∣ γ0

Z0
+ γ1

Z1

∣∣2∣∣ γ0

Z0
+ γ2

Z2

∣∣2
⎤
⎦ , (54)

�‖ = �⊥

(
Z → 1

Z

)
, (55)
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where ρp = |1 − r1
p r2

p e2ik0γ0d |2 and r
q
p is the Fresnel reflection

coefficient of plate q for the p polarization given in Eq. (46).
Assuming a nondissipative external medium (Imε0 = Imμ0 =
0), and performing straightforward algebraic manipulations,
one obtains the well-known formula17

�(ω) = �prop(ω) + �evan(ω), (56)

with

�prop(ω) = 1

4π

∑
p

ˆ ω

0

d2k⊥
(2π )2

ε1
pε

2
p

ρp
, (57)

�evan(ω) = 1

4π

∑
p

ˆ ∞

ω

d2k⊥
(2π )2

(
Imr1

p

)(
Imr2

p

)e−2Im(k0γ0)d

ρp
,

(58)

where ε
q
p denotes the emissivity of plate q for the p polarization

and where � has been conveniently decomposed into far-
field (propagating) and near-field (evanescently decaying)
contributions.

C. BEM discretization via RWG basis

In contrast to spectral methods, BEMs discretize the
surfaces of the bodies into polygonal elements or “panels,”
and describe piecewise functions in each element by low-
degree polynomials.25,27 The most common BEM technique
employs a so-called RWG basis of vector-valued polynomial
functions defined on a mesh of triangular panels.93 Such a
basis is applicable to arbitrary geometries and yields results
that converge with increasing resolution (smaller triangles),
where variants with different convergence rates depend upon
the degree of the polynomials used in the triangles (which
can be curved). The simplest discretizations involve degree-1
polynomials and flat triangles, where the error decreases
at least linearly with 1/diameter of the triangles, but can
converge faster with adaptive mesh refinements.27 In contrast
to spectral methods, the Gnm integrals here must be performed
numerically and the resulting G matrices are dense, but,
thankfully, fast techniques to perform these integrals are
well established and need only be implemented once for a
given RWG basis, independent of the geometry.24,25,93 One
such implementation is the free-software solver SCUFF-EM,108

which we exploit in this section to compare results from
BEM RWG to known results for spheres; the same code is
employed in Sec. V to obtain results in new and more complex
geometries.

The heat-transfer rate H between two spheres was recently
obtained numerically by Ref. 29. In contrast to scattering-
matrix methods or the FSC formalism above, the method of
Ref. 29 involves straightforward integration of the inhomoge-
neous Green’s function of the geometry over the volumes of the
two spheres, expressed in terms of a specialized spherical-wave
basis expansion with coefficients determined by enforcing con-
tinuity of the fields across the various interfaces. The result of
the integration is an exponentially convergent semianalytical
formula of the kind derived in Sec. IV B. Figure 4 compares
the results of the BEM RWG method (red circles) against
those obtained by evaluating the semianalytical formula of
Ref. 29, truncated at a sufficiently large but finite order (solid
lines). In particular, the heat-transfer ratio H = H/σT 4A
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FIG. 4. (Color online) Ratio H = H/σT 4A of the heat-transfer
rate H between gold spheres of radii R = 0.2 μm and the Stefan-
Boltzmann law σT 4A, where A = 4πR2 is the surface area of the
spheres, with one sphere held at T = 300 K and the other held at zero
temperature, as a function of their surface-surface separation. (Inset)
Flux spectra �(ω) per unit area A (units of μm2) of the two spheres
at d = R (green circles) and of an isolated sphere (blue circles).

is plotted as a function of surface-surface separation d for
gold spheres of radius R = 1 μm, where one sphere is held
at T = 300 K, while the other is held at zero temperature,
and where σT 4A is the Stefan-Boltzmann (SB) law (for a
planar black body), with σ = π2k2

B/(60h̄3c2) and A the surface
area of the spheres. The inset of the figure also shows the
corresponding flux spectra � of both interacting (d = R) and
isolated spheres, normalized by A and plotted over relevant
wavelengths λ � λT , where λT = h̄c/kBT ≈ 7.6 μm denotes
the thermal wavelength corresponding to the peak of the
thermal spectrum. In both cases, the BEM results (circles)
are shown to agree with the corresponding semianalytical
formulas [in the case of isolated spheres, the flux spectrum
is compared against Eq. (51)].

V. APPLICATIONS

In this section, we illustrate the generality and broad
applicability of the FSC formulation by applying the BEM
RWG method to obtain new results in complex geometries.
As discussed above, most calculations of heat transfer have
focused primarily on semi-infinite planar bodies.23 Finite
bodies only recently became accessible with the development
of sophisticated spectral methods,30–35,78 albeit for highly
symmetric bodies with smooth shapes (e.g., spheres) for which
convenient spectral bases exist. Here, we will focus instead
on geometries involving finite bodies with sharp corners
(combinations of finite plates, cylinders, and cones) that pose
no challenge for the BEM RWG method but which prove
difficult to model via spectral methods.
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FIG. 5. (Color online) Ratio H = H/σT 4A of the heat-transfer
rate H from a finite, gold circular plate of lateral size 2R and
thickness L = 0.2 μm held at T = 300 K, to an identical plate
held at zero temperature, and the SB law σT 4A (where A = πR2

is the “interaction” surface area of the plates), as a function of their
surface-surface separation d . H is plotted for multiple aspect ratios
2R/L (circles). The solid black line corresponds to the heat-transfer
ratio H∞ = H∞(R → ∞) obtained upon taking the limit R → ∞,
which is computed via the semianalytical formula in Ref. 109. (Inset)
Heat-transfer rate between two plates at a fixed separation d = 0.1L

(solid circles) and heat radiation of an isolated plate (open circles) or
sphere (thick solid line) as a function of lateral size or diameter.

