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We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on
the finite-difference time-domain �FDTD� scheme. The method involves the time evolution of electric and
magnetic fields in response to a set of current sources, in a modified medium with frequency-independent
conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without
modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and
essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest
parallel-plate geometry.
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I. INTRODUCTION

In recent years, Casimir forces arising from quantum
vacuum fluctuations of the electromagnetic field �1–3� have
become the focus of intense theoretical and experimental ef-
fort �4–21�. This effect has been verified via many experi-
ments �22–25�, most commonly in simple, one-dimensional
geometries involving parallel plates or approximations
thereof, with some exceptions �26�. A particular topic of in-
terest is the geometry and material dependence of the force,
a subject that has only recently begun to be addressed in
experiments �26� and by promising new theoretical methods
�27–38�. For example, recent works have shown that it is
possible to find unusual effects arising from many-body in-
teractions or from systems exhibiting strongly coupled mate-
rial and geometric dispersion �39–43�. These numerical stud-
ies have been mainly focused in two-dimensional �13,44–46�
or simple three-dimensional constant-cross-section geom-
etries �33,40,47� for which numerical calculations are trac-
table.

In this paper, we present a simple and general method to
compute Casimir forces in arbitrary geometries and for arbi-
trary materials that is based on a finite-difference time-
domain �FDTD� scheme in which Maxwell’s equations are
evolved in time �48�. A time-domain approach offers a num-
ber of advantages over previous methods. First, and fore-
most, it enables researchers to exploit powerful free and
commercial FDTD software with no modification. The gen-
erality of many available FDTD solvers provides yet another
means to explore the material and geometry dependence of
the force, including calculations involving anisotropic dielec-
trics �49� and/or three-dimensional problems. Second, this
formulation also offers a fundamentally different viewpoint
on Casimir phenomena, and thus new opportunities for the
theoretical and numerical understanding of the force in com-
plex geometries.

Our time-domain method is based on a standard formula-
tion in which the Casimir force is expressed as a contour
integral of the frequency-domain stress tensor �2�. Like most
other methods for Casimir calculations, the stress-tensor
method typically involves evaluation at imaginary frequen-
cies, which we show to be unsuitable for FDTD. We over-

come this difficulty by exploiting a recently developed exact
equivalence between the system for which we wish to com-
pute the Casimir force and a transformed problem in which
all material properties are modified to include dissipation
�50�. To illustrate this approach, we consider a simple choice
of contour, corresponding to a conductive medium that leads
to a simple and efficient time-domain implementation. Fi-
nally, using a free, widely available FDTD code �51�, we
compute the force between two vacuum-separated perfectly
metallic plates, a geometry that is amenable to analytical
calculations and which we use to analyze various important
features of our method. An illustration of the power and flex-
ibility of this method will be provided in a planned subse-
quent article �52�, in which we will demonstrate computa-
tions of the force in a number of nontrivial �dispersive, three-
dimensional� geometries as well as further refinements to the
method.

II. METHOD

In what follows, we derive a numerical method to com-
pute the Casimir force on a body using the FDTD method.
The basic steps involved in computing the force are:

�i� Map the problem exactly onto a new problem with
dissipation given by a frequency-independent conductivity �.

�ii� Measure the electric E and magnetic H fields in re-
sponse to current pulses placed separately at each point along
a surface enclosing the body of interest.

�iii� Integrate these fields in space over the enclosing sur-
face and then integrate this result, multiplied by a known
function g�−t�, over time t, via Eq. �29�.

The result of this process is the exact Casimir force �in the
limit of sufficient computational resolution�, expressed via
Eq. �29� and requiring only the time-evolution of Eqs. �15�
and �16�.

In this section, we describe the mathematical development
of our time-domain computational method, starting from a
standard formulation in which the Casimir force is expressed
as a contour integral of the frequency-domain stress tensor.
We consider the frequency domain for derivation purposes
only since the final technique outlined above resides entirely
in the time domain. In this framework, computing the Ca-
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simir force involves the repeated evaluation of the photon
Green’s function Gij over a surface S surrounding the object
of interest. Our goal is then to compute Gij via the FDTD
method. The straightforward way to achieve this involves
computing the Fourier transform of the electric field in re-
sponse to a short pulse. However, in most methods a crucial
step for evaluating the resulting frequency integral is the pas-
sage to imaginary frequencies, corresponding to imaginary
time. We show that, in the FDTD, this gives rise to exponen-
tially growing solutions and is therefore unsuitable. Instead,
we describe an alternative formulation of the problem that
exploits a recently proposed equivalence in which contour
deformations in the complex frequency-domain ���� corre-
spond to introducing an effective dispersive, dissipative me-
dium at a real “frequency” �. From this perspective, it be-
comes simple to modify the FDTD Maxwell’s equations for
the purpose of obtaining well-behaved stress-tensor fre-
quency integrands. We illustrate our approach by considering
a contour corresponding to a medium with frequency-
independent conductivity �. This contour has the advantage
of being easily implemented in the FDTD, and in fact is
already incorporated in most FDTD solvers. Finally, we
show that it is possible to abandon the frequency domain
entirely in favor of evaluating the force integral directly in
the time domain, which offers several conceptual and nu-
merical advantages.

A. Stress-tensor formulation

The Casimir force on a body can be expressed �2� as an
integral over any closed surface S �enclosing the body� of the
mean electromagnetic stress tensor �Tij�r ,���. Here r de-
notes spatial position and � frequency. In particular, the
force in the ith direction is given by

Fi = �
0

�

d��
S

	
j

�Tij�r,���dSj , �1�

The stress tensor is expressed in terms of correlation func-
tions of the field operators �Ei�r ,��Ej�r� ,��� and
�Hi�r ,��Hj�r� ,���,

�Tij�r,��� = ��r,��
�Hi�r�Hj�r��� −
1

2
�ij	

k

�Hk�r�Hk�r����
+ ��r,��
�Ei�r�Ej�r���

−
1

2
�ij	

k

�Ek�r�Ek�r���� , �2�

where both the electric and magnetic-field correlation func-
tions can be written as derivatives of a vector potential op-
erator AE�r ,��,

Ei�r,�� = − i�Ai
E�r,�� , �3�

�Hi�r,�� = ��	�ijAj
E�r,�� . �4�

We explicitly place a superscript on the vector potential in
order to refer to our choice of gauge �Eqs. �3� and �4��, in

which E is obtained as a time derivative of A. The
fluctuation-dissipation theorem relates the correlation func-
tion of AE to the photon Green’s function Gij

