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We present a scheme for obtaining stable Casimir suspension of dielectric nontouching objects

immersed in a fluid, validated here in various geometries consisting of ethanol-separated dielectric

spheres and semi-infinite slabs. Stability is induced by the dispersion properties of real dielectric

(monolithic) materials. A consequence of this effect is the possibility of stable configurations (clusters)

of compact objects, which we illustrate via a molecular two-sphere dicluster geometry consisting of two

bound spheres levitated above a gold slab. Our calculations also reveal a strong interplay between material

and geometric dispersion, and this is exemplified by the qualitatively different stability behavior observed

in planar versus spherical geometries.
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Electromagnetic fluctuations are the source of a macro-
scopic force, the Casimir force, between otherwise neutral
objects [1–3]. In most geometries involving vacuum-
separated metallic or dielectric objects (with a separating
plane), the force is attractive and decaying as a function of
object separation, and may contribute to ‘‘stiction’’ in
microelectromechanical systems [4]. A repulsive interac-
tion would be desirable to combat stiction as well as for
frictionless suspension and other applications. Repulsive
Casimir forces occur in a variety of settings, including
theoretical magnetic materials [5], fluid-separated dielec-
trics [6,7], interleaved metallic geometries [8], and have
also been suggested for composite metamaterials [9]
(although repulsion with physical metamaterials has not
yet been clearly demonstrated, as discussed below). In this
Letter, we demonstrate stable Casimir suspension of real-
istic dielectric or metallic objects immersed in a fluid.
Unlike previous work [10], this suspension does not in-
volve one object enclosing another, but instead occurs
between objects on opposite sides of an imaginary separat-
ing plane. This effect is a consequence of material disper-
sion, and is here validated in various experimentally
accessible geometries consisting of ethanol-separated di-
electric spheres and semi-infinite slabs. Furthermore, we
show the possibility of achieving Casimir ‘‘molecular’’
clusters in which objects can form stable nontouching
configurations in space—this is illustrated in a ‘‘diatomic’’
or ‘‘dicluster’’ geometry involving two dielectric spheres
of different radii bound into a nontouching pair and levi-
tated above a gold slab. Finally, our calculations reveal
interesting effects related to the interplay of geometric and
material dispersion, in which stability responds to finite
size in a way that is qualitatively different in planar vs
spherical geometries.

Casimir stability has been previously studied in at least
four different contexts: first, in geometries involving mu-

tually enclosed fluid-separated objects, in which the inner
object is repelled by the outer object [10]; second, a slab-
sphere geometry in which fluid-induced repulsion counter-
acts the force of gravity [11]; third, interleaved structures
like the zipper geometry of [8], in which the surfaces of
two complicated objects interleave so that their mutual
attraction acts to separate the objects; and fourth, metama-
terial proposals [9] that currently have no clear physical
realization. The first two approaches (involving fluids) are
illustrated by the schematics in Figs. 1(a) and 1(b). While
all of these examples clearly demonstrate the possibility of
Casimir stability, they leave something to be desired: they
are limited to enclosed or complex geometries or require
that stability lie only along a single direction (e.g., direc-
tion of gravity). It has been suggested that vacuum-
separated chiral metamaterials may exhibit repulsive inter-
actions and stable repulsive-attractive transitions [9],
although no specific metamaterial geometries (chiral or
otherwise) exhibiting repulsion have yet been proposed—
in any case, the predicted chiral repulsive forces arise only
for small separations where the metamaterial approxima-
tion cannot be trusted, and recent exact calculations indi-
cate that they appear to be attractive [12]. Moreover, recent
theoretical work has shown that vacuum-separated objects
can never form stable configurations [13]. A less con-

FIG. 1 (color online). Schemes for stable suspension of fluid-
separated objects, involving: (a) enclosed geometries; (b) gravity
countering Casimir repulsion; and (c) material dispersion pro-
ducing repulsive and attractive Casimir forces (here).

