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Abstract. Integrated photonics, where optical components are fabricated on a chip-scale platform leveraging 

standard microfabrication technologies, has transformed telecommunications and data communications, 

quantum optics, and molecular sensing. Optical spectrometry is yet another field that integrated photonics 

is poised to revolutionize. Unlike traditional bulky, costly benchtop spectrometers, integrated photonics 

promises miniaturized, rugged, and low-cost spectrometer-on-a-chip modules with broad application 

prospects ranging from communications to medical imaging. In this review, we survey the various designs 

of integrated photonic spectrometers through the lens of their underlying operating principles, aiming to 

reveal quantitative performance scaling laws that transcend specific implementations. This approach 

enables a general, physically grounded comparison of spectrometer capabilities without being bogged 

down by device-level details. We further provide guidance on selecting appropriate spectrometer 

architectures for different applications, taking into account not only their reported advantages but also the 

practical limitations and implementation challenges.
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1 Introduction

Optical spectrum analysis is the cornerstone of spectroscopic 

sensing, optical network performance monitoring, hyperspectral 

imaging, astronomical spectroscopy, and spectral domain opti-
cal coherence tomography (SD-OCT). Such analysis tradition-
ally involves bulky and costly benchtop instruments only found 

in dedicated laboratories. Emerging market opportunities rang-
ing from point-of-care diagnostics to sensor network deploy-
ment are now increasingly demanding spectrometers with 

reduced size, weight, power, and cost (SWaP-C) metrics. 

[1�4] 

Photonic integrated circuits (PICs), 

[5�9] the optical analog of 

electronic integrated circuits, offer a promising route towards 

miniaturized spectrometers. Compared to conventional spec-
trometers based on bulk optics, PIC technologies promise sev-
eral critical performance advantages in addition to their apparent 

SWaP-C benefits. Photonic integration defines devices on-chip 

with lithographic precision, thereby largely obviating the need 

for stringent alignment between discrete optical elements and 

dramatically boosting the ruggedness of spectrometer modules. 

The advent of ultralow-loss optical waveguides 

[10] allows long 

optical paths to be folded onto a small chip, enabling spectrom-
eters with exceptional spectral resolution. PICs also provide ac-
cess to ultra-compact, high-speed optical switches to route light 

between different paths through thermo-optic (TO), electro-
optic (EO), or micro-electromechanical systems (MEMS), an 

essential feature for time-domain modulated spectrometers. 

[11]

Finally, PICs facilitate interfacing with other chip-scale 

micro-modules such as electronics for signal processing and mi-
crofluidics for analyte handling, potentially leading to full 

system-in-a-package solutions. 

In this review, we aim to provide a comprehensive survey of 

the state-of-the-art in PIC-based spectrometers. The review is 

organized as follows. We will start with describing a generic 

model of optical spectrometers, followed by an overview of 

the spectrum reconstruction methods. Next, we will proceed 

to review different variants of PIC-based spectrometer designs 

and assess their relative merits. Given the focus on PIC technol-
ogies, we limit the scope of this review to waveguide-based 

spectrometers, and we direct interested readers to other reviews 

that cover non-PIC spectrometers (which may still leverage 

chip-scale microsystem technologies). 

[12�17] Beachhead markets 

where PIC-based spectrometers are likely to make a disruptive 

impact are then evaluated.

2 Generic Model of Optical Spectrometers

In its generic incarnation, a spectrometer is a linear optical de-
vice involving a set of photodetectors, each with distinct spectral 

responses (Fig. 1). The different spectral responses are custom-
arily defined by optical filters concatenated with the detectors. 

The photodetectors can be a spatial array of detector pixels, or a 

single-pixel detector integrated with a time-varying filter, effec-
tively creating a time-domain sequence of the detector set (or

Fig. 1 Generic model and inverse problem for an optical spectrometer comprising a set of photo-

detectors coupled to optical filters. To numerically describe the spectrometer, the input spectrum is 

approximated by intensities s j at a set of discrete wavelengths λ j . The photodetectors collect sig-

nals y i , which are used to reconstruct the input spectrum.
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some combination of the two configurations). This distinction 

defines two major classes of optical spectrometers: classical dis-
persive spectrometers based on prisms or gratings are examples 

of the former configuration, whereas Fourier-transform infrared 

(FTIR) spectrometers epitomize the latter time-domain modu-
lated design. 