E�� ;r ,r��,

�Ai
E�r,��Aj

E�r�,��� = −



�
Im Gij

E��,r,r�� , �5�

where Gij
E is the vector potential Ai

E in response to an
electric-dipole current J along the ê j direction,


� 	
1

��r,��
� 	 − �2��r,���G j

E��;r,r�� = ��r − r��ê j ,

�6�

Given Gij
E, one can use Eqs. �3� and �4� in conjunction with

Eq. �5� to express the field correlation functions at points r
and r� in terms of the photon Green’s function,

�Ei�r,��Ej�r�,��� =



�
�2 Im Gij

E��;r,r�� , �7�

�Hi�r,��Hj�r�,��� = −



�
��	�il���	� jm Im Glm

E �r,r�,�� ,

�8�

In order to find the force via Eq. �1�, we must first com-
pute Gij

E�r ,r�=r ,�� at every r on the surface of integration
S, and for every � �2�. Equation �6� can be solved numeri-
cally in a number of ways, such as by a finite-difference
discretization �30�: this involves discretizing space and solv-
ing the resulting matrix eigenvalue equation using standard
numerical linear algebra techniques �53,54�. We note that
finite spatial discretization automatically regularizes the sin-
gularity in Gij

E at r=r�, making Gij
E finite everywhere �30�.

B. Complex frequency domain

The present form of Eq. �6� is of limited computational
utility because it gives rise to an oscillatory integrand with
non-negligible contributions at all frequencies, making nu-
merical integration difficult �30�. However, the integral over
� can be re-expressed as the imaginary part of a contour
integral of an analytic function by commuting the � integra-
tion with the Im operator in Eqs. �7� and �8�. Physical cau-
sality implies that there can be no poles in the integrand in
the upper complex plane. The integral, considered as a com-
plex contour integral, is then invariant if the contour of inte-
gration is deformed above the real-frequency axis and into
the first quadrant of the complex-frequency plane, via some
mapping �→����. This allows us to add a positive imagi-
nary component to the frequency, which causes the force
integrand to decay rapidly with increasing � �50�. In particu-
lar, upon deformation, Eq. �6� is mapped to


� 	
1

��r,��
� 	 − �2�����r,���G j

E��;r,r�� = ��r − r��ê j ,

�9�

and Eqs. �7� and �8� are mapped to
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�Ei�r,��Ej�r�,��� =



�
�2Gij

E��;r,r�� , �10�

�Hi�r,��Hj�r�,��� = −



�
��	�il���	� jmGlm

E �r,r�,�� ,

�11�

Equation �1� becomes

Fi = Im�
0

�

d�
d�

d�
�

surface

	
j

�Tij�r,���dSj , �12�

�Note that a finite spatial grid �as used in the present ap-
proach� requires no further regularization of the integrand,
and the finite value of all quantities means there is no diffi-
culty in commuting the Im operator with the integration.�

We can choose from a general class of contours, provided
that they satisfy ��0�=0 and remain above the real � axis.
The standard contour ����= i� is a Wick rotation, which is
known to yield a force integrand that is smooth and expo-
nentially decaying in � �2�. In general, the most suitable con-
tour will depend on the numerical method being employed.
A Wick rotation guarantees a strictly positive-definite and
real-symmetric Green’s function, making Eq. �6� solvable by
the most efficient numerical techniques �e.g., the conjugate-
gradient method� �54�. One can also solve Eq. �6� for arbi-
trary ���� �50�, but this will generally involve the use of
direct solvers or more complicated iterative techniques �53�.
However, the class of contours amenable to an efficient time-
domain solution is more restricted. For instance, a Wick ro-
tation turns out to be unstable in the time domain because it
implies the presence of gain �50�.

C. Time-domain approach

It is possible to solve Eq. �6� in the time domain by evolv-
ing Maxwell’s equations in response to a delta-function cur-
rent impulse J�r , t�=��r−r����t− t��ê j in the direction of ê j.
Gij

E can then be directly computed from the Fourier transform
of the resulting E field. However, obtaining a smooth and
decaying force integrand requires expressing the mapping
�→���� in the time-domain equations of motion. A simple
way to see the effect of this mapping is to notice that Eq. �9�
can be viewed as the Green’s function at real “frequency” �
and complex dielectric �50�,

�c�r,�� =
�2���

�2 ��r� , �13�

where for simplicity we have taken � and � to be frequency
independent. We assume this to be the case for the remainder
of the paper. At this point, it is important to emphasize that
the original physical system � at a frequency � is the one in
which Casimir forces and fluctuations appear; the dissipative
system �c at a frequency � is merely an artificial technique
introduced to compute the Green’s function.

Integrating along a frequency contour ���� is therefore
equivalent to making the medium dispersive in the form of
Eq. �13�. Consequently, the time domain equations of motion

under this mapping correspond to evolution of the fields in
an effective dispersive medium given by �c�r ,��.

To be suitable for FDTD, this medium should have three
properties: it must respect causality, it cannot support gain
�which leads to exponential blowup in time-domain�, and it
should be easy to implement. A Wick rotation is very easy to
implement in the time domain: it corresponds to setting �c
=−�. However, a negative epsilon represents gain �the re-
fractive index is ���, where one of the signs corresponds to
an exponentially growing solution�. We are therefore forced
to consider a more general, frequency-dependent �c.

Implementing arbitrary dispersion in FDTD generally re-
quires the introduction of auxiliary fields or higher order
time-derivative terms into Maxwell’s equations, and can in
general become computationally expensive �48�. The precise
implementation will depend strongly on the choice of con-
tour ����. However, almost any dispersion will suit our
needs, as long as it is causal and dissipative �excluding gain�.
A simple choice is an �c�r ,�� corresponding to a medium
with frequency-independent conductivity �,

�c�r,�� = ��r�1 +
i�

�
� . �14�

This has three main advantages: first, it is implemented in
many FDTD solvers currently in use; second, it is numeri-
cally stable; and third, it can be efficiently implemented
without an auxiliary differential equation �48�. In this case,
the equations of motion in the time domain are given by

��H

�t
= − � 	 E , �15�

��E

�t
= � 	 H − ��E − J . �16�

Writing the conductivity term as �� is slightly nonstandard,
but is convenient here for numerical reasons. In conjunction
with Eqs. �3� and �4�, and a Fourier transform in �, this yields
a photon Green’s function given by


� 	
1

��r�
� 	 − �2��r�1 +

i�

�
��G j��;r,r�� = ��r − r��ê j ,

�17�

This corresponds to picking a frequency contour of the
form

���� � ��1 +
i�

�
, �18�

Note that, in the time domain, the frequency of the fields is �,
and not �, i.e., their time dependence is e−i�t. The only role
of the conductivity � here is to introduce an imaginary com-
ponent to Eq. �17� in correspondence with a complex-
frequency mapping. It also explicitly appears in the final ex-
pression for the force, Eq. �12�, as a multiplicative �Jacobian�
factor.