A. Plates and cylinders

To begin with, we extend the calculation of heat transfer
between planar semi-infinite plates to the case of finite plates,
which quantifies the influence of lateral size effects in that
geometry. Figure 5 shows the ratio H = H/σT 4A of the
heat-transfer rate H between finite circular plates of thickness
L and lateral size 2R and the SB law, with one plate held
at T = 300 K and the other held at zero temperature as a
function of their surface-surface separation d. H is plotted
for multiple aspect ratios 2R/L (solid circles), with fixed
L = 0.2 μm. For comparison, we also plot the heat-transfer
ratio H∞ for semi-infinite (R → ∞) plates of the same
thickness (black solid line), which is obtained analytically
from the absorptivity of the plates via Kirchhoff’s law of
thermal radiation.4,110 As expected, one finds that at small d,
near-field effects dominate and H ∼ 1/

√
d for both finite and

semi-infinite plates. In contrast, at asymptotically large d, the
finite plates behave like dipoles and one finds that H ∼ 1/d5,
whereas the semi-infinite transfer rate approaches a constant
H∞(d → ∞) � 1 independent of d; the rate is significantly
smaller than that of a perfect black body because gold is
highly reflective. As R → ∞, the BEM results approach H∞
for all separations d, albeit at different rates, where smaller
separations converge faster than larger separations.

To quantify finite-size effects, the inset of Fig. 5 shows
H/H∞ for isolated and interacting plates (at a single separa-
tion d = 0.1L) as a function of R. As above, in the limit of

large R � λT � L, such that the dominant wavelengths and
corresponding skin depths δ = c/Im

√
εω are much smaller

than the lateral dimensions of the plates, H → H∞. In the
case of isolated plates, the relevant length scales are λT and
δ, whereas in the case of interacting plates, the separation
d also factors into the convergence rate: the increasing
contribution of (long-wavelength) near-field effects to the heat
transfer at smaller separations means that smaller separations
converge faster to the H∞ result than larger separations. (For
the particular separation d = 0.1L plotted here, near-field
effects are large enough to cause the convergence rate of the
interacting plates to be significantly larger than that of the
isolated plate.) At intermediate R � L � λT , the plates no
longer resemble plates but rather elongated cylinders, leading
to significant deviations in H.

Compared to the heat radiation of semi-infinite cylinders
(L/R → ∞ for fixed R), studied previously by Ref. 34, the
radiation of finite cylinders displays a number of interesting
features. (Note that H here includes radiation emitted in both
the axis-parallel, H‖, and axis-perpendicular, H⊥, directions.)
First, due to the finite value of L, in the limit R → ∞, the
radiation of our finite cylinders is best characterized by the
radiation of thin plates with H‖ � H⊥. Not surprisingly, we
find that H → H∞ from below as R → ∞, in contrast to what
is observed in the semi-infinite case where H∞ is approached
from above.34 Second and most interestingly, we find that
below a critical R, determined by the smallest skin-depth
δ ≈ 20 nm of Au over the relevant thermal wavelengths, the
radiation normalized by surface area increases with decreasing
R, leading to nonmonotonicity. Such behavior is unusual in
that in this R � δ regime, bodies most often behave like
volume emitters, causing H to grow with the volumes rather
than surfaces of the bodies (as observed in the case of
semi-infinite cylinders).34 Indeed, we find that for dielectric
bodies with small and positive ε, one obtains the usual volume
dependence of H . In contrast, the enhancement in Fig. 5
arises because for small R, the cylinders act as metallic dipole
emitters, whose radiation is increasingly dominated by H‖
as R → 0 and whose quasistatic (long wavelength) parallel
polarizability grows with decreasing R (a consequence of the
increasing anisotropy of the cylinder and large Imε).111,112

For sufficiently small R, the heat transfer per unit area of the
uniaxial cylinders can greatly exceed that of the semi-infinite
plate, i.e., H � H∞. (The dipole model also predicts that H
will eventually vanish as R → 0, but only at radii too small
to be easily calculated by BEM. We intend to explore these
phenomena more fully in subsequent work.)