[11]

The wavelength-dependent optical transmittance for each of 

the detectors is denoted by T i 

� λ � , where λ is the wavelength and 

i denotes the detector number in either the spatial- or time-do-
main. The index i takes a value between 1 and the number of 

measurements M. The signal intensity on the ith detector is 

therefore

I i 

� 

Z 

R i 

� λ � T i 

� λ � S � λ � dλ � η i 

; (1)

where R i 

� λ � denotes the responsivity of the photodetector, S � λ � 

gives the input spectrum or more specifically the power spectral 

density of the input signal received through the spectrometer�s 

input aperture, and η i 

is the noise at the ith detector.
In order to reconstruct the input spectrum, it is customary to 

discretize over a discrete set of wavelength points λ j 

, with
1 ≤ j ≤ N, where N is the spectral channel count. Equation (1) 

can then be approximated as a weighted sum at these discrete 

wavelength points λ j 

(a quadrature rule 

[18�20] ):

I i 

� 

X 

j

w j 

R i 

� λ j 

� T i 

� λ j 

� S � λ j 

� � η i 

⇔ y � Gs � η; (2)

where on the right, we have expressed the weighted sum in a 

matrix form: y is the column vector with I i 

as its elements, 

the elements of column vector η represent the noise at each de-
tector, the column vector s has length N and contains the power 

spectral density at each wavelength λ j 

, and G is a matrix with 

entries G ij 

� w j 

R i 

� λ j 

� T i 

� λ j 

� (analogous to the �point spread 

function (PSF) matrix� in imaging). The simplest quadrature 

rule is a Riemann sum, with equally spaced λ j 

� λ 0 

� jδλ 

and equal weights w j 

� δλ. 

[21,22]

Discretizing the integral into a finite number of points λ j 

is 

closely related to discretizing the unknown spectrum S � λ � into 

a finite vector s of discrete S � λ j 

� samples. Given these samples 

S � λ j 

� , one must then interpolate them somehow to obtain S � λ � . In 

fact, the choice of quadrature scheme usually implicitly 

defines a corresponding interpolation: Riemann sums correspond 

to piecewise constant interpolation, a trapezoidal rule 

[18�20] 

corresponds to piecewise linear interpolation, and more sophis-
ticated schemes like Gaussian quadrature or Clenshaw�Curtis 

quadrature 

[19,20] correspond to higher-order polynomial interpo-
lants (from carefully chosen, unequally spaced points λ j 

). 

Alternatively, one could explicitly expand S � λ � ≈ 

P 

l 

b l 

� λ � x l 

in some finite set of basis functions b l 

(e.g., polynomials and 

radial basis functions 

[23] such as Gaussians 

[24�26] ) and unknown 

coefficients x l 

. The matrix equation and the spectrum vector 

in Eq. (2) can be expressed in terms of this basis:

y ≈ Ax � η; A � GB; s ≈ Bx; (3)

with B a matrix with elements B jl 

� b l 

� λ j 

� and x a column vec-
tor of length L composed of x l 

.
Even more generally, S � λ � could be expressed as a nonlinear 

function of unknown coefficients, such as some type of neural 

network 

[27�33] 

�this complicates the reconstruction problem by

making it nonlinear and nonconvex, so we focus on linear mod-
els Ax in this review.

Setting B to an identity matrix yields x � s and makes the 

matrix equation for y in Eq. (3) identical to that in Eq. (2). This 

is, for example, the case for classical dispersive spectrometers, 

where there is a one-to-one correspondence between wave-
length and detector pixel and thus the matrices A and G are 

square. For classical dispersive spectrometers with low cross-
talk, A and G can be well approximated as diagonal matrices 

whose diagonal elements are determined by the wavelength-
dependent insertion loss and detector responsivity.

In the case of a square matrix A, x may be inferred straight-
forwardly by inverting A. When the matrix A is not square, e.g., 

because the number of detector pixels M is not equal to the num-
ber of wavelength points N (and B∉R 

N×M ), Eq. (3) is either 

over- or underdetermined and the inverse reconstruction task be-
comes a problem of linear algebra and optimization. In the fol-
lowing section, we will treat this optimization problem in more 

detail before moving on to discuss the performance metrics of 

spectrometers.

3 Spectrum Reconstruction

Previously, we noted that A becomes a square matrix when the 

spectrum coefficient vector x and the measurement vector y 

have the same number of elements. In this case, x could be esti-
mated as � x � A 

−1 y. There are two complications. First, the pres-
ence of noise means that one must be concerned with the 

�conditioning� of the matrix A: 

[34] if A is close to singular 

(�ill-conditioned�), then the solution can be very sensitive to 

noise. For an ill-conditioned A, different spectra x can yield 

nearly the same measurements y and will be impossible to dis-
tinguish once noise is added. This issue is addressed by (1) de-
signing the optics to yield a well-conditioned A (different input 

spectral components should form very different intensity pat-
terns on the detector array) or related figures of merit for the 

inference error, through, e.g., inverse design 

[35] or �end-
to-end� optics/inference co-design; 

[36�43] and/or (2) adding reg-
ularizations based on prior knowledge. 