The standard FDTD method involves a discretized form
of Eqs. �15� and �16�, from which one obtains E and B, not
Gij

E. However, in the frequency domain, the photon Green’s
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function, being the solution to Eq. �6�, solves exactly the
same equations as those satisfied by the electric field E, ex-
cept for a simple multiplicative factor in Eq. �3�. Specifically,
Gij

E is given in terms of E by

Gij
E��;r,r�� = −

Ei,j�r,��
i�J���

, �19�

where Ei,j�r ,�� denotes the field in the ith direction due to a
dipole current source J�r , t�=J�t���r−r��ê j placed at r� with
time-dependence J�t�, e.g., J�t�=��t�.

In principle, we can now compute the electric- and
magnetic-field correlation functions by using Eqs. �10� and
�11�, with ���� given by Eq. �18�, and by setting r=r� in Eq.
�11�. Since we assume a discrete spatial grid, no singularities
arise for r=r�, and in fact any r-independent contribution is
canceled upon integration over S. This is straightforward for
Eq. �7� since the E-field correlation function only involves a
simple multiplication by �2���. However, the H-field corre-
lation function, Eq. �8�, involves derivatives in space. Al-
though it is possible to compute these derivatives numeri-
cally as finite differences, it is conceptually much simpler to
pick a different vector potential, analogous to Eqs. �3� and
�4�, in which H is the time-derivative of a vector potential
AH. As discussed in the Appendix, this choice of vector po-
tential implies a frequency-independent magnetic conductiv-
ity, and a magnetic, instead of electric, current. The resulting
time-domain equations of motion are

��H

�t
= − � 	 E + ��H − J , �20�

��E

�t
= � 	 H . �21�

In this gauge, the new photon Green’s function Gij
H

= �Ai
H�r ,��Aj

H�r� ,��� and the field H in response to the cur-
rent source J are related by

Gij
H��;r,r�� = −

Hi,j�r,��
i�J���

, �22�

where the magnetic-field correlation function,

�Hi�r,��Hj�r�,��� =



�
�2���Gij

H��;r,r�� , �23�

is now defined as a frequency multiple of Gij
H rather than by

a spatial derivative of Gij
E.

This approach to computing the magnetic correlation
function has the advantage of treating the electric and mag-
netic fields on the same footing, and also allows us to exam-
ine only the field response at the location of the current
source. The removal of spatial derivatives also greatly sim-
plifies the incorporation of discretization into our equations
�see Appendix for further discussion�. The use of magnetic
currents and conductivities, while unphysical, are easily
implemented numerically. Alternatively, one could simply in-
terchange � and �, E and H, and run the simulation entirely
as in Eqs. �15� and �16�.

The full force integral is then expressed in the symmetric
form

Fi = Im



�
�

−�

�

d�g����i
E��� + i

H���� , �24�

where

i
E��� � �

S

	
j

��r�Ei,j�r� −
1

2
�ij	

k

Ek,k�r��dSj , �25�

i
H��� � �

S

	
j

1

��r�Hi,j�r� −
1

2
�ij	

k

Hk,k�r��dSj

�26�

represent the surface-integrated field responses in the fre-
quency domain, with Ei,j�r��Ei,j�r ;��. For notational sim-
plicity, we have also defined

g��� �
�2

i�J���
d�

d�
���� . �27�

Here, the path of integration has been extended to the entire
real � axis with the use of the unit-step function ���� for
later convenience.

The product of the fields with g��� naturally decomposes
the problem into two parts: computation of the surface inte-
gral of the field correlations , and of the function g���. The
i’s contain all the structural information, and are straight-
forward to compute as the output of any available FDTD
solver with no modification to the code. This output is then
combined with g���, which is easily computed analytically,
and integrated in Eq. �24� to obtain the Casimir force. As
discussed in Sec. IVA, the effect of spatial and temporal
discretization enters explicitly only as a slight modification
to g��� in Eq. �24�, leaving the basic conclusions unchanged.

D. Evaluation in the time domain

It is straightforward to evaluate Eq. �24� in the frequency
domain via a dipole current J�t�=��t�, which yields a
constant-amplitude current J���=1. Using the frequency-
independent conductivity contour Eq. �18�, corresponding to
Eqs. �15� and �16�, we find the following explicit form for
g���:

g��� = − i�1 +
i�

�
� 1 + i�/2�

�1 + i�/�
���� . �28�

One important feature of Eq. �28� is that g���→�i�3 /� be-
comes singular in the limit as �→0. Assuming that E���
and H��� are continuous at �=0 �in general they will not be
zero�, this singularity is integrable. However, it is cumber-
some to integrate in the frequency domain, as it requires
careful consideration of the time window for calculation of
the field Fourier transforms to ensure accurate integration
over the singularity.

As a simple alternative, we use the convolution theorem
to re-express the frequency ��� integral of the product of g���
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and E��� arising in Eq. �24� as an integral over time t of
their Fourier transforms g�−t� and E�t�. Technically, the
Fourier transform of g��� does not exist because g����� for
large �. However, the integral is regularized below using the
time discretization, just as the Green’s function above was
regularized by the spatial discretization. �As a convenient
abuse of notation, � arguments will always denote functions
in the frequency domain, and t arguments their Fourier trans-
forms in the time domain.�

Taking advantage of the causality conditions �E�t�,
H�t�=0 for t�0� yields the following expression for the
force expressed purely in the time domain:

Fi = Im



�
�

0

�

dtg�− t��i
E�t� + i

H�t�� . �29�

The advantage of evaluating the force integral in the time
domain is that, due to the finite conductivity and lack of
sources for t�0, �t� will rapidly decay in time. As will be
shown in the next section, g�−t� also decays with time.
Hence, although dissipation was originally introduced to per-
mit a natural high-frequency cutoff to our computations, it
also allows for a natural time cutoff T. We pick T such that,
for times t�T, knowledge of the fields will not change the
force result in Eq. �29� beyond a predetermined error thresh-
old. This approach is very general as it requires no precise
knowledge of how the fields decay with time.

E. Properties of g(−t)

Given g���, the desired function g�−t� is a Fourier trans-
form. However, the discretization of time in FDTD implies
that the frequency domain becomes periodic and that g�t�
=g�n�t� are actually Fourier series coefficients, given by

g�n�t� = �
0

2�/�t

d�gd���e−i�n�t, �30�

where gd��� is the discretized form of Eq. �27� and is given
in the Appendix by Eq. �38�. These Fourier series coeffi-
cients are computed by a sequence of numeric integrals that
can be evaluated in a variety of ways. It is important to
evaluate them accurately in order to resolve the effect of the
�=0 singularity. For example, one could use a Clenshaw-
Curtis scheme developed specifically for Fourier integrals
�55�, or simply a trapezoidal rule with a large number of
points that can be evaluated relatively quickly by an fast
Fourier transform �e.g., for this particular g���, 107 points is
sufficient�.

