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Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries

Alejandro W. Rodriguez,1,2 M. T. Homer Reid,2 and Steven G. Johnson2

1School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 6 June 2012; revised manuscript received 6 December 2012; published 26 December 2012)

We describe a fluctuating-surface-current formulation of radiative heat transfer, applicable to arbitrary
geometries in both the near and far field, that directly exploits efficient and sophisticated techniques from
the boundary-element method. We validate as well as extend previous results for spheres and cylinders, and
also compute the heat transfer in a more complicated geometry consisting of two interlocked rings. Finally, we
demonstrate how this method can be adapted to compute the spatial distribution of heat flux on the surfaces of
the bodies.
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Quantum and thermal fluctuations of charges in otherwise
neutral bodies lead to stochastic electromagnetic (EM) fields
everywhere in space. In nonequilibrium situations involving
bodies at different temperatures, these fields mediate energy
exchange from the hotter to the colder bodies, a process known
as radiative heat transfer. Although the basic theoretical for-
malism for studying heat transfer was laid out decades ago,1–10

only recently have experiments reached the precision required
to measure them at the microscale,11–15 sparking renewed inter-
est in the study of these interactions in complex geometries that
deviate from the simple parallel-plate structures of the past.
The near-field regime is particularly interesting, though largely
unexplored except in planar structures, due to the contribution
of evanescent waves which have been shown to significantly
alter and enhance heat transport at submicron separations.9,10

In this Rapid Communication, we propose a formulation of
radiative heat transfer for arbitrary geometries based on the
well-known surface-integral-equation (SIE) formulation of
classical electromagnetism,16 which extends our recently de-
veloped fluctuating surface-current (FSC) approach to Casimir
phenomena17 to the nonequilibrium problem of energy transfer
between bodies of inequal temperatures. Unlike previous
scattering formulations based on basis expansions of the
field unknowns best suited to special18–25 or noninterleaved
periodic26,27 geometries, or formulations based on expensive,
brute-force time-domain simulations,28 this approach allows
direct application of the boundary element method (BEM): a
mature and sophisticated SIE formulation of the scattering
problem in which the EM fields are determined by the
solution of an algebraic equation involving a smaller set of
surface unknowns (fictitious surface currents in the surfaces
of the objects16). In what follows, we briefly review the SIE
method, derive an FSC equation for the heat transfer between
two bodies, and demonstrate its correctness by checking it
against (as well as extending) previous results for spheres and
cylinders. To demonstrate the generality of this method, we
compute the heat transfer in a complicated geometry that lies
beyond the reach of other formulations, as well as show that it
can be readily adapted to obtain the spatial distribution of flux
pattern at the surface of the bodies.

The radiative heat transfer between two objects 1 and 2 at
local temperatures T 1 and T 2 can be written as9,10

H =
∫ ∞

0
dω [�(ω,T 2) − �(ω,T 1)]�(ω), (1)

where �(ω,T ) = h̄ω/[exp(h̄ω/kBT ) − 1] is the Planck en-
ergy per oscillator at temperature T , and � is an ensemble-
averaged flux spectrum into object 2 due to random currents
in object 1 (defined more precisely below). The only question
is how to compute �, which naively involves a cumbersome
number of scattering calculations.

Formulation. We begin by presenting our final result for �,
which is derived and validated below. Consider homogeneous
objects 1 and 2 separated by a lossless medium 0. Let �r denote
the 6 × 6 Green’s function �r (x,y) = �r (x − y) of the homo-
geneous medium r at a given ω (known analytically29), relating
6-component electric (J) and magnetic (M) currents ξ =
(J; M) [“;” denoting vertical concatenation] to 6-component
electric (E) and magnetic (H) fields φ(x) = (E; H) = �r � ξ =∫

d3y �r (x,y)ξ (y) via a convolution (�). Remarkably, we find
that � can be expressed purely in terms of interactions of
fictitious surface currents located on the interfaces of the
objects. Let {sr

n} be a basis of 6-component tangential vector
fields on the surface of object r , so that any surface current ξ r

can be written in the form ξ r (x) = ∑
n xr

ns
r
n(x) for coefficients

xr
n. (For convenience, we assume sn to be real, which is

true in the case of RWG basis functions.16) In BEM, sn is
typically a piecewise-polynomial “element” function defined
within discretized patches of each surface.16 However, one
could just as easily choose sn to be a spherical harmonic or
some other “spectral” Fourier-like basis.22 The key point is
that sn is an arbitrary basis of surface vector fields; unlike
scattering-matrix formulations,20–22 it need not consist of
“incoming” or “outgoing” waves or satisfy any wave equation.
Our final result is the compact expression