[44�52] The second compli-
cation is that, in practice, A will often be non-square: it is either 

overdetermined (more measurements than unknowns) or under-
determined (more unknowns than measurements, which also re-
quires additional prior knowledge). We discuss the over/ 

underdetermined situations in more detail below.

3.1 Overdetermined Reconstruction

A straightforward approach to overdetermined reconstruction 

solves the least squares 

[53,54] to find the coefficients: 

[55�59]

� x � arg min kAx − yk22 

: (4)

If the basis functions are nonnegative, one may also wish to im-
pose the constraint x≽0 (i.e., all elements of x are nonnegative) 

in order to ensure that the reconstructed spectrum is nonnegative 

at all frequencies. In many cases, however, we have found that 

this additional constraint seems to be unnecessary to obtain a 

nonnegative spectrum, and we omit it below. Least-squares 

problems, with or without nonnegativity constraints (and other 

variations such as weighting for unequal or correlated noise be-
tween different sensors), are convex quadratic optimization 

problems that can be solved by many well-known efficient 

algorithms. 

[54,60�62]
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To mitigate vulnerability to noise, one may trade off model 

error kAx − yk 2 

for denoising. A common practice is Tikhonov 

regularization (also known as ridge regression):

� x � arg min 

x
kAx − yk22 � αkxk22 

; (5)

where α ≥ 0 is a regularization coefficient 

[44�46] and the term
αkxk 

2
2 penalizes the magnitude of the reconstructed spectrum.

More generally, the regularization term can be written as
αkΦxk 

2
2 

, with Φ being a matrix chosen according to prior
knowledge of the spectrum and the features that should be sup-
pressed or enhanced. Two or more regularization terms may be 

used simultaneously, 

[63] including terms with other norms such 

as the L 1 

norm discussed below [Ref. [57] used L1 regulariza-
tion, similar to Ref. [50] (private communications with Hui Cao, 

2024)]. Ideally, Eq. (5) requires the noise η on each detector to 

be identical and uncorrelated. If the requirement is not satisfied, 

Eq. (5) may still be applicable, while a corrected version of 

Eq. (5) may be available given sufficient knowledge about the 

noise. 

[64] A regularization trade-off very similar to Tikhonov is 

achieved by a truncated singular value decomposition (discard-
ing singular values of A below some threshold), 

[58,65] which is 

related to principal component regression. 

[66]

3.2 Underdetermined Reconstruction

In an underdetermined inverse problem (reconstructing more 

unknowns x than measurements y), infinitely many solutions 

exist. Although one may still use Tikhonov regularization 

for reconstruction and denoising, prior knowledge about the 

measured spectrum is generally needed for meaningful 

reconstruction.
As a simple example, if we assume that the spectrum consists 

only of a few bright peaks/lines in a dark background, or per-
haps comprises a few spectral patterns out of a large set of pos-
sibilities, so that the solution � x is �sparse� (mostly zero) in an 

appropriate basis, the well-known techniques of �compressed 

sensing� can be applied. 

[47�52] The most common such technique 

is least squares with L 1 

regularization (also called LASSO, for 

�least absolute shrinkage and selection�): 

[67,68]

� x � arg min 

x
kAx − yk22 � αkxk 1 

; (6)

where kxk 1 

� 

P 

j 

jx j 

j penalizes non-sparse solutions with pen-
alty strength α ≥ 0. There are many variations on this idea; e.g., if 

one also adds a Tikhonov (L 2 

) regularization, it is called an 

�ElasticNet�. 

[68] A key point is that all of these variants are still 

convex problems with many efficient solution algorithms. 

[60,62] 

Hyperparameters are sometimes determined with the help of val-
idation against additional data not used for training/fitting. 

[69�71] 

Recall from Eq. (3) that x contains the expansion coefficients 

of the spectrum S � λ � in a basis described by B (also called a 

dictionary in compressed sensing). Unlike the overdetermined 

case, the basis here may be overcomplete (i.e., B�s columns 

may be linearly dependent). 

[72] The sparseness of x relies on 

the choice of B. If prior knowledge about an appropriate B is 

unavailable or insufficient, the optimization can include the ba-
sis B itself in the optimization parameters, as in �dictionary 

learning�. 

[72,73]

Other machine-learning methods have also been used, espe-
cially in the related problem of imaging, 

[74�76] in which neural

networks provide nonlinear regularization and reconstruction. 

These techniques have the advantage that they can learn to re-
construct spectra that are similar to a given training set, even if 

the characteristics of the training data are not easily described by 

a simple formula such as those involving L 2 

or L 1 

regulariza-
tion. Their disadvantage is that a much larger training set is typ-
ically required, and it is often unclear how well the resulting 

algorithm and trained parameters will generalize to new out-
of-sample data. 