Since it is possible to employ strictly real current sources
in FDTD, giving rise to real , and since we are only inter-
ested in analyzing the influence of g�t� on Eq. �29�, it suffices
to look at Im g�−t�. Furthermore, g�t� will exhibit rapid os-
cillations at the Nyquist frequency due to the delta-function
current, and therefore it is more convenient to look at its
absolute value. Figure 1, below, plots the envelope of
�Im g�−t�� as a function of t, where again, g�t� is the Fourier
transform of Eq. �27�.

As anticipated in the previous section, g�t� decays in time.
Interestingly, it exhibits a transition from �t−1 decay at �

=0 to �t−1/2 decay for large �. The slower decay at long
times for larger � arises from a transition in the behavior of
Eq. �28� from the singularity at �=0.

III. PROPERTIES OF THE METHOD

In this section we discuss the practical implementation of
the time-domain algorithm �using a freely available time-
domain solver �51� that required no modification�. We ana-
lyze its properties applied to the simplest parallel-plate ge-
ometry �Fig. 2�, which illustrate the essential features in the
simplest possible context. In particular, we analyze important
computational properties such as the convergence rate and
the impact of different conductivity choices. A forthcoming
of this paper, in preparation, demonstrates the method for
more complicated two- and three-dimensional geometries
�52�.

A. Fields in real time

The dissipation due to positive � implies that the fields,
and hence E�t�, will decay exponentially with time. Below,
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FIG. 1. �Color online� �Im g�t�� for various values of �, illustrat-
ing the transition from t−1 to t−1/2 power-law decay as � increases.
Because there are strong oscillations in g�t� at the Nyquist fre-
quency for intermediate �, for clarity we plot the positive and nega-
tive terms in g�t� as separate components.
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FIG. 2. �Color online� x
E�t�+x

H�t� for a set of one-dimensional
parallel plates as the separation h is varied. The inset shows the
physical setup.
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we use a simple one-dimensional example to understand the
consequences of this dissipation for both the one-
dimensional parallel plates and the two-dimensional piston
configuration. The simplicity of the parallel-plate configura-
tion allows us to examine much of the behavior of the time-
domain response analytically. �The understanding gained
from the one-dimensional geometry can be applied to higher
dimensions.� Furthermore, we confirm that the error in the
Casimir force due to truncating the simulation at finite time
decreases exponentially �rather than as t−1, as it would for no
dissipation�.

1. One-dimensional parallel plates

To gain a general understanding of the behavior of the
system in the time domain, we first examine a simple con-
figuration of perfectly metallic parallel plates in one dimen-
sion. The plates are separated by a distance h �in units of an
arbitrary distance a� in the x dimension, as shown by the
inset of Fig. 2. The figure plots the field response x

E�t�
+x

H�t�, in arbitrary units, to a current source J�t�=��t� for
increasing values of h, with the conductivity set at �
=10�2�c /a�.

Figure 2 shows the general trend of the field response as a
function of separation. For short times, all fields follow the
same power-law envelope, and later rapidly transition to ex-
ponential decay. Also plotted for reference is a t−3/2 curve,
demonstrating that the envelope is in fact a power law.

We can understand the power-law envelope by consider-
ing the vacuum Green’s function GE in the case h→�
�analogous conclusions hold for GH�. In the case h→�, one
can easily solve for the vacuum Green’s function GE�� ,r
−r�� in one dimension for real frequency �,

GE
„�,r − r�… =

ei��r−r��

i�
. �31�

We then analytically continue this expression to the
complex-frequency domain via Eq. �18� and compute the
Fourier transform �d�ei�tGE(����). Setting r=r� in the final
expression, one finds that, to leading order, GE�t�� t−3/2. This
explains the behavior of the envelope in Fig. 2 and the short-
time behavior of the Green’s functions: it is the field re-
sponse of vacuum.

Intuitively, the envelope decays only as a power in t be-
cause it receives contributions from a continuum of modes,
all of which are individually decaying exponentially �this is
similar to the case of the decay of correlations in a thermo-
dynamic system near a critical point �56��. For a finite cavity,
the mode spectrum is discrete—the poles in the Green’s
function of the nondissipative physical system are pushed
below the real-frequency axis in this dissipative, unphysical
system, but they remain discretely spaced.

At short times, the field response of a finite cavity will
mirror that of an infinite cavity because the fields have not
yet propagated to the cavity walls and back. As t increases,
the cavity response will transition to a discrete sum of expo-
nentially decaying modes. From Eq. �18�, higher-frequency
modes have a greater imaginary-frequency component, so at
sufficiently long times the response will decay exponentially,

the decay being determined by the lowest-frequency cavity
mode. The higher the frequency of that mode, the faster the
dissipation.

This prediction is confirmed in Fig. 2: as h decreases, the
source “sees” the walls sooner. From the standpoint of com-
putational efficiency, this method then works best when ob-
jects are in close proximity to one another �although not so
close that spatial resolution becomes an issue�, a situation of
experimental interest.

2. Convergence of the force

We now examine the force on the parallel plates. From the
above discussions of the field decay and the decay of g�t�,
we expect the time integral in Eq. �29� to eventually con-
verge exponentially as a function of time. In the interest of
quantifying this convergence, we define the time dependent
“partial force” Fi�t� as

Fi�t� � Im



�
�

0

t

dt�g�− t���i
E�t�� + i

H�t��� . �32�

Letting Fi��� denote the t→� limit of Fi�t�, which is the
actual Casimir force, we define the relative error �i�t� in the
ith component of the force as

�i�t� � �Fi�t� − Fi���
Fi���

� . �33�

We plot Fx�t� in Fig. 3 for the one-dimensional parallel-
plate structure with different values of �. The inset plots ��t�
for the same configuration. As expected, the asymptotic
value of Fx�t� is independent of �, and ��t� converges expo-
nentially to zero.

For � near zero, the force is highly oscillatory. In one
dimension this gives the most rapid convergence with time,
but it is problematic in higher dimensions. This is because, in
higher-dimensional systems, S consists of many points, each
contributing a response term as in Fig. 3. If � is small, every
one of these terms will be highly oscillatory, and the correct
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one-dimensional parallel plates as a function of time t. �Inset�: Rela-
tive error ��t� as a function of t on a semilogarithmic scale.
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force Eq. �32� will only be obtained through delicate cancel-
lations at all points on S. Small � is thus very sensitive to
numerical error.