It is also interesting to study the convergence of the
cylinder radiation rate with L, comparing our results against
the semianalytical results obtained in the special case of
semi-infinite (L → ∞) cylinders.34 We also consider the heat
transfer between nonuniaxial (parallel) cylinders. Figure 6
shows the flux spectra � of isolated cylinders of radius
R = 0.2 μm and varying lengths L; for comparison, we also
plot the spectrum of the semi-infinite cylinders34 (solid lines).
As before, � is normalized by the surface area A of each
object. (For the relevant wavelength range shown in the figure,
R is several times δ, which means that most of the radiation
is coming from sources near the surface of the objects.34)
We find that for L/R ≈ 2 (not shown), corresponding to
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FIG. 6. (Color online) Flux spectrum �(ω) of an isolated gold
cylinder of length L and radius R = 0.2 μm normalized by its
corresponding surface area A and plotted for multiple aspect ratios
L/R (solid circles). The solid line shows � in the limit L → ∞ of a
semi-infinite cylinder, as computed by the semianalytical formula of
Ref. 34. (Inset) Heat-transfer ratio H of heat transfer H from a room-
temperature cylinder of aspect ratio L/R = 5 to an identical cylinder
at zero temperature, and the SB law σT 4A, with A = 2πR(R + L)
denoting the total surface area of each cylinder, as a function of their
surface-surface separation d . H is plotted for both parallel (θ = 0)
and crossed (θ = 90◦) cylinder configurations, with the shaded region
corresponding to intermediate θ .

nearly isotropic cylinders, � is only slightly larger than that
of an isolated sphere due to the small but non-negligible
contribution of volume fluctuations to �. As L/R increases, �
increases over all λ, and converges towards the L → ∞ limit
(black solid line) as λ → 0, albeit slowly. Moreover, �L �
�∞ at particular wavelengths, a consequence of geometrical
resonances that are absent in the semi-infinite case—away
from these resonances, � clearly straddles the L → ∞ result
so long as λ � L. As in the case of finite plates, the �

of interacting cylinders exhibits significant enhancement at
large λ due to near-field effects, so that H → ∞ with
decreasing separation d. The enhancement is evident in Fig. 6,
which shows H over a wide range of d for both parallel-
(θ = 0) and crossed-cylinder (θ = 90◦) configurations, with
one cylinder held at T = 300 K and the other at zero
temperature (both cylinders have aspect ratio L/R = 5). We
find once again that there are two very distinct separation
regimes of heat transfer: at large d � R, the cylinders act
like dipole emitters and H/H∞ ∼ 1/d5 � 1 whereas at small
d � R, flux contributions from evanescent waves dominate
and H/H∞ ∼ 1/

√
d � 1. Comparing the heat transfer H

in the parallel and crossed-cylinder configurations, we find
that H‖/H⊥ ≈ 1 at large d � R but increases significantly
at smaller d � R, again due to near-field effects: in the
d → 0 limit, H is dominated by the closest surface-surface
interactions, so H‖/H⊥ ∼ L/R → 5. As expected, H‖/H⊥ →
∞ as L → ∞ because the increased “interaction” area in
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FIG. 7. (Color online) Heat-transfer rate H from a room-
temperature gold cone of base radius R = 1 μm and length L =
2R, to either an identical cone (green circles) or a gold plate of
radius R and thickness h = 0.2 μm, held at zero temperature, as a
function of their surface-surface separation d . H is normalized by
the Stefan-Boltzmann law σT 4A, where A is the surface area of the
cone. (Inset) Flux spectrum �(ω) of the cone-plate configuration at
a single separation d = 0.2L, normalized by the area of the cone.
The two surface-contour plots show the distribution of flux pattern
on the surfaces of the bodies at two wavelengths, λ ≈ 30L and
≈2.2L, where white/black denotes the maximum/minimum flux at
the corresponding wavelength.

this limit favors the parallel over the crossed configuration.
Specifically, whereas H grows linearly with L in the parallel
configuration, it grows sublinearly (and asymptotes to a finite
value in the L → ∞ limit) in the crossed configuration due to
the diminishing contributions of near-field and radiative fluxes
between surface elements in the extremities of the cylinders.

B. Cones

Finally, motivated by recent predictions,69 we consider the
heat transfer between finite cones and plates. In Ref. 69,
the cone-plate geometry (with a semi-infinite plate) was
obtained using a “hybrid” scattering-BEM method69 based
on the scattering-theory formulation of Ref. 32. (In contrast
to semi-infinite plates or spheres, the scattering-matrix of a
cone cannot be easily obtained analytically, and was instead
computed numerically by exploiting the BEM method in
combination with a multipole basis of cylindrical waves.)
Here, in addition to extending these predictions to the case
of finite plates, we consider the heat-transfer rate between two
oppositely oriented cones. Figure 7 shows the heat-transfer
rate h (as in the previous section, h = H/σT 4A where here
A = πR2 is the projected area of the cone) from a cone of
radius R = 0.5 μm and length L = 2R to either an identical
cone rotated by 180◦ (green circles) or a plate of radius
R and thickness L = 0.2 μm (red circles), as a function of
their surface-surface separation d. As before, we consider
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gold bodies, with one held at 300 K, while the other is
held at zero temperature Similar to Ref. 69, we find that the
heat-transfer rate H ∼ ln(d) varies logarithmically with d at
short separations d � L � λT , a consequence of near-field
interactions and the finite size of the cone.113 While h exhibits
similar scaling with d for both geometries, h turns out to be
almost two orders of magnitude smaller at small d � L in the
cone-cone geometry, as would be expected from a proximity-
approximation (PA) model.114 The situation is reversed at large
separations d � λT � L: beyond a critical d ≈ 7L, the cone-
cone heat transfer becomes larger than the cone-plate transfer.
The reversal is expected on the basis that at these separations,
the two bodies act like fluctuating dipoles oriented mainly
along their largest dimension (along the axis of symmetry
for the cone and along the lateral dimension for the plate), in
which case the cone-plate interaction resembles the interaction
of two orthogonal dipoles whereas the cone-cone interaction
resembles the interaction of two parallel dipoles. Another
interesting feature of the heat transfer in this geometry is that
the spatial distribution of pattern over the plate exhibits a local
minimum directly below the tip of the cone, a consequence of
the dipolar field induced on the cone at long wavelengths.69

Here, we observe a similar phenomenon, but we find that the
finite size of the plate significantly alters the scope of the
anomalous radiation pattern. In particular, whereas Ref. 69
found this effect to persist over a wide range of wavelengths
(surviving even in the total or integrated radiation pattern),
we find that in the finite-plate case, it disappears much more
rapidly with decreasing wavelength.