[77,78]

In the succeeding sections, we will discuss various types of 

PIC-based spectrometers. The discussion focuses on the perfor-
mance metrics that relate to the spectral features, including the 

spectral channel count N, i.e., the number of data points com-
prising the optical spectrum, spectral resolution δλ, characteriz-
ing the minimum resolvable wavelength spacing between the 

data points (Fig. 1), and bandwidth Δλ, the operational wave-
length range of the spectrometer, which is classically given by 

the product of N and δλ when the wavelength points are roughly 

equally spaced. Metrics related to the signal-to-noise ratio 

(SNR) are separately discussed in Sec. 8.

4 Spatially Dispersed On-Chip 

Spectrometers

In this part of the review, we discuss the different types of on-
chip spectrometers that have been proposed. We first consider 

spatially dispersed spectrometers, where the spectral response is 

spread out in space (Fig. 1). We distinguish four categories of 

spatially dispersed spectrometers, i.e., classical dispersive 

spectrometers, resonator array spectrometers, wavelength multi-
plexing spectrometers, and stationary-wave integrated Fourier-
transform spectrometers.

4.1 Classical Dispersive Spectrometers

In a classical dispersive spectrometer, the incident light is split 

into different spectral components using a dispersive element, 

such as a grating, prism, or hologram. Each of these components 

is then captured using detectors in an array to give the optical 

spectrum. For a well-designed classical dispersive spectrometer 

with low optical crosstalk, the signal at each detector y i 

thus 

directly correlates to spectral intensity s i 

(at wavelength λ i 

). 

Most on-chip implementations of such spectrometers make use 

of planar waveguide gratings, in particular echelle gratings 

[Fig. 2(a)] 

[79�88] or arrayed waveguide gratings [AWGs, 

Fig. 2(b)]. 

[80,81,89�93] Other approaches include photonic crystal 

(PhC) gratings, 

[94] digital planar holograms, 

[95,96] PhC super-
prisms 

[97] , and in-plane metalenses. 

[98]

Let us now have a look at the performance metrics (Table 1). 

The scaling behavior of N and δλ is important for on-chip in-
tegration. For classical spectrometers, the spatial separation be-
tween wavelengths scales with the optical path length (OPL) 

between the dispersive element and the detector array. In other 

words, both the spectral channel count and resolution improve 

linearly with the OPL and most likely also scale linearly with the 

geometric dimensions of the spectrometer. Consequently, on-
chip classical dispersive spectrometers typically suffer a perfor-
mance loss compared to their benchtop counterpart.

The next metric we discuss is the operating bandwidth Δλ. 

Consider a very broadband signal incident on a grating or other 

dispersive element. Due to the emergence of different diffraction 

orders, different wavelengths can couple into the same output 

channel. The free spectral range (FSR) is defined as the spacing

Peters et al.: Integrated photonic spectrometers: a critical review
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between two consecutive wavelengths that are coupled into the 

same spectral channel (Fig. 3). The maximum Δλ of the spec-
trometer is determined by this FSR. The FSR is determined by 

the design of the dispersive element, e.g., for a grating, the FSR 

is inversely proportional to the diffraction order m. To increase 

the operating bandwidth in echelle gratings, neighboring dif-
fraction orders can be suppressed by specifically engineering 

each individual grating facet. 

[79] Another strategy to extend 

the bandwidth of the spectrometer (Table 1) is cascading disper-
sive elements. 

[93,126] First, a low-resolution dispersive element 

splits the broadband light into multiple wavelength bands. Then, 

a second set of elements splits each band into the high-resolu-
tion optical channels (where high resolution refers to small δλ). 

Finally, we note that for some dispersive elements, such as an 

AWG, a trade-off arises between bandwidth and resolution. This 

trade-off results from a decrease in both δλ and the FSR when 

the optical path length difference (OPD) between the wave-
guides in the AWG increases (for fixed free propagation
regions). 

Finally, we discuss the influence of fabrication imperfec-
tions. In classical dispersive spectrometers, such imperfections 

generally result in optical crosstalk, i.e., the spillover from one 

wavelength into the neighboring spectral channels. When it 

comes to arrayed waveguide gratings, the crosstalk is usually 

induced by the non-uniformity of the waveguides across the lin-
ear waveguide grating. This non-uniformity is usually caused by 

variation in waveguide width across the chip, leading to a dis-
tortion of the wavefront compared to the design. 

[127] For echelle 

gratings, as well as other grating-based or holographic spec-
trometers, the light propagates through a slab waveguide, rather 

than a strip waveguide. In this case, width variations do not 

pose an issue, and the device generally exhibits less optical

crosstalk. 

[86] Optical crosstalk in this case arises from inaccurate 

placement and size variation in the grating or PhC elements 

[85] 

or from non-uniformity in the thickness of the waveguide 

layer.