Increasing � smoothes out the response functions, as
higher-frequency modes are damped out. However, some-
what counterintuitively, it also has the effect of slowing
down the exponential convergence. One can understand the
asymptotic behavior of the force by considering the equa-
tions of motion Eq. �17� as a function of � and �. When the
response function exhibits few if any oscillations we are in
the regime where ���. In this limit, the approximate equa-
tions of motion are


� 	
1

��r�
� 	 − i����r��G j��;r,r�� = ��r − r��ê j .

�34�

In the limit of Eq. �34�, the eigenfrequency � of a given
spatial mode scales proportional to −i /�. The lowest-
frequency mode therefore has a time-dependence �e−Ct/�,
for some constant C�0. Since the decay of the force at long
times is determined by this mode, we expect the decay time
to scale inversely with � in the limit of very high �. This is
suggested in Fig. 3 and confirmed by further numerical ex-
periments.

Additionally, from Eq. �34� we see that in the case of a
homogeneous one-dimensional cavity, the solutions have a
quadratic dispersion �� ik2, for spatial dependence eikx, and
so the lowest cavity frequency scales as the inverse square of
the cavity size. This means that the rate of exponential con-
vergence of Fig. 2 should vary as �h−2 in the limit of very
large �. This scaling is approximately apparent from Fig. 2,
and further experiments for much larger � confirm the scal-
ing. We thus see that in this limit, the effect of increasing �
by some factor is analogous to increasing the wall spacing of
the cavity by the square root of that factor.

The present analysis shows that there are two undesirable
extremes. When � is small, rapid oscillations in Fi�t� will
lead to large numerical errors in more than one dimension.
When � is large, the resulting frequency shift will cause the
cavity mode to decay more slowly, resulting in a longer run
time. The optimal � lies somewhere in between these two
extremes and will generally depend on the system being
studied. For the systems considered in this paper, with a
typical scale �a, ��1 �2�c /a� appears to be a good value
for efficient and stable time-domain computation.

IV. CONCLUDING REMARKS

An algorithm to compute Casimir forces in FDTD has
several practical advantages. FDTD algorithms that solve
Maxwell’s equations with frequency-independent conductiv-
ity, and even more complicated dispersions, are plentiful and
well-studied. They are stable, convergent, and easily paral-
lelized. Although the current formulation of our method re-
quires the evaluation of Gij�r� along a surface S, requiring a
separate calculation of the fields for each dipole source in S,
all of these sources can be simulated in parallel, with no
communication between different simulations until the very

end of the computation. In addition, many FDTD solvers will
allow the computational cell for each source to be parallel-
ized, providing a powerful method capable of performing
large computations.

The calculations of this paper employed nondispersive
materials in the original ��� system. However, the theoretical
analysis applies equally well to materials of arbitrary disper-
sion. Any materials that can be implemented in an FDTD
solver �e.g., a sum of Lorentzian dielectric resonances �48��
can also be included, and existing algorithms have demon-
strated the ability to model real materials �48,57�. Existing
FDTD implementations also handle anisotropy in � and �,
multiple types of boundary conditions, and other complica-
tions �48�.

In principle, the computational scaling of this FDTD
method is comparable to finite-difference frequency-domain
�FDFD� methods �30�. In both cases, each solver step �either
a time step for FDTD or an iterative-solver step for FDFD�
requires O�N� work for N grid points. The number of time
steps required by an FDTD method is proportional to the
diameter of the computational cell, or N1/d in d dimensions.
With an ideal multigrid solver, FDFD can in principle be
solved by O�1� solver steps, but a simpler solver like conju-
gate gradient requires a number of steps proportional to the
diameter as well �30�. In both cases, the number of points to
be solver on the surface S is O�N1−1/d�. Hence, the overall
complexity of the simplest implementations �not multigrid�
is O�N2�. We believe that future boundary-element methods
�30,37� will achieve better efficiency, but such methods re-
quire considerable effort to implement and their implemen-
tation is specific to the homogeneous-medium Green’s func-
tion, which depends on the boundary conditions,
dimensionality, and types of materials considered �58�.

A planned subsequent article �52�, will illustrate the
method in various nontrivial two- and three-dimensional ge-
ometries, including dispersive dielectrics. In addition, we
present an optimization of our method �based on a rapidly
converging series expansion of the fields� that greatly speeds
up the spatial integral of the stress tensor. We also compute
forces in three-dimensional geometries with cylindrical sym-
metry, which allows us to take advantage of the cylindrical
coordinates support in existing FDTD software �51� and em-
ploy a two-dimensional computational cell.
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APPENDIX

1. Temporal discretization

FDTD algorithms approximate both time and space by a
discrete uniform mesh. Bearing aside the standard analysis of
stability and convergence �48�, this discretization will
slightly modify the analysis in the preceding sections. In par-
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ticular, the use of a finite temporal grid �resolution �t� im-
plies that all continuous time derivatives are now replaced by
a finite-difference relation, which is in the case of Maxwells
equations is commonly taken to be a forward difference

� f

�t
�

f i�r,t + �t� − f i�r,t�
�t

� �t
�d�f , �A1�

where f�t� is an arbitrary function of time. The effect of
temporal discretization is therefore to replace the linear op-
erator � /�t with �t

�d�. The representation of this operator is
simple to compute in the frequency domain. Letting �t

�d� act
on a Fourier component of f�t� yields

�t
�d�e−i�t = − i�de−i�t, �A2�

where

�d��� �
2

�t
sin ��t

2
�e−i

��t
2 �A3�

The effect of discretization on the system is thus to re-
place i� by i�d in the derivatives, which corresponds to nu-
merical dispersion arising from the ultraviolet �Nyquist� fre-
quency cutoff � /�t. This not only affects the solutions to
Eqs. �15� and �16�, but also the complex-frequency mapping
of Eq. �18�: the mapping �→����=��1+ i� /� becomes �
→�d���=�d

�1+ i� /�d. Note that � is still the frequency pa-
rameter governing the time dependence of the Fourier com-
ponents of f�t� and �d→� in the limit of infinite resolution
��t→0�. In this limit, our original mapping is restored and
FDTD yields the correct temporal evolution of the fields. In
practice, accurate convergence is achieved for reasonable
resolutions, because Casimir forces are dominated by fre-
quency contributions much smaller than the Nyquist fre-
quency. The dominant frequency contributions to the Casimir
force are bounded from above by a frequency �1 /�, where �
is determined by a typical lengthscale, e.g., body sizes and
separations.