VI. CONCLUSION

The FSC approach to nonequilibrium fluctuations presented
here permits the study of heat transfer between bodies of
arbitrary shape, paving the way for future exploration of heat
exchange in microstructured geometries that until now remain
largely unexplored in this context. Our formulation shares
many properties with previous scattering-matrix formulations
of radiative heat transfer, e.g., our final expressions involve
traces of matrices describing scattering unknowns, but differs
in that our “scattering unknowns” are surface currents defined
on the surfaces of the bodies rather than incident and outgoing
waves propagating into and out of the bodies.29–38 As argued
above, this choice of description has important conceptual
and numerical implications: it allows direct application of the
surface-integral equation formalism as well as the boundary-
element method. When specialized to handle high-symmetry
geometries using special functions that exploit those sym-
metries, our approach can be used to obtain fast-converging
semianalytical formulas in the spirit of previous work based on
spectral methods.32,34,35 Moreover, it can also be applied as a
brute-force method, taking advantage of existing, well-studied,
and sophisticated BEM codes (with no modifications), to
obtain results in arbitrary/complex geometries.

While the main focus of this work was on exploring
some of the ways in which the FSC formulation can be
applied to study nonequilibrium heat transfer, we believe that
analogous techniques can be used to derive corresponding
FSC approaches to other fluctuation phenomena, including
near-field fluorescence,115 quantum noise in lasers,116 and

nonequilibrium Casimir forces,32,117 an idea we plan to explore
in future work. Furthermore, although our calculations here
focused on geometries involving compact bodies, the same
heat-transfer formulas derived above apply to geometries
involving infinitely extended/periodic bodies (of importance
in applications of heat transfer to thermophotovoltaics). Mod-
ifying BEM solvers to handle periodic structures, however,
is nontrivial,118–122 and we therefore consider that case in a
subsequent publication.

Finally, although Eq. (18) is already well-suited for efficient
numerical implementation, its computational efficiency may
be improved by adopting a modified formulation in which
the dense G matrices are replaced by certain sparse matrices
involving overlap integrals among basis functions. In addition
to reducing the computational cost of the trace in Eq. (18),
this approach has the advantage of allowing the computation
of other fluctuation-induced quantities such as nonequilibrium
Casimir forces and torques. This alternative formulation will
be discussed in a forthcoming publication.

ACKNOWLEDGMENTS

This work was supported by DARPA Contract No. N66001-
09-1-2070-DOD, by the AFOSR Multidisciplinary Research
Program of the University Research Initiative (MURI) for
Complex and Robust On-chip Nanophotonics, Grant No.
FA9550-09-1-0704, and by the US Army Research Office
under contracts W911NF-07-D-0004 and W911NF-13-D-
0001.

APPENDIX A: EIGENFUNCTIONS OF
THE HELMHOLTZ EQUATION

In this section, we provide and exploit the standard Fourier
and spherical-wave eigenfunctions of the vector Helmholtz
operator, obtained by solving Eq. (34) in planar and spherical
coordinates,104,105 to obtain the coefficients χ and κ appearing
in the Green’s function expansion and orthogonality relations
of Eqs. (37), (39), and (41), respectively.

1. Fourier basis

In planar geometries, described by normal and tangential
coordinates z and x⊥, respectively, the eigenfunctions of
the Helmholtz operator, labeled by Fourier wave vectors k⊥
perpendicular to the ẑ axis, are given by

M±
k⊥kz

(z,x⊥) = φ±(kzz)Xk⊥(x⊥),

N±
k⊥kz

(z,x⊥) = φ±(kzz)

[
∓ kz

k
Zk⊥(x⊥) + |k⊥|

k
eik⊥·xẑ

]
,

where φ±
k⊥kz

= 1
|k⊥|e

ik⊥·x⊥±ikzz, kz =
√

k2 − |k⊥|2, and where
the tangential fields Xk⊥ and Zk⊥ = ẑ × Xk⊥ are

Xk⊥(x⊥) = i

|k⊥| (ẑ × k⊥)eik⊥·x⊥ , (A1)

Zk⊥ (x⊥) = ik⊥
|k⊥|e

ik⊥·x⊥ . (A2)

The precise form of the Fourier functions φ± = e±ikzz depends
on whether one desires a solution involving outgoing (+) or
incoming (−) fields, or equivalently, fields propagating away

054305-15



RODRIGUEZ, REID, AND JOHNSON PHYSICAL REVIEW B 88, 054305 (2013)

or toward the origin. The corresponding χ and κ coefficients
appearing in the Green’s function expansion and orthogonality
relations are given by

κ±
k⊥,kz,E

(z) = φ±(kzz), (A3)

κ±
k⊥,kz,M

(z) = ∓γφ±(kzz), (A4)

χk⊥,kz
= i

2kz

, (A5)

with γ ≡ kz/k =
√

1 − |k⊥|2/(εμω2).