4.2 Resonator Array Spectrometers

The second approach to spatially dispersed on-chip spectrom-
eters uses optical resonator arrays. In this case, each resonator 

will be tuned to a different resonant wavelength [Fig. 2(c)]. So, 

when a broadband signal comes in, each resonator will now split 

off a spectral component and funnel it into a photodetector. 

Proposed types of resonators include microdonut or microring 

resonators (MRRs) 

[99,101,128] and PhC cavities. 

[100,129] One advan-
tage of such a design is that the spectral resolution is not directly 

limited by the physical size of the optical components. Instead, 

δλ is determined by the quality factor Q of the resonator. On-
chip resonators can achieve very high Q, allowing for compact 

spectrometers with a high spectral resolution (small δλ) and a 

small footprint (Table 1).
Similar to the classical dispersive spectrometers, the band-

width of the device is limited by the FSR of the resonator 

(Fig. 3). Furthermore, there still is a linear scaling behavior, 

but it now applies to N. Each resonator corresponds to one spec-
tral channel or wavelength, so for a large N, a large resonator 

array is needed.
For some resonators, e.g., MRRs, the trade-off between 

bandwidth and resolution is also present. 

[130] This trade-off re-
sults from the scaling of the performance metrics with the radius 

R of the MRR. The FSR of the resonator increases as we reduce 

R. The quality factor on the other hand depends on the optical 

loss in the resonator. When the bending loss exceeds the other

Fig. 2 Schematic representations of the types of spatially dispersed on-chip spectrometers. 

(a) Classical dispersive spectrometer based on an echelle grating. (b) Classical dispersive spec-

trometer based on an arrayed waveguide grating. (c) Resonator array spectrometer comprised of 

microring resonators. (d) Wavelength multiplexing spectrometer based on a broadband filter array. 

Examples of (uncorrelated) transmission spectra T i are plotted next to each filter. (e) Stationary 

Fourier-transform (FT) spectrometer with multiple input waveguides. (f) Stationary-wave inte-

grated Fourier-transform spectrometer (SWIFTS) in the counterpropagative configuration. A proto-

typical standing wave electric field profile is plotted in the SWIFTS.
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sources of optical loss in the MRR, the reduction of R and thus 

an increase in FSR is accompanied by an increasing loss, thus 

reducing Q and increasing δλ. Therefore, bending loss sets 

a practical limit to size downscaling of MRR-array-based
spectrometers. 

Fabrication imperfections, such as sidewall roughness and 

variation in waveguide dimensions, influence the resonator ar-
ray spectrometers in two ways. Firstly, fabrication imperfections 

introduce losses that decrease the quality factor of the resonator, 

resulting in increased crosstalk or reduced resolution of the de-
vice. Secondly, imperfections result in reduced control over the 

resonant frequency of individual resonators and again increased 

crosstalk between the channels. The second issue, however, can 

potentially be mitigated by active tuning of the resonant 

frequencies at the expense of device complexity.

4.3 Wavelength Multiplexing Spectrometers

So far, we have discussed the use of dispersive elements or res-
onators to separate the different spectral components into indi-
vidual wavelength channels. Alternatively, the principle of 

wavelength multiplexing can be utilized to realize on-chip spec-
trometers. Figure 2(d) sketches the working principle of such a 

device. Unlike narrowband-resonator-array-based spectrome-
ters, the wavelength multiplexing spectrometer employs broad-
band filters. The operating principle of the device is therefore 

distinctively different. Nevertheless, recent work shows that 

the same principles (discussed below) can be applied to classical 

dispersive spectrometers 

[98] and resonator array spectrome-
ters. 

[101,129] In these cases, the dispersive or resonator elements 

are effectively treated as broadband filters in order to achieve 

a higher spectral channel count with a limited number of detec-
tors or to reduce the required quality factor Q of the resonators. 

Classical dispersive spectrometers and resonator array spec-
trometers traditionally operate under the assumption that G is a 

square, diagonal matrix [Eq. (2)]. In other words, the functions 

T i 

� λ j 

� are assumed to be zero for all λ j≠i 

. For wavelength 

multiplexing spectrometers, however, each T i 

� λ j 

� represents a 

broadband filter transmittance and is composed of a linear com-
bination of many wavelengths. To allow determination of an un-
known input spectrum S � λ � , the matrix A is generally calibrated 

with a tunable laser (or a known broadband source in conjunc-
tion with a calibrated spectrometer). Once the matrix A is 

known, the wavelength multiplexing spectrometer can be used 

to measure and reconstruct unknown input spectra based on the

methods described in Sec. 3. Wavelength multiplexing spec-
trometers are thus the first type of spectrometers we encounter 

that belong to the class of so-called computational spectrome-
ters. Computational spectrometers generally suffer from 

longer reconstruction times than classical dispersive and reso-
nator-based spectrometers. On the other hand, computational 

spectrometers are generally more robust against fabrication im-
perfections, since potential imperfections, such as variations in 

waveguide thickness throughout the chip, are captured in the 

calibration of matrix A.
The operating bandwidth Δλ of wavelength multiplexing 

spectrometers is determined by the wavelength range over 

which the matrix A is calibrated. For a given Δλ, the resolution 

δλ and the spectral channel count N are then dictated by the 

choice of filters as well as the reconstruction algorithm. 