Because FDTD is convergent ��d=�+O��t2��, most of the
analysis can be performed �as in this paper� in the �t→0
limit. However, care must be taken in computing g�t� be-
cause the Fourier transform of g���, Eq. �27�, does not exist
as �t→0. We must compute it in the finite �t regime. In
particular, the finite resolution requires, via Eq. �37�, that we
replace g��� in Eq. �27� by

gd��� �
�d

2

i�dJ���
d�

d�
. �A4�

Note that the Jacobian factor d� /d� involves � and �, not
�d���=�d

�1+ i� /�d and �d, although of course the latter con-
verge to the former as �t→0. The basic principle is that one
must be careful to use the discrete analogs to continuous
solutions in cases where there is a divergence or regulariza-
tion needed. This is the case for g���, but not for the Jaco-
bian.

Similarly, if one wished to subtract the vacuum Green’s
function from the Green’s function, one needs to subtract the
vacuum Green’s function as computed in the discretized
vacuum. Such a subtraction is unnecessary if the stress tensor
is integrated over a closed surface �vacuum contributions are

constants that integrate to zero�, but is useful in cases such as
the parallel plates considered here. By subtracting the �dis-
cretized� vacuum Green’s function, one can evaluate the
stress tensor only for a single point between the plates, rather
than for a “closed surface” with another point on the other
side of the plates �2�.

As was noted before Eq. �30�, the Nyquist frequency
� /�t regularizes the frequency integrations, similar to other
ultraviolet regularization schemes employed in Casimir-force
calculations �59,60�. Because the total frequency integrand in
Eq. �1� goes to zero for large � �due to cancellations occur-
ring in the spatial integration and also due to the dissipation
introduced in our approach�, the precise nature of this regu-
larization is irrelevant as long as �t is sufficiently small �i.e.,
at high enough resolution�.

2. Magnetic correlation function

One way to compute the magnetic correlation function is
by taking spatial derivatives of the electric Green’s function
by Eq. �8�, but this is inefficient because a numerical deriva-
tive involves evaluating the electric Green’s function at mul-
tiple points. Instead, we compute the magnetic Green’s func-
tion directly, finding the magnetic field in response to a
magnetic current. This formulation, however, necessitates a
change in the choice of vector potentials �Eqs. �3� and �4�� as
well as a switch from electric to magnetic conductivity, for
reasons explained in this section.

Equations �3� and �4� express the magnetic field B as the
curl of the vector potential AE, enforcing the constraint that
B is divergence free �no magnetic charge�. However, this is
no longer true when there is a magnetic current, as can be
seen by taking the divergence of both sides of Faraday’s law
with a magnetic current J, �B /�t=−�	E−J, since � ·J
�0 for a point-dipole current J. Instead, because there need
not be any free electric charge in the absence of an electric
current source, one can switch to a new vector potential AH

such that

�Ei�r,�� = ��	�ijAj
H�r,�� , �A5�

Hi�r,�� = − i�Ai
H�r,�� . �A6�

The desired correlation function is then given, analogous to
Eq. �7�, by

�Hi�r,��Hj�r�,��� =



�
�2 Im Gij

H��;r,r�� , �A7�

where the photon magnetic Green’s function GH solves
�similar to Eq. �6��


� 	
1

��r,��
� 	 − �2��r,���G j

H��;r,r�� = ��r − r��ê j .

�A8�

Now, all that remains is to map Eq. �A8� onto an equivalent
real-frequency ��� system that can be evaluated in the time
domain, similar to Sec. II C, for ���� given by Eq. �18�.
There are at least two ways to accomplish this. One possi-
bility, which we have adopted in this paper, is to define an
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effective magnetic permeability �c=��2��� /�2, correspond-
ing to a magnetic conductivity, similar to Eq. �13�. Combined
with Eq. �18�, this directly yields a magnetic conductivity as
in Eq. �20�.

A second possibility is to divide both sides of Eq. �A8� by
�2 /�2=1+ i� /�, and absorb the 1+ i� /� factor into � via Eq.
�13�. That is, one can compute the magnetic correlation func-
tion via the magnetic field in response to a magnetic current
with an electric conductivity. However, the magnetic current
in this case has a frequency response that is divided by 1
+ i� /�, which is simply a rescaling of J��� in Eq. �22�. There
is no particular computational advantage to this alternative,
but for an experimental realization �50�, an electric conduc-
tivity is considerably more attractive. �Note that rescaling
J��� by 1+ i� /� will yield a new g��� in Eq. �27�, corre-
sponding to a new g�t� that exhibits slower decay.�

3. Material dispersion

In this section, we extend the time-domain formalism pre-
sented above to cases where the dielectric permittivity of the
medium of interest is dispersive. To begin with, note that in
this case the dissipative, complex dielectric �c of Eq. �43� is
given by

�c�r,�� =
�2���

�2 �„r,����… , �A9�

where �(r ,����) denotes the permittivity of the geometry of
interest evaluated over the complex contour ����.

This complex dielectric manifests itself as a convolution
in the time-domain equations of motion, i.e., in general,
D�t�=�dt��c�t− t��E�t��. The standard way to implement this
in FDTD is to employ an auxiliary equation of motion for the
polarization �57�. For the particular contour chosen in this
paper �Eq. �18��, the conductivity term already includes the
prefactor �2 /�2 and therefore one need only add the disper-
sion due to �(r ,����).

The only other modification to the method comes from
the dependence of E��� in Eq. �25� on �. We remind the
reader that our definition of  was motivated by our desire to
interpret Eq. �24� as the Fourier transform of the convolution
of two quantities, and thus to express the Casimir force di-
rectly in terms of the electric and magnetic fields E�t� and
H�t�, respectively. A straightforward generalization of Eq.
�25� to dispersive media entails setting ��r�→��r ,��. How-
ever, in this case, the Fourier transform of Eq. �25� would be
given by a convolution of E��� and �(r�S ,����) in the time
domain, making it impossible to obtain E�t� directly in
terms of E�t�. This is not a problem however, because the
stress tensor must be evaluated over a surface S that lies
entirely within a uniform medium �otherwise, S would cross
a boundary and interpreting the result as a force on particular
objects inside S would be problematic�. The dielectric ap-
pearing in Eq. �25� is then at most a function of ����, i.e.,
��r�S ,��=����, which implies that we can simply absorb
this factor into g���, modifying the numerical integral of Eq.
�30�. Furthermore, the most common case considered in
Casimir-force calculations is one in which the stress tensor is
evaluated in vacuum, i.e., ��r�S ,��=1, and thus dispersion
does not modify g��� at all.

4. Overview of the algorithm

In what follows, we summarize the time-domain Casimir
method presented above, which leads to the following nu-
merical algorithm to compute the Casimir force on an object:

�1� Pick a contour ���� over which to integrate the Ca-
simir force. �For the class of contours considered here, Eq.
�18�, this corresponds to choosing a value for �.�

�2� Pick a surface of integration S around the body of
interest, depicted by the black contour in Fig. 4.