PRL 104, 160402 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

23 APRIL 2010

0031-9007=10=104(16)=160402(4) 160402-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.160402


strained and previously unexplored form of stability is one
involving compact objects on either side of an imaginary
separating plane, as illustrated in Fig. 1(c) for two spheres:
in this case (involving fluids), we will show that the objects
form stable configurations that are independent of external
forces, and seem more accessible to experiment, opening
up new possibilities for the creation of multibody clusters
based on the Casimir force.

The Casimir force between two dielectric objects em-
bedded in a fluid can become repulsive if their dielectric
permittivities satisfy:

"1ði�Þ< "fluidði�Þ< "2ði�Þ; (1)

over a sufficiently wide range of imaginary frequencies �
[6]. The possibility of stable separations arises if the force
transitions from repulsive at small separations (conceptu-
ally dominated by large-� contributions) to attractive at
large separations (conceptually dominated by small-� con-
tributions). A criterion for obtaining stability is therefore
that Eq. (1) be violated at small �, and satisfied for � > �c,
with the transition occurring at some critical �c � 2�c=�c

roughly related to the length scale �c at which the
repulsive-attractive transition occurs. This criterion is
only heuristic, but helps guide our intuition. The real
system is more complicated, as we shall see, because the
sign of the force also depends on many other factors such
as the relative strength of the contributions of different
frequencies (related to the strength of the " contrast) as
well as on finite-size effects.

After considering a number of possibilities, we have
identified several material combinations that satisfy
Eq. (1) for large � (small separations). Figure 2 (top) plots
the dielectric permittivity "ði�Þ of various materials (Si,
Teflon, SiO2, and ethanol) satisfying Eq. (1) over some
large range of �. In order to establish the existence of stable
separations, we first compute the force between semi-
infinite slabs separated by ethanol, using the Lifshitz for-
mula [2]. Figure 2 (bottom) plots the Casimir force be-
tween semi-infinite slabs for different material
arrangements, normalized by the corresponding force be-
tween perfectly-metallic slabs. Our results show that both
Teflon-Si (red) and SiO2-Si exhibit stable equilibria at

dc � 120 nm and dðsÞc � 90 nm, respectively. SiO2-Si ex-
hibits a finite region of stability coming from the existence

of an unstable equilibrium at a smaller dðuÞc � 29 nm, a

consequence of its two dielectric crossings �ð1Þ
c �

2:62�c=�m and �ð2Þ
c � 26:42�c=�m labeled in Fig. 2

(top). As mentioned above, this prescription for obtaining
stability is only heuristic: for example, the force between
Teflon-SiO2 slabs is always attractive, even though their
permittivities satisfy Eq. (1) at large �. In that case, while

there is a crossing of the form of Eq. (1) at �ð2Þ
c , the

repulsive contributions coming from � > �ð2Þ
c are over-

whelmed by the attractive contributions coming from � <

�ð2Þ
c , since SiO2 and Teflon become transparent at relatively

small �. Thus, the repulsive region of the frequency spec-
trum merely reduces the attractive force between the ob-
jects at small separations.
We now investigate suspension of finite-size objects. For

slab-sphere and sphere-sphere geometries, rapid exact cal-
culations are performed using the spherical-harmonic scat-
tering formulation of [14,15]. Given the material
properties, the scattering-matrix formulation (derived
from a path-integral evaluation of the Casimir energy)
yields the exact Casimir force, with the only approximation
being the numerical truncation of the sum over spherical-
harmonic contributions—these contributions decay expo-
nentially fast, and we only required harmonics up to order
‘ ¼ 20 to obtain better than 1% accuracy at relevant
separations. For convenience, we evaluated the force at
zero temperature T; because the room-temperature
Matsubara wavelength @c=kT � 7:6 �m is much larger
than the <200 nm separations considered here, the finite-
temperature corrections to the equilibrium separations are