2. Spherical multipole basis

In spherically symmetric geometries, described by normal
and tangential coordinates r and {θ,φ}, respectively, the
eigenfunctions of the Helmholtz operator, labeled by angular-
momentum quantum numbers � and m, are given by

M±
�m(r,θ,φ) = R±

� (kr)X�m(θ,φ),

N±
�m(r,θ,φ) = R̆±

� (kr)Z�m + �(� + 1)

r
R±

� (kr)Ylm(θ,φ)r̂,

where R±
� and Y�m denote spherical Hankel functions and

spherical harmonics,83 respectively, and where the tangential
fields X�m = − 1√

�(�+1)
(r̂ × ∇)Y�m and Z�m = r̂ × X�m are

X�m(θ,φ) = 1√
l(l + 1)

[
im

sin θ
Y�mθ̂ − ∂Y�m

∂θ
ϕ̂

]
,

Z�m(θ,φ) = 1√
l(l + 1)

[
∂Y�m

∂θ
θ̂ + im

sin θ
Y�mϕ̂

]
.

Above, we defined f̆ (z) ≡ (1/z + d/dz)f for brevity. The
precise form of the spherical Bessel radial function

R±
� =

{
h

(1)
� +,

j� −,

depends on whether one desires a solution corresponding to
outgoing (+) or incoming (−) waves toward the origin, or
equivalently, a solution that is well behaved at the origin or
at infinity. The χ and κ coefficients appearing in the Green’s
function expansions and orthogonality relations are given by

κ±
�,m,E(r) = r2R±

� (kr), (A6)

κ±
�,m,M (r) = ir2R̆±

� (kr), (A7)

χlm = ik. (A8)

APPENDIX B: EQUIVALENCE PRINCIPLE

In this section, we provide a compact derivation and review
of the equivalence principle of classical electromagnetism
(closely related to Huygens’s principle88), which expresses
scattered waves in terms of fictitious equivalent currents in a
homogeneous medium replacing the scatterer.24 The equiva-
lence principle is usually derived in a somewhat cumbersome
way from a Green’s-function approach,24,89 but a much shorter
proof can be derived from the differential form of Maxwell’s
equation. Understanding this result is central to our FSC
formulation of heat transfer.

As before, we restrict ourselves to linear media for which
Maxwell’s equations can be written as( ∇×

−∇×
)

︸ ︷︷ ︸
M

(
E

H

)
︸ ︷︷ ︸

φ

= ∂

∂t
[φ + χ 	 φ] +

(
J

K

)
︸ ︷︷ ︸

ξ

, (B1)

with χ	 denoting convolution with a 6 × 6 susceptibility tensor

χ =
(

ε − 1

μ − 1

)
.

Consider an arbitrary incident wave φ, which solves the
source-free Maxwell’s equations in some χ medium with
no current sources: Mφ = ∂

∂t
(φ + χ 	 φ). The equivalence

principle states that given any arbitrary but finite domain V ,
one can always choose an equivalent surface current ξ that
generates the same incident field φ in V . To show that such a
surface current exists, define the field

φ̃ =
{

φ ∈ V,

0 elsewhere.
(B2)

It follows that φ̃ satisfies the source-free Maxwell’s equations
in both the interior and exterior regions—the only question
is what happens at the interface ∂V . In particular, the
discontinuity of φ̃ at ∂V produces a surface δ function δ∂V in
the spatial derivative Mφ̃, and so in order to satisfy Maxwell’s
equations with this φ̃, one must introduce a matching δ

function, a surface current ξ , on the right-hand side. [Here,
δ∂V is the distribution such that

˝
δ∂V φ(x) = ‚

∂V
φ(x) for

any continuous test function f .] Specifically, letting n be the
unit inward-normal vector,123 only the normal derivative n · ∇
contains a δ function (whose amplitude is the magnitude of
the discontinuity), which implies a surface current:

ξ = (�φ)δ∂V =
(

n × H

−n × E

)
δ∂V , (B3)

where � is the real-symmetric unitary 6 × 6 matrix:

� =
(

n×
−n×

)
= �−1 = �T = �∗. (B4)

That is, there is a surface electric current given by the
surface-tangential components n × H of the incident magnetic
field, and a surface magnetic current given by the components
−n × E of the incident electric field. These are the equivalent
currents of the principle of equivalence (derived traditionally
from a Green’s function approach24,89 and from which Huy-
gens’s principle is derived88).

1. Application to surface integral equations

The equivalence principle is of fundamental importance to
SIE formulations of EM scattering. Consider two regions 0
and 1, described by volumes V 0 and V 1 and susceptibilities
χ0 and χ1, respectively, separated by an interface ∂V 1. As
before, one can express the total fields φr = φr+ + φr− in
each region r in terms of incident φr+ and scattered φr− fields.
The principle of equivalence describes an equivalent, fictitious
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problem, involving fields

φ̃ =
{
φ0 ∈ V 0,

0 elsewhere,

and surface currents ξ = �φ0 = �φ1 at the ∂V 1 interface,
where the second equality follows from continuity of the
tangential fields. Since φ̃ = 0 in V 1, it follows that one
can replace χ1 with any other local medium and yet φ̃

still satisfies Maxwell’s equations. In particular, replacing
χ1 with χ0 implies that one can write the scattered field
φ0− = 
0 	 ξ in V 0 as the field produced by the same fictitious
surface currents ξ in an infinite medium 0, with 
0 denoting
the homogeneous-medium Green’s function of the infinite
medium.