� = 1

2π
Tr[(sym G1)W 21∗(sym G2)W 21], (2)

with sym G = 1
2 (G + G∗), where ∗ denotes conjugate-

transpose. The G and W matrices relate surface currents sn

to surface-tangential fields � � sm or vice versa. Specifically,

Gr
mn = 〈

sr
m,�r � sr

n

〉
r
, (3)

where 〈ψ,φ〉r = �
r
ψ∗φ is the standard inner product over the

surface of medium r (over both surfaces and both sets of basis

220302-11098-0121/2012/86(22)/220302(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.220302


RAPID COMMUNICATIONS

RODRIGUEZ, REID, AND JOHNSON PHYSICAL REVIEW B 86, 220302(R) (2012)

functions if r = 0), and

(
W 11 W 12

W 21 W 22

)
︸ ︷︷ ︸

W

=

⎡
⎢⎢⎢⎣G0 +

(
G1

0

)
︸ ︷︷ ︸

Ĝ1

+
(

0
G2

)
︸ ︷︷ ︸

Ĝ2

⎤
⎥⎥⎥⎦

−1

(4)

is the SIE matrix inverse, used to solve SIE scattering problems
as reviewed below, which relates incident fields to “equivalent”
surface currents. In particular, W 21 relates incident fields
at the surface of object 2 to the equivalent currents at the
surface of object 1. Equation (2) is computationally convenient
because it only involves standard matrices that arise in BEM
calculations,16 with no explicit need for evaluation of fields or
sources in the volumes, separation of incoming and outgoing
waves, integration of Poynting fluxes, or any additional
scattering calculations.

In addition to its computational elegance, Eq. (2) alge-
braically captures crucial physical properties of �. The stan-
dard definiteness properties of the Green’s functions (currents
do nonnegative work) imply that sym Gr is negative semidef-
inite and hence it has a Cholesky factorization sym Gr =
−Ur∗Ur where Ur is upper-triangular. It follows that � =

1
2π

Tr[Z∗Z] = 1
2π

‖Z‖2
F , where Z = U 2W 21U 1∗ is a weighted

Frobenius norm of the interaction matrix W 21 and hence � � 0
as required. Furthermore, reciprocity (symmetry of � under
1 ↔ 2 interchange) corresponds to simple symmetries of the
matrices. Inspection of � shows that �(y,x)T = S�(x,y)S,
where S = ST = S−1 = S∗ is the matrix that flips the sign
of the magnetic components, and it follows from (3) that
ĜT = SĜS and WT = SWS where S = ST = S−1 = S∗ is
the matrix that flips the signs of the magnetic basis coefficients
and swaps the coefficients of sn and sn. It follows that

� = 1

2π
Tr[SWS(sym SĜ2S)SW ∗S(sym SĜ1S)]

= 1

2π
Tr[(sym Ĝ2)W ∗(sym Ĝ1)W ], (5)

where the S factors cancel, leading to the 1 ↔ 2 exchange.
Derivation. The key to our derivation of (2) is the SIE

formulation of EM scattering,16,30 which we briefly review
here. Consider the fields φr = φr+ + φr− in each region r ,
where φr+ is the “incident” field due to sources within medium
r , and φr− is the “scattered” field due to both interface
reflections and sources in the other media. The core idea in
the SIE formulation is the principle of equivalence,30 which
states that the scattered field φr− can be expressed as the field
of some fictitious electric and magnetic surface currents ξ r

located on the boundary of region r , acting within an infinite
homogeneous medium r . In particular, the field φ0− in 0 is
φ0− = �0 � (ξ 1 + ξ 2). Remarkably, the same currents with a
sign flip describe scattered fields in the interiors of the two
objects:30 φr− = −�r � ξ r for r = 1,2. These currents ξ r , in
turn, are completely determined by the boundary condition
of continuous tangential fields φ0|r = φr |r at the r = 1,2
interfaces, giving the SIEs (�0 + �r ) � ξ r + �0 � ξ 3−r |r =
φr+ − φ0+|r for ξ r in terms of the incident fields. To obtain
a discrete set of equations, one expands ξ r = ∑

n xr
ns

r
n in a

basis sr
n as above, and then takes the inner product of both

sides of the SIEs with sr
m (a Galerkin discretization) to obtain

a matrix “BEM” equation W−1x = s in terms of exactly the
W matrix from Eq. (4), current coefficients x = (x1; x2), and a
right-hand “source” term s = (s1; s2) from the incident fields:
sr
m = 〈sr