Taking advantage of the computational reconstruction and prior 

knowledge of the spectrum, the number of filters M can be sig-
nificantly smaller than N. 

[102,105,106] Multiplexing spectrometers 

thus allow for a reduced device footprint with similar resolution 

to classical dispersive spectrometers. Increasing the resolution 

of the device, however, is not as straightforward as just increas-
ing the number of filters. It is important that the functions T i 

� λ � 

give a unique response across the operating bandwidth. The 

uniqueness of an individual filter�s response with wavelength 

is generally quantified with the spectral correlation function: 

[131]

C � dλ; i � � hT i 

� λ � T i 

� λ � dλ � i
hT i 

� λ � ihT i 

� λ � dλ �i 

− 1; (7)

with dλ representing the spacing between wavelength points and 

where hf � λ � i represents the averaging of the function f � λ � with 

respect to λ. When averaged over all filters, the spectral corre-
lation function should peak at dλ � 0 [Fig. 3(b)]. The half-
width at half-maximum (HWHM) can then be used as a proxy 

for the spectral resolution δλ. 

[57] Here, we note that one can ex-
perimentally achieve a δλ much smaller than the HWHM of the 

averaged spectral correlation function 

[124] when the optical SNR 

is sufficiently high. Nevertheless, C remains a key figure-of-
merit when comparing the spectral resolving power of different 

spectrometer designs.
The choice of filters determines the scaling behavior of the 

device. Broadband filter implementations include random scat-
tering, 

[57,104,132] Mach�Zehnder interferometers (MZIs), 

[51,133�143] 

multimode interference, 

[102,144,145] stratified waveguides, 

[105]

Fig. 3 (a) Each color represents the transmission into one spectral channel of a spectrometer 

based on a classical dispersive element or resonator array. Wavelengths separated by the 

FSR of the dispersive element are collected by the same detector. (b) Typical example of the 

averaged spectral correlation function [Eq. (7)] as a function of wavelength spacing. The spectral 

resolution relates to the half-width at half-maximum (HWHM) of the curve.
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Table 1 Overview of Performance Metrics for Representative Examples of Each Spectrometer Type 

a

Ref. Category Method λ c (nm) δλ (nm) Δλ (nm) F (mm 

2 ) D

[84] Classical Echelle grating 1550 0.5 60 9 121  

[86] Echelle grating 1300 4.5 18 0.02 4

[87] Echelle grating 

b 1300 7 1400 4

[89] AWG 1545 0.2 20 64 50

[93] Cascaded AWGs 1550 1 195 110 195

[95] Planar holograms 740 0.15 148 200 926 

c

[98] Metalenses 

d 1550 0.14 50 0.01 32

[99] Resonator array MRR 1580 0.6 50 1 84

[100] PhC cavity 840 0.3 35 0.004 100

[101] MRR 

d 809 0.17 12 0.15 3

[51] Multiplexing FT 1550 0.03 0.78 14

[102] Multimode spiral 1520 0.01 2 0.25 40

[103] Speckle-enhanced FT 1556 0.003 12 100 600 

e

[104] Scattering 1556 0.25 30 0.0004 8

[105] Stratified waveguides 1560 0.45 180 0.009 32

[106] Coherent network 776 0.02 12 0.11 8

[107] Disordered lattice 1545 0.015 40 1 4096 

c

[108] SWIFTS Lippmann 633 0.16 256 0.032 2000 

f

[109] Tunable SWIFTS 1500 40 1000 0.001 5

[110] Multi-aperture Lippmann 842.5 0.2 75 5.12 160

[111] Tunable narrowband MRR 1580 0.15 19 0.6 1

[112] PhC cavity 1455 0.5 12.3 1

[113] FP cavity array 1472 0.43 73.2 0.026 5

[114] MRR + MRR array 1550 0.005 9.7 0.35 11

[115] Photonic molecule 

d 1550 0.04 100 0.004 1

[116] Microdisk 

d 1505 0.01 0.3 0.24 1

[117] Cascaded MRRs 

d 1550 0.1 200 0.004 3

[118] Cascaded MRRs 

d 1440 0.008 520 0.6 1

[52] FT dFT 

g 1560 0.2 20 1.9 1

[119] Thermo-optic 1550 0.9 56 0.9 1

[120] MRR assisted TO 1571 0.47 90 1

[121] MEMS 1550 0.2 100 0.075 1

[122] 2D FT 1550 0.125 200 128

[123] Tunable broadband Multimode spiral 1554 0.015 2 3.36 12

[124] Cascaded MZIs 1510 0.01 200 8 1

[125] Cavity-enhanced mode mixing 1550 0.005 100 1.5 1

a For each example, the spectrometer category, implementation method, center wavelength λ c 