FIG. 2 (color online). (Top): Plot of the dielectric permittivity
"ði�Þ of various materials evaluated at imaginary frequency �
(units of c=�m). (Bottom): Casimir force between a semi-
infinite slab and a sphere (dots) and Casimir pressure between
semifinite slabs (lines), normalized by the corresponding perfect-
metal PFA force FPFA ¼ @c�3=360d3 (slab-sphere) and pressure
FPFA ¼ @c�2=240d4 (slab-slab). The normalized force is plotted
for various material configurations, described in the text.
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small [2], e.g. � 1% for the RS ¼ 100 nm Teflon-Si
sphere-sphere case in Fig. 4. Intuitively, one might expect
the finite size or thickness of an object to suppress the
contributions from small � (large ‘‘wavelengths’’), and
therefore to change (or eliminate) the separation at which
the repulsive-attractive transition occurs. Here, where at-
traction comes from small-� contributions, one might ex-
pect the finite size to decrease the attractive contributions
and therefore increase the equilibrium separation dc.

Figure 2 (bottom) plots the force between a sphere of
radius R ¼ 200 nm and a semi-infinite slab for different
material arrangements, normalized by the corresponding
perfect-metal proximity-force approximation (PFA) force.
(When referring to a geometry consisting of a semi-infinite
� and finite � object, we shall denote the combination by
�-�.) The results in this slab-sphere geometry look quali-
tatively similar to those in the slab–slab structure. In
particular, both Teflon-Si and SiO2 � Si exhibit stable
equilibria at dc � 105 nm and dc � 78 nm, respectively,
roughly 15 nm smaller than the dc in the slab-slab case.

The fact that dc is smaller in the slab-sphere case than
for semi-infinite slabs was initially unexpected since it
contradicts the intuition described above. However, when
we plot dc for the various materials (solid dotted lines) as a
function of R 2 ð0; 350Þ nm in Fig. 3, we indeed observe
the expected behavior: as R decreases, dc increases,
asymptoting to a constant at R ¼ 0 that corresponds to
the Casimir-Polder force between a spherical nanoparticle
and a slab [14]. Similar increases in dc as thickness t is
decreased are observed in some of the finite-slab geome-
tries (solid lines) in Fig. 3, at least in all of the configura-
tions where the thickness of the silicon is varied. In the
t ! 1 limit for the slab-slab case, the semi-infinite result
is recovered. For the slab-sphere case with R ! 1, the
asymptotic dc occurs for a smaller separation than for
semi-infinite slabs: in this limit, where PFA is valid, the
curvature of the spheres yields an average separation that is
larger than dc.

An interesting question is to what extent one may tailor
object geometries in order to change the qualitative fea-
tures of the force, e.g., its sign. With this question in mind,
the dashed lines in Fig. 3 show dc for slab-slab geometries
in which the two solid materials have been exchanged so
that the finite-thickness slab is no longer silicon.
Apparently, changing which slab is finite qualitatively
reverses the dependence on dc in some cases: for Si-Au
and Si-SiO2 slabs, the equilibrium separation dc decreases
with decreasing thickness t, corresponding to an increased
attractive force despite the fact that the attractive contribu-
tions arise from small � (which are intuitively cut off by the
finite thickness). This reversal, however, does not happen
in all cases: it does not occur for the Si-Teflon slab-slab
geometry or for any of the slab-sphere geometries (and we
do not plot dc in these reversed cases because the results
are very similar to the original results). Evidently, the finite
lateral size of the spheres has a dramatic qualitative inter-
action with the material dispersion. In future work, we plan

to investigate this interesting interplay between material
and geometric dispersion, in addition to the finite-size
behavior exhibited by the finite gold [16] and SiO2 slabs.
Another feature worth noting in Fig. 3 also stems from

the anomalous response of the Si-SiO2 slab-slab geometry

to changes in the SiO2 thickness t: the stable dðsÞc and

unstable dðuÞc equilibria bifurcate at a radius Rc, below
which the force is purely attractive at all d.
In what follows, we illustrate an interesting corollary of