m,φr+ − φ0+〉r .16

To compute �, we start by considering the flux �s into
object 2 due to a single dipole source σ 1 within object
1, so that φ1+ = �1 � σ 1 and all other incident fields are
zero. This corresponds to a right-hand side s = (s1; 0) where
s1
m = 〈s1

m,�1 � σ 1〉1 in the BEM equation. �s is the resulting
absorbed power in object 2, equal to the net incoming
Poynting flux on the surface 2. The Poynting flux can be
computed using the fact that ξ is actually equal to the
surface-tangential fields: ξ = (n × H; −n × E) where n is the
outward unit-normal vector. It follows that the integrated flux is
− 1

2 Re
�

2(Ē × H) · n = 1
4 Re〈ξ 2,φ0〉 (equivalent to the power

exerted on the surface currents by the total field, with an
additional 1/2 factor from a subtlety of evaluating the fields
exactly on the surface30). Hence,

�s = 1
4 Re〈ξ 2,φ0〉2 = 1

4 Re〈ξ 2,φ2〉2 = 1
4 Re〈ξ 2, − �2 � ξ 2〉2,

where we used the continuity of φ0 and φ2. Substituting ξ 2 =∑
n x2

ns
2
n and recalling the definition (3) of G2, we obtain

�s = − 1
4 Re[x∗Ĝ2x] = − 1

4 s∗W ∗(sym Ĝ2)Ws

= − 1
4 Tr[ss∗W ∗(sym Ĝ2)W ]

via straightforward algebraic manipulations.
Now, to obtain � = 〈�s〉 we must ensemble-average 〈· · · 〉

over all sources σ 1, and this corresponds to computing the
matrix C = 〈ss∗〉, which is only nonzero in its upper-left
block C1 = 〈s1s1∗〉. Such a Hermitian matrix is completely
determined by the values of x1∗S(C1)T Sx1 for all vectors
x1, where we have inserted the sign-flip matrices S and
the transposition for later convenience, and by study of this
expression we will find that C1 has a simple physical meaning.
To begin with, we write ξ 1 = ∑

n x1
ns

1
n to obtain

x1∗S(C1)T Sx1 = 〈|x1∗Ss1|2〉 = 〈|〈ξ 1,S�1 � σ 1〉1|2〉
=

�
d2x

�
d2x′

∫
d3yd3y′ ξ 1(x)∗S�1(x,y)

×〈σ 1(y)σ 1(y′)T 〉�1(x′,y′)T Sξ 1(x′),

where we have integrated over all possible dipole positions.
The current-current correlation function 〈σ 1(y)σ 1(y′)T 〉 =
4
π
δ(y − y′)ωImχ is given by the fluctuation-dissipation

theorem,31 where we have factored out a �(ω,T 1) term into
Eq. (1) and where Imχ denotes the temperature-independent
imaginary part of the 6 × 6 material susceptibility (whose
diagonal blocks are Im ε and Im μ), related to material
absorption (or the conductivity ω Im χ ). This eliminates one
of the integrals, leaving

4

π

∫
ξ 1(x′)∗S�1(x′,y) [ωImχ (y)] �1(x,y)T Sξ 1(x).

If we now employ reciprocity (from above), we can write∫
d2x �1(x,y)T Sξ 1(x) = S

∫
d2x �1(y,x)ξ 1(x) = Sφ1,
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where φ1 = �1 � ξ 1 is the field due to the surface current ξ 1,
and where the commuted S can be used to simplify the re-
maining term ξ 1(x)∗S�1(x,y)S = [�1(x,y)ξ 1(x)]∗, assuming
thatS commutes with Imχ (true unless there is a bi-anisotropic
susceptibility, which breaks reciprocity). Finally, we obtain

x1∗S
(
C1)T

Sx1 = 4

π

∫
d3y φ1∗(ω Im χ )φ1. (6)

But 1
2φ1∗(ω Im χ )φ1 = 1

2 Re[φ1∗(−iωχφ1)] is exactly the
time-average power density dissipated in the interior of object
1 by the field φ1 produced by ξ 1, since −iωχφ1 is a bound-
current density.