, spectral resolution δλ, bandwidth Δλ, footprint F , and 

number of detectors D are listed. A more complete overview can be found in Appendix A.
b Requires cryogenic temperatures and NbN superconducting nanowires for single-photon detection.
c Makes use of an off-chip camera.
d Employs computational spectral reconstruction based on a calibrated A matrix.
e Each data point consists of an average over a column of off-chip camera pixels.
f Number of metal scattering centers.
g Digital Fourier transform (dFT).
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coherent networks, 

[106,146] self-coupled waveguides, 

[147] disor-
dered MRR lattices, 

[107] and disordered in-plane metasurfa-
ces. 

[148] For a straightforward filter-array approach, 

[105,147] 

linear scaling of the footprint with the number of measurement 

channels M holds. As a result, either the resolution or bandwidth 

will scale linearly with the filter array footprint. For other ap-
proaches, the spectral correlation of the filter transmittance de-
pends on the OPL.

Spatial heterodyne or stationary Fourier-transform (FT) spec-
trometers [Fig. 2(e)] 

[51,133�143] consist of an array of MZIs with a 

unique OPD. In the case that N � M with linearly spaced OPDs, 

the inversion of matrix G becomes equivalent to a classical 

Fourier transform, 

[133,134] hence the name FT spectrometer. The 

resolution of such a spectrometer is dictated by the FSR of the 

MZIs. This FSR scales inversely proportional with the OPD of 

the MZI. A long path length will give a small FSR and thus allow 

for a high spectral resolution. Additionally, stationary FT spec-
trometers again follow a linear scaling law. For high spectral res-
olution a large number M of interferometers is needed, which 

again results in a trade-off between footprint and δλ.
For random-scattering-based spectrometers, due to the occur-

rence of multiple scattering events, the effective path length on-
chip can be much longer than the length of the scattering region. 

As a result, the resolution no longer improves linearly with the 

geometric dimension of the device. Instead, in the diffuse re-
gime, a quadratic scaling is observed. 

[57] Similarly, evanescent 

coupling between waveguides in a spiral 

[102] or coupling to 

MRRs 

[106,107,146] can be employed to increase the OPL and thus 

modify the scaling behavior of the spectrometer. 

Alternatively, cascading broadband filter elements, such as 

disordered metasurfaces, 

[148] can achieve a more narrowly 

peaked spectral correlation function. In this case, the perfor-
mance metrics of the device are still expected to scale linearly 

with the number of filter elements.

4.4 Stationary-Wave Integrated Fourier-Transform 

Spectrometers

The last type of spectrometer we discuss in the category of spa-
tially dispersed spectrometers is the stationary-wave integrated 

Fourier-transform spectrometer or SWIFTS, which can also be 

considered a special class of wavelength multiplexing spectrom-
eters. The SWIFTS operates by creating a standing-wave inter-
ference pattern in the waveguide [Fig. 2(f)]. By integrating a 

linear array of detectors, the spatial intensity distribution of 

the standing wave can be mapped. From this intensity distribu-
tion, the input spectrum can be inferred. Similar to the spatial 

heterodyne FT spectrometers, spectral reconstruction based on a 

standing-wave interferogram sampled at constant pitch is equiv-
alent to a classical Fourier-transform.

We distinguish three SWIFTS configurations: the Lippmann 

configuration, 

[108,110] the counterpropagative configuration, 

[149] 

and the copropagative configuration. 

[150] In the Lippmann con-
figuration, the standing wave is created by means of a reflector, 

such that the reflected light interferes with the incident light. In 

the counterpropagative configuration, light is propagating in 

both directions of the spectrometer waveguide. In the configu-
ration, two parallel waveguides with different effective indices 

are used to generate a standing-wave interference pattern in be-
tween the two waveguides.

Regardless of the configuration, the resolution of an SWIFTS 

is limited by the length of the interferogram. Again, a linear

relation emerges where the resolution improves with increasing 

device length. The bandwidth at a given device length depends 

on the sampling rate, i.e., the spacing between the detectors 

Δx. 