A similar argument applies if one is interested in the field
in medium 1, except that the sign of the fictitious currents is
reversed to −ξ in order to account for the direction of the
discontinuity in going from 1 to 0 in this case. In particular,
one can write the scattered field φ1− = −
1 	 ξ in V 1 as the
field produced by a fictitious surface current −ξ in an infinite
medium 1.

APPENDIX C: RECIPROCITY AND DEFINITENESS

In this section, we present a brief review of the reciprocity
relations and definiteness (positivity) properties of the DGF, 
,
connecting surface currents ξ to fields φ = 
 	 ξ , in dissipative
media, and explain how these relate to corresponding proper-
ties of the SIE matrices above (crucial to our derivation of heat
transfer in Sec. II). Although for our purposes we need only
prove reciprocity and definiteness of the homogeneous Green’s
function (trivial to show in that case since the homogeneous
DGF is known analytically), here we consider the more
general case of inhomogeneous media. Reciprocity is well
known82,124–127 and positivity follows from general physical
principles (currents always do nonnegative work in passive
materials83,84,110,125), but our goal here is to derive them using
the same language employed in our derivations above. More
specifically, we explain the source of the sign-flip matrices
S and S, which often go unmentioned because many authors
consider only 3 × 3 Green’s functions (relating currents to
fields of the same type).

1. Green’s functions

It is actually easier to derive the reciprocity and definiteness
properties of 
 from the properties of L = (
	)−1, the
Maxwell operator that connects fields φ to currents ξ = Lφ,
because L is a partial-differential operator that can be written
down explicitly starting from the (frequency-domain) Maxwell
equations ∇ × E = iωμH − M, ∇ × H = −iωεE + J, in
terms of the permittivity ε(x,ω) and permeability μ(x,ω)
tensors and electric J and magnetic M currents. Specifically,
the Maxwell operator

L =
(

iωε ∇×
−∇× iωμ

)
(C1)

is neither complex-symmetric, Hermitian, antisymmetric, nor
anti-Hermitian in general. Using our previous definition of the

inner product:

〈φ,φ′〉 =
ˆ

φ∗φ′

=
〈(

E

H

)
,

(
E′

H′

)〉
=
ˆ

E∗ · E′ + H∗ · H′,

it follows that the off-diagonal part of L is anti-Hermitian:〈(
E

H

)
,

( ∇×
−∇×

)(
E′

H′

)〉

=
ˆ

E∗ · ∇ × H′ − H∗ · ∇ × E′

=
ˆ

(∇ × E∗) · H′ − (∇ × H)∗ · E′

=
〈
−
( ∇×

−∇×
)(

E

H

)
,

(
E′

H′

)〉
,

where we have used the self-adjointness of ∇× and assumed
boundary conditions such that the

‚
E∗ × H′ + E′ × H∗

boundary terms at infinity (from the integration by parts)
vanish. This is commonly attained by assuming loss in the
materials so that the fields decay exponentially at infinity (as-
suming localized sources), or by imposing outgoing-radiation
boundary conditions on 
 	 at infinity.83

Instead, reciprocity relations are normally derived for the
unconjugated inner product:

(φ,φ′) =
ˆ

φTφ′ =
((

E

H

)
,

(
E′

H′

))

=
ˆ

ET · E′ + HT · H′, (C2)

under which the off-diagonal terms in L are still antisym-
metric while the diagonal terms are complex-symmetric,
assuming reciprocal materials: εT = ε and μT = μ (usu-
ally the case except for magnetooptical and other more
exotic materials82,95,128). Here, the transpose LT of the
operator L means the adjoint of L under the unconju-
gated inner product (φ,Lφ′) = (LTφ,φ′). In order to make
L fully symmetric, it suffices to flip the sign of the
magnetic components H → −H, an operation that can
be expressed as a (real, self-adjoint, unitary) sign-flip
matrix:

S =
(

I

−I

)
= S−1 = ST = S∗. (C3)

That is, LS is complex-symmetric: (LS)T = SLT = LS, or
equivalently, LT = SLS = SLS−1. It follows that

(
	)T = (L−1)T = (LT)−1 = S(
	)S. (C4)

Alternatively,

(φ,
 	 φ′) =
ˆˆ

d3xd3yφT(x)
(x,y)φ′(y), (C5)

so by inspection (
(x,y)	)T = 
(y,x)T	: transposing 
	 cor-
responds to interchanging sources and fields. Thus we obtain
the reciprocity relation


T	 = S(
	)S, (C6)
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i.e., one can interchange sources and fields if one flips the sign
of both magnetic currents and magnetic fields.

We also expect the operators L and 
	 to be negative-
semidefinite on physical grounds, since − 1

2 〈φ,Lφ〉 =
− 1

2 〈φ,ξ 〉 = − 1
2 〈
 	 ξ,ξ 〉 is exactly the time-average power

− 1
2

´
E∗ · J + H∗ · M expended by the currents, which must

be �0 in passive materials.84 Indeed, one can show this
directly, since the anti-Hermitian property of the off-diagonal
part of L means that

symL = ω

(−Imε

−Imμ

)
for isotropic materials, but both ωImε and ωImμ are �0
for passive materials (no gain).83,84 Thus it follows that L

is negative-semidefinite, and so is L−1 = 
 	 .