�3� Compute g�n�t�, given by Eq. �30�, by numerically
integrating gd���, given by Eq. �38�. Note that the particular
form of gd��� will depend on ����, the temporal discretiza-
tion �t, the dielectric response at the surface of integration
��r�S ,��=����, and the particular choice of current
source—here, we only consider temporal delta-function cur-
rent sources, i.e., J���=1. �Note that this step of the algo-
rithm does not depend on geometry or the solution of the
field equations. Thus, one can compute g�n�t� with very
high accuracy and also store it for future use.�

�4� For every grid point r�S on the discretized surface S,
and for each polarization êj:

�a� Time-evolve Eqs. �15� and �16� and Eqs. �20� and �21�
in response to a dipole current source J�r ,n�t�=J�n�t�êj,
where J�n�t�=�n,0 /�t is the discretized version of a delta
function.

�b� Obtain the electric Ei,j =Ei�r ,n�t� and magnetic Hi,j
=Hi�r ,n�t� fields at position r, and at each time step n�t.

�c� Terminate the simulation once the fields have decayed
beyond a desired error threshold �a time T=N�t determined
by �, as discussed in Sec. III A 2�.

�5� Integrate Ei,j and Hi,j over the contour S to obtain
i

E�n�t� and i
H�n�t�, as in Eqs. �25� and �26�. �Note that the

spatial integral over the contour S is in fact a summation.�
�6� The force in the ith direction is given by a discretized

form of Eq. �29�,

Fi = Im



�
	
n=0

N

g�n�t��i
E�n�t� + i

H�n�t�� . �A10�

5. Spatial discretization

The FDTD algorithm involves a discretization of both
space and time. The former leads to some subtleties in the

(t) j= δJ(r S,t) e

S
dA

FIG. 4. Schematic of a possible contour around a body; the
force on the body as computed by Eq. �44� involves an integral of
the fields over the contour S.
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implementation of the above algorithm because the standard
spatial discretization of FDTD is a Yee lattice in which dif-
ferent field components are discretized at different point in
space �48�. For example, the grid for Ex is offset by half a
pixel from the grids for Ey and Hz. This “staggered” grid is
important to obtain second-order accuracy in discretizing the
spatial derivatives, and also leads to other important proper-
ties of the algorithm �48�. However, it complicates the com-
putation of the Casimir force because evaluating the stress
tensor requires all components of the electric and magnetic
fields to be evaluated at the same point.

The standard solution, which we use �51� and is also com-
monly implemented in FDTD software, is to simply linearly
interpolate the different field components to the same point
by averaging fields at adjacent grid points. As long as one
interpolates to a point that is centered with respect to the
different grids, such as the center of a pixel/voxel, this inter-
polation is second-order accurate. Accurate centered interpo-
lation is especially important for Casimir forces because the
net force involves delicate cancellations.

When a discontinuous boundary between two materials is
discretized, the standard FDTD method becomes only first-
order accurate, although there are schemes to restore second-
order accuracy for both dielectric �51,61� and perfect-
conductor �48,62� interfaces. There is an additional difficulty
for Casimir calculations, however, because they involve a
singular Green’s function. The Green’s function itself is al-
ways singular since we are evaluating the source and field at
the same point, but ordinarily this singularity is subtracted
out �for analytical regularizations� or in any case integrates
to zero contribution to the net force �30�. Near an interface,
however, there is an additional singularity due to reflection,
which can be thought of as the singularity in the Green’s
function of an image source on the other side of an interface
�63�. Analytically, this additional term is not problematic
since the stress-tensor integral must yield the same result

independent of the integration surface S, even if S is very
close to a material interface. Numerically, on the other hand,
we have observed that the additional singularity in the
Green’s function exacerbates the spatial discretization
error—the solution still converges at the same rate, O��x� or
O��x2� depending on which interface-discretization scheme
is used, but the constant factor becomes larger as S ap-
proaches an interface. We dealt with this problem in two
ways: first, we typically choose S to be midway between
interfaces in order to maximize the distance from the inter-
faces. Second, we implemented the subtraction scheme de-
scribed in Ref. �30�, subtracting the stress integral for a sec-
ond computation involving an isolated object for which the
net force is theoretically zero, and we again observe that this
greatly improves the constant coefficient in the convergence
rate.

Finally, we should mention one pitfall to avoid in imple-
menting the magnetic Green’s function. Two approaches to
computing the magnetic Green’s function were described in
Sec. IVB, but there is also a third approach. Since Maxwell’s
equations are equivalent under interchange of E and H and �
and �, one could compute the magnetic Green’s function by
simply recomputing the electric Green’s function with � and
� swapped �exchanging any perfect electric conductors for
perfect magnetic conductors�. However, because � and � are
discretized slightly differently in a Yee-scheme FDTD imple-
mentation �due to the different grids of E and H�, this ap-
proach can lead to subtle errors because it could change the
volume of the objects being discretized. Even though the
change in volume is of O��x�, the contribution from this
change in volume need not converge to zero as �x→0 be-
cause of the formally infinite energy density in the vacuum
energy �due to the singularity of the Green’s function�.
Therefore, we recommend computing the magnetic Green’s
function via the response to a magnetic current as described
earlier.

�1� H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 �1948�.
�2� E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics: Part 2

�Pergamon, Oxford, 1980�.
�3� P. W. Milonni, The Quantum Vacuum: An Introduction to

Quantum Electrodynamics �Academic Press, San Diego,
1993�.

�4� T. H. Boyer, Phys. Rev. A 9, 2078 �1974�.
�5� S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 �1997�.
�6� U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 4549 �1998�.
�7� F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M.

Mostepanenko, Phys. Rev. Lett. 88, 101801 �2002�.
�8� H. B. Chan, V. A. Aksyuk, R. N. Kleinman, D. J. Bishop, and

F. Capasso, Science 291, 1941 �2001�.
�9� D. Iannuzzi, M. Lisanti, and F. Capasso, Proc. Natl. Acad. Sci.

U.S.A. 101, 4019 �2004�.
�10� D. Iannuzzi, M. Lisanti, J. Munday, and F. Capasso, Solid

State Commun. 135, 618 �2005�.
�11� P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Europhys.

Lett. 69, 924 �2005�.

�12� M. Brown-Hayes, D. A. R. Dalvit, F. D. Mazzitelli, W. J. Kim,
and R. Onofrio, Phys. Rev. A 72, 052102 �2005�.

�13� M. Bordag, Phys. Rev. D 73, 125018 �2006�.
�14� R. Onofrio, New J. Phys. 8, 237 �2006�.
�15� T. Emig, Phys. Rev. Lett. 98, 160801 �2007�.
�16� J. N. Munday and F. Capasso, Phys. Rev. A 75, 060102�R�

�2007�.
�17� M. Miri and R. Golestanian, Appl. Phys. Lett. 92, 113103

�2008�.
�18� C. Genet, A. Lambrecht, and S. Reynaud, Eur. Phys. J. Spec.