Computing the interior dissipated power from an
arbitrary surface current is somewhat complicated,
but matters here simplify considerably because the
C matrix is never used by itself—it is only used
in the trace expression � = − 1

4 Tr[CW ∗(sym Ĝ2)W ] =
− 1

4 Tr[· · · ]T = − 1
4 Tr[SCT SW (sym Ĝ2)W ∗], by reciprocity

as in Eq. (5). From the Cholesky factorization sym Ĝ2 =
−Û 2∗Û 2, this becomes 1

4 Tr[X∗SCT SX], where X = WÛ 2∗
are the “currents” due to “sources” represented by the columns
of Û 2∗, which are all of the form [0; s2] (corresponding to
sources in object 2 only). So, effectively, S(C1)T S is only
used to evaluate the power dissipated in object 1 from sources
in object 2, and by the same Poynting-theorem reasoning
from above, it follows that S(C1)T S = − 2

π
sym G1. Hence

C1 = − 2
π

sym S(G1)T S = − 2
π

sym G1 by the symmetry of
Ĝ1, and Eq. (2) follows.

It is also interesting to consider the spatial distribution of the
Poynting-flux pattern, which can be obtained easily because,
as explained above, 1

4 Re[ξ 2(x)∗φ2(x)] is exactly the inward
Poynting flux at a point x on surface 2. It follows that the mean
contribution �2

n of a basis function sr
n to � is

�2
n = −1

4

〈
Re

[
s∗W ∗e2

ne
2∗
n Ĝ2Ws

]〉

= −1

4
Re

[
e2∗
n Ĝ2W 〈ss∗〉W ∗e2

n

]

= 1

2π
Re

[
e2∗
n Ĝ2W sym (Ĝ1)W ∗e2

n

]
,

where e2
n is the unit vector corresponding to the s2

n component.
This further simplifies to �2

n = F 2
nn, where

F 2 = 1

2π
Re[G2W 21sym

(
G1

)
W 21∗]. (7)

Note that � = TrF 2. Similarly, by swapping 1 ↔ 2 we obtain
a matrix F 1 such that �1

n = F 1
nn is the contribution of s1

n to the
flux on surface 1.

For a single object 1 in medium 0, the emissivity of the
object is the flux �0 of random sources in 1 into 0.10 Following
the derivation above, the flux into 0 is − 1

4 Re〈ξ 1,φ0〉 =
− 1

4 〈ξ 1,�0 � ξ 1〉. The rest of the derivation is essentially
unchanged except that W = (G1 + G0)−1 since there is no
second surface. Hence, we obtain

�0 = 1

2π
Tr[(sym G1)W 21∗(sym G0)W 12], (8)

which again is invariant under 1 ↔ 0 interchange from the
reciprocity relations (Kirchhoff’s law).
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FIG. 1. (Color online) Flux spectra � of isolated gold cylinders
of various aspect ratios L/R (solid circles) or a gold sphere
(hollow circles), both of radius R = 0.2 μm, normalized by their
corresponding surface areas A. Solid lines show � of an infinite
cylinder (L → ∞) and the isolated sphere as computed by the
semianalytical formulas of Ref. 32. Insets show � of interacting
cylinders (aspect ratio L/R = 1) and spheres at a single separation
d = R, and heat transfer rates H versus d for both parallel (θ = 0) or
crossed (θ = 90◦) cylinder configurations (shaded region corresponds
to intermediate θ ).

Results. Figure 1 shows the flux spectra � of various
configurations of isolated and interacting gold cylinders and
spheres of radii R = 0.2 μm, plotted over a frequency window
wide enough to capture the relevant contributions to room-
temperature emission. In every case, � is normalized by the
surface area A of each object to make comparisons easier
(at these wavelengths λ, R is several times the skin depth
δ = c/

√
εω, which means that most of the radiation is coming

from sources near the surface of the objects32). Our results
for isolated and interacting spheres (hollow circles) agree
with previous results based on semianalytical formulas18,32

(solid lines). However, we also consider radiation from finite,
isolated cylinders (solid circles) of varying aspect ratios L/R,
a geometry for which there are currently no semianalytical
results except in the special case of infinite cylinders L →
∞32 (solid lines). We find that for L/R ≈ 2 (not shown),
corresponding to nearly isotropic cylinders, � is only slightly
larger than that of an isolated sphere due to the small
but nonnegligible contribution of volume fluctuations to �.
As L/R increases, � increases over all λ and converges
towards the L → ∞ limit (black solid line) as λ → 0, albeit
slowly. Moreover, �L 
 �∞ at particular wavelengths, a
consequence of geometrical resonances that are absent in
the infinite case—away from these resonances, � clearly
straddles the L → ∞ result so long as λ � L. In the case
of interacting cylinders, � exhibits significant enhancement at
large λ due to near-field effects [Fig. 1 (left inset)], causing
the heat transfer rate H → ∞ with decreasing separation