2. SIE matrices

The SIE matrices M = W−1 are formed from a sum
M of Green’s function operators 
r	 in homogeneous
regions r , expanded in a (real vector-valued) basis βn by a

Galerkin method, so that Mmn = 〈βm,Mβn〉 = (βm,Mβn).
For any Galerkin method, it is easy to show that if M is
self-adjoint or complex-symmetric, then M has the same
properties. Similarly, any definiteness of M carries over
to M . From the previous section, since 
r is negative-
semidefinite in any passive medium, it follows that any
sum M of 
r	 is also negative-semidefinite, and hence
M is negative-semidefinite (symM is Hermitian negative-
semidefinite).

As above, reciprocity requires some sign flips: MT =
SMS, so (MT)mn = Mnm = (βn,Mβm) = (βm,MTβn) =
(βm,SMSβn) = (Sβm,MSβn). Furthermore, suppose that we
use separate basis functions βH

n for magnetic currents and βE
n

for electric currents, as is typically the case in BEM (e.g., for
an RWG basis26,93), so that SβE

n = +βE
n and SβH

n = −βH
n .

That is, we write currents as ξ = ∑
n xnβn = ∑

xE
n βE

n +
xH

n βH
n , so that Sξ = ∑

xE
n βE

n − xH
n βH

n corresponds to a linear
transformation S on x that flips the sign of the xH

n components.
It follows that

MT = SMS. (C7)

1C. Genet, A. Lambrecht, and S. Reynaud, Eur. Phys. J. Special
Topics 160, 183 (2008).

2M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M.
Mostapanenko, Advances in the Casimir Effect (Oxford University
Press, Oxford, UK, 2009).

3A. W. Rodriguez, F. Capasso, and S. G. Johnson, Nat. Phot. 5, 211
(2011).

4S. M. Rytov, V. I. Tatarskii, and Y. A. Kravtsov, Principles
of Statistical Radiophsics II: Correlation Theory of Random
Processes (Springer-Verlag, Berlin, 1989).

5D. Polder and M. Van Hove, Phys. Rev. B 4, 3303 (1971).
6J. J. Loomis and H. J. Maris, Phys. Rev. B 50, 18517 (1994).
7J. B. Pendry, J. Phys.: Condens. Matter 11, 6621 (1999).
8A. Kittel, W. Muller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and
M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005).

9A. Narayanaswamy, S. Shen, and G. Chen, Phys. Rev. B 78, 115303
(2008).

10L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, Appl. Phys.
Lett. 92, 133106 (2008).

11A. Narayanaswamy, S. S, L. Hu, X. Chen, and G. Chen, Appl.
Phys. A. 96, 357 (2009).

12E. Rousseau, A. Siria, J. Guillaume, S. Volz, F. Comin, J. Chevrier,
and J.-J. Greffet, Nat. Phot. 3, 514 (2009).

13S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909
(2009).

14D. Y. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine,
K. Joilain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, Nature (London)
444, 740 (2009).

15R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock,
G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, Phys.
Rev. Lett. 107, 014301 (2011).

16J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Micro.
Thermophys. Eng. 6, 209 (2002).

17K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet,
Surf. Sci. Rep. 57, 59 (2005).

18G. Chen, Nanoscale Energy Transport and Conversion: A Parallel
Treatment of Electrons, Molecules, Phonons, and Photons, MIT
Pappalardo Series in Mechanical Engineering (Oxford University
Press, Madison Avenue, NY, 2005).

19V. P. Carey, G. Cheng, C. Grigoropoulos, M. Kaviany, and A.
Majumdar, Nanoscale Micro. Thermophys. Eng. 12, 1 (2006).

20C. J. Fu and Z. M. Zhang, Int. J. Heat Mass Transf. 49, 1703
(2006).

21A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291
(2007).

22Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill,
New York, 2007).

23S. Basu, Z. M. Zhang, and C. J. Fu, Int. J. Energy Res. 33, 1203
(2009).

24R. F. Harringston, J. Electromagn. Waves. Appl. 3, 1
(1989).

25W. Hackbush and B. Verlag, Integral Equations: Theory and
Numerical Treatment (Birkhauser Verlag, Basel, Switzerland,
1995).

26S. M. Rao and N. Balakrishnan, Current Science 77, 1343 (1999).
27M. Bonnet, Boundary Integral Equation Methods for Solids and

Fluids (Wiley, Chichester, England, 1999).
28H. Reid, J. White, and S. G. Johnson, arXiv:1203.0075.
29A. Narayanaswamy and G. Chen, Phys. Rev. B 77, 075125 (2008).
30G. Bimonte, Phys. Rev. A 80, 042102 (2009).
31R. Messina and M. Antezza, Phys. Rev. A 84, 042102 (2011).
32M. Kruger, T. Emig, and M. Kardar, Phys. Rev. Lett. 106, 210404

(2011).
33C. Otey and S. Fan, Phys. Rev. B 84, 245431 (2011).
34V. A. Golyk, M. Kruger, and M. Kardar, Phys. Rev. E 85, 046603

(2012).
35M. Kruger, G. Bimonte, T. Emig, and M. Kardar, Phys. Rev. B 86,

115423 (2012).
36S. A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, Appl. Phys. Lett.