this type of stability: the possibility of obtaining stable
noncontact configurations of compact objects at a nonzero
separation. In particular, we calculate the Casimir force in
a nanoparticle-dicluster system consisting of Teflon and
silicon spheres, of different radii RT and RS, respectively,
immersed in ethanol. The force FSS between the spheres is
plotted in Fig. 4 (bottom) for different sets of radii RS ¼
f99:69; 293:67; 368:39g nm and RT ¼ f262:09; 32:67;
176:64g nm, respectively. This choice of the radii was
motivated by one possible experimental configuration, in
which the pair of spheres are also levitated above a planar
slab: in this geometry, discussed below, the sphere radii are
chosen so that both spheres are suspended at the same
height above the slab. With this choice of materials, the
spheres exhibit a stable (orientation-independent) surface-
surface equilibrium in the 100–150 nm range.
To make such a dicluster pair easier to observe in experi-

ments, one could simultaneously suspend them at a known
distance above a planar substrate, using the interplay be-
tween the repulsive Casimir force and gravity to create
stable levitation. For simplicity, we investigate this possi-
bility within the additive approximation: the slab-sphere
and sphere-sphere interactions are considered indepen-
dently. Because Casimir forces are not additive, the pres-
ence of the slab will change the stable separation of the

FIG. 3 (color online). Equilibrium separation dc vs sphere-
radius (R) or slab-thickness (t) for various slab-sphere (dots)
and slab-slab (lines) configurations. Dashed lines correspond to
slab-slab geometries with materials swapped (semi-infinite sili-
con slab).
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spheres (and vice versa for the stable height of the spheres).
However, this approximation forms a useful starting point
for the design of such an experiment and should even be
accurate in the limit where the sphere diameter is much
larger than the stable surface-surface separations (here,
most of the diameters are at least twice the stable separa-
tions). Figure 4 (top) shows a plot of the equilibrium
surface-surface (hc) and center-surface (Lc ¼ hc þ R)
separations of the Teflon (red) and silicon (blue) spheres
suspended above a semi-infinite gold slab, as a function of
sphere radius R. As shown by the figure, decreasing R acts
to increase Lc and decrease hc. The decrease in hc occurs
much more rapidly than in Fig. 3 due to the fact that, in
addition to geometric dispersion, the force of gravity scales
as the mass �V of a sphere (where the density � �
f2330; 2200; 789g kg=m3, for {Si, Teflon, ethanol}, respec-
tively). The center-center separation Lc ¼ hc þ R in-
creases with increasing R because @hc=@R >�1. In
addition to a stable equilibrium hc, Au-Si exhibits an
unstable equilibrium at smaller dc due to the transition to
an attractive Casimir force for small separations; if the
sphere were ever pushed below the unstable equilibrium

point, it would continue downward and adhere to the slab.
This would be a concern for experiments if fluctuations in
the sphere height could push it below the unstable equilib-
rium, but as seen from Fig. 4 the distance between the
stable and unstable equilibria is over 200 nm for R<
50 nm nanoparticles.
The gray areas in Fig. 4 (top) depict regions in which the

Lc or hc of the two spheres can be made equal by an
appropriate choice of radii, as shown schematically in
Fig. 4 (top left). This determines the stable configuration
of the two-sphere dicluster when they are brought together
above the surface; the three dashed horizontal lines in
Fig. 4 (top) correspond to the radii used for the force
calculation in Fig. 4 (bottom).
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FIG. 4 (color online). (Top:) Plot of the stable equilibrium
center-surface (Lc) and surface-surface (hc) separation between
either a Teflon (red) or silicon (blue) sphere and a semi-infinite
gold slab (depicted schematically on the left inset), as a function
of sphere-radius R. The black lines also show the presence of an
unstable equilibrium in the silicon-sphere case. (Bottom:) Plot of
the force FSS between two Teflon and silicon spheres of radii RT

and RS , showing the existence of a stable equilibrium.
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