220302-3



RAPID COMMUNICATIONS

RODRIGUEZ, REID, AND JOHNSON PHYSICAL REVIEW B 86, 220302(R) (2012)

2R

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

R λ

Φ
 

A

2R

FIG. 2. (Color online) Flux spectra � of isolated and interacting
spheres/rings (solid/hollow circles) of radii R = 1 μm, normalized
by their corresponding surface areas A. Solid lines show � of spheres,
computed via the semianalytical formulas of Refs. 18 and 32. Insets
show the spatial distribution of surface flux pattern at multiple λ

(color bar).

d. Figure 1 (right inset) plots H for a wide range of d

and for both parallel- and crossed-cylinder configurations,
with one cylinder held at T = 300 K and the other at zero
temperature. H is normalized to the Stefan-Boltzmann law
HSB = σT 4A, where σ = π2k4

B/(60h̄3c2) and A is the area
of the cylinders, which ignores near-field effects and assumes
that all of the radiation emitted by either cylinder reaches the
other. It follows that there are two very distinct separation
regimes of heat transfer: At large d 
 R, the cylinders act like
dipole emitters and H/HSB ∼ 1/d5 � 1; at small d � R, flux
contributions from evanescent waves dominate and H/HSB ∼
1/

√
d 
 1. Comparing H in the parallel (θ = 0) and crossed

(θ = 90◦) cylinder configurations, we find that H‖/H⊥ ≈ 1
at large d 
 R but changes significantly at smaller d �
R, again due to near-field effects: In the d → 0 limit,
H is dominated by closest surface-surface interactions, so
H‖/H⊥ ∼ L/R → 5.

Equation (2) can be exploited to obtain � in even
more complicated geometries, where the topology makes
it difficult to distinguish the incoming and outgoing waves
of other formulations.20–22 Figure 2 shows � for isolated
and interlocked gold rings (solid circles), of inner and outer
radii r = 0.7 μm and R = 1 μm, respectively, and thickness
h = 0.1 μm. For comparison, we also show the corresponding

� for isolated and interacting spheres of radii R (open circles).
As in the case of finite cylinders, the rings exhibit orders of
magnitude enhancement in � at particular wavelengths λ, cor-
responding to azimuthal resonances. Interestingly, despite its
smaller surface area and volume, the absolute (unnormalized)
� of the isolated ring is ≈4.5 times larger than that of the
sphere at the fundamental resonance. The geometrical origin
of this resonance enhancement becomes even more apparent
upon inspection of the spatial distribution of flux pattern on the
surface of the objects, which we compute via Eq. (7) and show
as insets in Fig. 2, for both rings and spheres. As expected, at
large λ 
 R, near-field effects dominate and the flux pattern
peaks in regions of nearest surfaces. However, for λ ∼ R,
the sphere-sphere pattern does not change qualitatively while
the ring-ring pattern exhibits resonance patterns characterized
by nodes and peaks distributed along the ring. Interestingly,
the flux pattern of the first resonance is peaked away from
the nearest surfaces. Away from these resonances, the ring
emissivity is smaller: For λ � R (not shown), � is well
described by the Stefan-Boltzmann law, and the ratio of their
emissivities is given by the ratio of their surface areas ≈0.3. A
similar reduction occurs for λ 
 R due to the ring’s smaller
polarizability.

In conclusion, we presented a short derivation of an FSC
approach to nonequilibrium fluctuations based on the SIE
framework of classical EM scattering, that allows direct ap-
plication of sophisticated techniques from classical numerical
EM, such as powerful BEM solvers (requiring little if any
modifications), to efficiently compute the radiative heat trans-
fer between bodies of arbitrary shape. Although our focus here
was on a numerical method for arbitrary geometries, the same
formalism can also be applied with a spectral basis to obtain
rapidly convergent semianalytical formulas of heat transfer in
special high-symmetry geometries, in the spirit of previous
work based on the scattering-matrix formalism.19–22,25 A
longer and more general derivation of our formulation that
subsumes other situations of interest, such as geometries with
multiple or nested bodies, along with the aforementioned
application of our formulation to high-symmetry situations,
will be presented in a subsequent publication. Finally, we
believe that it should be possible to employ similar ideas and
techniques to study other nonequilibrium phenomena, such
as Casimir forces between bodies of unequal temperatures or
thermal fluorescence.
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