98, 243102 (2011).

054305-18

http://dx.doi.org/10.1140/epjst/e2008-00722-y
http://dx.doi.org/10.1140/epjst/e2008-00722-y
http://dx.doi.org/10.1038/nphoton.2011.39
http://dx.doi.org/10.1038/nphoton.2011.39
http://dx.doi.org/10.1103/PhysRevB.4.3303
http://dx.doi.org/10.1103/PhysRevB.50.18517
http://dx.doi.org/10.1088/0953-8984/11/35/301
http://dx.doi.org/10.1103/PhysRevLett.95.224301
http://dx.doi.org/10.1103/PhysRevB.78.115303
http://dx.doi.org/10.1103/PhysRevB.78.115303
http://dx.doi.org/10.1063/1.2905286
http://dx.doi.org/10.1063/1.2905286
http://dx.doi.org/10.1007/s00339-009-5203-5
http://dx.doi.org/10.1007/s00339-009-5203-5
http://dx.doi.org/10.1038/nphoton.2009.144
http://dx.doi.org/10.1021/nl901208v
http://dx.doi.org/10.1021/nl901208v
http://dx.doi.org/10.1038/nature05265
http://dx.doi.org/10.1038/nature05265
http://dx.doi.org/10.1103/PhysRevLett.107.014301
http://dx.doi.org/10.1103/PhysRevLett.107.014301
http://dx.doi.org/10.1080/10893950290053321
http://dx.doi.org/10.1080/10893950290053321
http://dx.doi.org/10.1016/j.surfrep.2004.12.002
http://dx.doi.org/10.1080/15567260801917520
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.09.037
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.09.037
http://dx.doi.org/10.1103/RevModPhys.79.1291
http://dx.doi.org/10.1103/RevModPhys.79.1291
http://dx.doi.org/10.1002/er.1607
http://dx.doi.org/10.1002/er.1607
http://dx.doi.org/10.1163/156939389X00016
http://dx.doi.org/10.1163/156939389X00016
http://arXiv.org/abs/1203.0075
http://dx.doi.org/10.1103/PhysRevB.77.075125
http://dx.doi.org/10.1103/PhysRevA.80.042102
http://dx.doi.org/10.1103/PhysRevA.84.042102
http://dx.doi.org/10.1103/PhysRevLett.106.210404
http://dx.doi.org/10.1103/PhysRevLett.106.210404
http://dx.doi.org/10.1103/PhysRevB.84.245431
http://dx.doi.org/10.1103/PhysRevE.85.046603
http://dx.doi.org/10.1103/PhysRevE.85.046603
http://dx.doi.org/10.1103/PhysRevB.86.115423
http://dx.doi.org/10.1103/PhysRevB.86.115423
http://dx.doi.org/10.1063/1.3596707
http://dx.doi.org/10.1063/1.3596707


FLUCTUATING-SURFACE-CURRENT FORMULATION OF . . . PHYSICAL REVIEW B 88, 054305 (2013)

37R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R.
Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, Phys. Rev. B
85, 180301 (2012).

38V. N. Marachevsky, J. Phys. A: Math. Theor. 45, 374021
(2012).

39A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopou-
los, M. Soljacic, and S. G. Johnson, Phys. Rev. Lett. 107, 114302
(2011).

40A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 63, 205404
(2001).

41A. Narayanaswamy and Y. Zheng, J. Quant. Spectrosc. Radiat.
Transfer (2013), doi: 10.1016/j.jqsrt.2013.01.002.

42A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, Phys. Rev. B
86, 220302(R) (2012).

43H. Reid, J. White, and S. G. Johnson, Phys. Rev. A 84, 010503(R)
(2011).

44W. Eckhardt, Opt. Commun. 41, 305 (1981).
45W. Eckhardt, Phys. Rev. A 29, 1991 (1984).
46M. Tschikin, S. A. Biehs, F. S. S. Rosa, and P. B. Abdallah, Eur.

Phys. J. B 85, 233 (2012).
47E. G. Cravalho, C. L. Tien, and R. P. Caren, J. Heat Transfer 89,

351 (1967).
48C. M. Hargreaves, Phys. Lett. 30, 491 (1969).
49G. A. Domoto, R. F. Boehm, and C. L. Tien, J. Heat Transfer 92,

412 (1970).
50J. L. Pan, H. K. Choy, and C. G. Fonstad, IEEE Trans. Electron

Devices 47, 241 (2000).
51M. Laroche, R. Carminati, and J. J. Greffet, J. Appl. Phys. 100,

063704 (2006).
52C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314,

1121 (2006).
53C. R. Otey, W. T. Lau, and S. Fan, Phys. Rev. Lett. 104, 154301

(2010).
54S. Basu and M. Francoeur, Appl. Phys. Lett. 98, 113106

(2011).
55H. Iizuka and S. Fan, J. Appl. Phys. 112, 024304 (2012).
56B. J. Lee, Y. B. Chen, and Z. M. Zhang, J. Quant. Spectrosc. Radiat.

Transfer 109, 608 (2008).
57W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y.

Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia et al., Nature
(London) 3, 220 (2009).

58A. Kittel, U. F. Wischnath, J. Welker, O. Huth, F. Rüting, and
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