Top. 160, 183 �2008�.
�19� J. Munday, F. Capasso, and V. A. Parsegia, Nature �London�

457, 170 �2009�.
�20� G. L. Klimchitskaya, U. Mohideen, and V. M. Mostapanenko,

e-print arXiv:0902.4022v1 Rev. Mod. Phys. �to be published�.
�21� B. Dobrich, M. DeKieviet, and H. Gies, Phys. Rev. D 78,

125022 �2008�.
�22� M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys.

Rep. 353, 1 �2001�.

RODRIGUEZ et al. PHYSICAL REVIEW A 80, 012115 �2009�

012115-10



�23� K. A. Milton, J. Phys. A 37, R209 �2004�.
�24� S. K. Lamoreaux, Rep. Prog. Phys. 68, 201 �2005�.
�25� F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, IEEE

J. Sel. Top. Quantum Electron. 13, 400 �2007�.
�26� H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W. M.

Mansfield, and C. S. Pai, Phys. Rev. Lett. 101, 030401 �2008�.
�27� T. Emig, A. Hanke, R. Golestanian, and M. Kardar, Phys. Rev.

Lett. 87, 260402 �2001�.
�28� H. Gies, K. Langfeld, and L. Moyaerts, J. High Energy Phys.

2003, 018.
�29� H. Gies and K. Klingmuller, Phys. Rev. D 74, 045002 �2006�.
�30� A. Rodriguez, M. Ibanescu, D. Iannuzzi, J. D. Joannopoulos,

and S. G. Johnson, Phys. Rev. A 76, 032106 �2007�.
�31� S. J. Rahi, T. Emig, R. L. Jaffe, and M. Kardar, Phys. Rev. A

78, 012104 �2008�.
�32� S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G.

Johnson, and M. Kardar, Phys. Rev. A 77, 030101�R� �2008�.
�33� T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev.

Lett. 99, 170403 �2007�.
�34� D. A. R. Dalvit, Paulo A. Maia Neto, A. Lambrecht, and S.

Reynaud, Phys. Rev. Lett. 100, 040405 �2008�.
�35� O. Kenneth and I. Klich, Phys. Rev. B 78, 014103 �2008�.
�36� S. Reynaud, P. A. Maia Neto, and A. Lambrecht, J. Phys. A:

Math. Theor. 41, 164004 �2008�.
�37� H. T. M. Reid, A. W. Rodriguez, J. White, and S. G. Johnson,

e-print arXiv:0904.0741v1, Phys. Rev. Lett. �unpublished�.
�38� S. Pasquali and A. C. Maggs, Phys. Rev. A 79, 020102�R�

�2009�.
�39� M. Antezza, L. P. Pitaevski�, S. Stringari, and V. B. Svetovoy,

Phys. Rev. Lett. 97, 223203 �2006�.
�40� A. Rodriguez, M. Ibanescu, D. Iannuzzi, F. Capasso, J. D.

Joannopoulos, and S. G. Johnson, Phys. Rev. Lett. 99, 080401
�2007�.

�41� S. Zaheer, A. W. Rodriguez, S. G. Johnson, and R. L. Jaffe,
Phys. Rev. A 76, 063816 �2007�.

�42� A. W. Rodriguez, J. N. Munday, J. D. Joannopoulos, F. Ca-
passo, D. A. R. Dalvit, and S. G. Johnson, Phys. Rev. Lett.
101, 190404 �2008�.

�43� K. A. Milton, P. Parashar, and J. Wagner, Phys. Rev. Lett. 101,
160402 �2008�.

�44� T. Emig, A. Hanke, R. Golestanian, and M. Kardar, Phys. Rev.
A 67, 022114 �2003�.

�45� M. P. Hertzberg, R. L. Jaffe, M. Kardar, and A. Scardicchio,
Phys. Rev. Lett. 95, 250402 �2005�.

�46� R. B. Rodrigues, Paulo A. Maia Neto, A. Lambrecht, and S.
Reynaud, Phys. Rev. Lett. 96, 100402 �2006�.

�47� D. A. R. Dalvit, F. C. Lombardo, F. D. Mazzitelli, and R.
Onofrio, Phys. Rev. A 74, 020101�R� �2006�.

�48� A. Taflove and S. C. Hagness, Computational Electrodynam-
ics: The Finite-Difference Time-Domain Method �Artech, Nor-
wood, MA, 2000�.

�49� F. S. S. Rosa, D. A. R. Dalvit, and P. W. Milonni, Phys. Rev. A
78, 032117 �2008�.

�50� A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S.
G. Johnson, �unpublished�.

�51� A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Ber-
mel, J. Burr, J. D. Joannopoulos, and S. G. Johnson, Opt. Lett.
31, 2972 �2006�.

�52� A. P. McCauley, A. W. Rodriguez, J. D. Joannopoulos, and S.
G. Johnson, e-print, arXiv:090.0267 �unpublished�.

�53� R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J.
Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der
Vorst, Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd ed. �SIAM, Philadelphia,
1994�.

�54� L. N. Trefethen and D. Bau, Numerical Linear Algebra, 1st ed.
�SIAM, Philadelphia, 1997�.

�55� R. Piessens, E. de Doncker-Kapenga, C. Uberhuber, and D.
Hahaner, QUADPACK: A Subroutine Package for Automatic
Integration �Springer-Verlag, Berlin, 1983�.

�56� N. Goldenfeld, Lectures on Phase Transitions and the Renor-
malization Group �Perseus Books, Reading, MA, 1992�.

�57� J. L. Young and R. O. Nelson, IEEE Antennas Propag. Mag.
43, 61 �2001�.

�58� S. M. Rao and N. Balakrishnan, Curr. Sci. 77, 1343 �1999�.
�59� E. M. Lifshitz, Sov. Phys. JETP 2, 73 �1956�.
�60� F. D. Mazzitelli, D. A. Dalvit, and F. C. Lobardo, New J. Phys.

8, 240 �2006�.
�61� A. Ditkowski, K. Dridi, and J. S. Hesthaven, J. Comput. Phys.

170, 39 �2001�.
�62� I. A. Zagorodnov, R. Schuhmann, and T. Weiland, Int. J. Nu-

mer. Model 16, 127 �2003�.
�63� J. D. Jackson, Classical Electrodynamics, 3rd ed. �Wiley, New

York, 1998�.

CASIMIR FORCES IN THE TIME DOMAIN: THEORY PHYSICAL REVIEW A 80, 012115 �2009�

012115-11