[151] Given the relatively large footprint of currently available 

integrated photodetectors, 

[152] demonstrated SWIFTSs employ 

scattering arrays in combination with off-chip detector arrays 

to achieve a narrower on-chip sampling pitch. As a result, 

Δx and consequently Δλ are diffraction-limited.
One method to increase Δλ is to couple the input spectrum 

into multiple waveguides 

[110] or a slab waveguide 

[108] (Table 1). 

This allows the detectors/scattering centers to be spread out lat-
erally, enabling an enhanced sampling rate along the standing-
wave pattern. Additionally, the coupling of the input light into 

multiple waveguides [Fig. 2(e)] or a slab waveguide allows for 

an increased spectrometer etendue, a topic we explore further 

in Sec. 6.
As an alternative approach, one can improve Δλ by applying 

a phase shift to the input light, e.g., with a tunable MZI, 

[151] 

electro-optic modulators, 

[109,153] or thermo-optic modulators. 

[154] 

By implementing a phase delay between the two inputs (in a 

counterpropagative configuration), one is able to shift the loca-
tion of the center of the interferogram. By stepwise increasing 

the phase delay and consecutive sampling of the interferogram, 

the entire interferogram can be sampled even at a large detector 

pitch. Note that this measurement technique requires active tun-
ing of the spectrometer, and we have effectively changed the 

spatially dispersed SWIFTS into a combined spatially dispersed 

and time-domain modulated device. The matrix G now must 

incorporate the transmission functions for every wavelength 

in both space and time.

5 On-Chip Spectrometers Based on Time-
Domain Modulation

We have discussed spatially dispersed on-chip spectrometers in 

the previous section. In the final paragraph, we encountered an 

example of a spectrometer that utilizes time-domain modula-
tion. In this section, we explore other on-chip spectrometers 

based on time-domain modulation. Instead of spatially spread 

static filters (Fig. 1), tunable filters are used in time-domain 

modulated spectrometers. This allows for modulation of the fil-
ter�s spectral response as a function of time. As a result, instead 

of a detector array, only a single detector is required. Now the 

photodetector readout y gives a time sequence of intensity read-
ings from the single detector, instead of the signal readout of the 

detector array. Each element y i 

thus gives the readout at one 

particular point in time or, in other words, at one specific state 

of the tunable filter. Each row in the matrix G now corresponds 

to a filter transmittance function T i 

� λ � for one particular tunable 

filter state i.

5.1 Narrowband Tunable Filter Spectrometers

The first variant of such a time-domain modulated spectrometer 

we discuss is a spectrometer based on a narrowband tunable 

filter. 

[111�113,115,116,118,155,156] A common choice of narrowband filter 

is an MRR or microdisk resonator integrated with an optical 

phase modulator, such as a thermo-optic phase shifter 

[Fig. 4(a)]. 

[111,116,156] Other filter choices include Fabry�Pérot 

(FP) 

[112,113] and PhC cavities. 

[155]

Tunable-filter-based spectrometers tend to have an advantage 

over resonator arrays in terms of optical crosstalk. The advan-
tage arises from the fact that only a single resonator is used.
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Consequently, we do not have to worry as much about fabrica-
tion imperfection and the resulting resonator-to-resonator 

variation.
Similar to resonator array spectrometers (Sec. 4.2), the oper-

ating bandwidth of a tunable narrowband filter is limited by the 

FSR of the resonator. In addition to the FSR, the attainable 

wavelength tuning range can limit Δλ. The resolution is again 

not directly limited by the physical size. Instead, δλ is deter-
mined by the quality factor Q. Since only a single narrowband 

filter and photodetector are required, the footprint of the spec-
trometer can be much smaller than that of spatially dispersed 

spectrometers (Table 1). Furthermore, we have a unique scaling 

behavior, where both N and δλ do not scale with the device foot-
print, but instead depend on the resonator�s Q and the phase 

modulation range.
In the case of a tunable MRR, 

[111] we again have that reducing 

the ring radius leads to an increasing FSR, but decreasing Q 

when radiative bending loss takes over. Hence, a similar 

trade-off between resolution and bandwidth arises as for MRR 

arrays. FP and PhC cavities, on the other hand, can exhibit 

high Q with a large FSR. These large FSR cavities, however,

generally still exhibit a limited Δλ, due to a limited tuning 

range.
There again exist several approaches to achieving both a 

broad bandwidth and a high resolution. First, the operating 

bandwidth can be extended by cascading multiple tunable 

cavities, 

[113,155] in which the wavelength tuning range of each 

is centered around a different part of the total bandwidth, or by 

co-integration of a resonator with a tunable lattice filter 

[157,158] or 

tunable FT spectrometer (Sec. 5.2). 

[120] A third approach entails 

co-integration of a tunable narrowband filter with a dispersive 

element. 

[114,159�162] Such a co-integrated design is similar to cas-
caded dispersive spectrometers (Sec. 4.1). The dispersive 

element is used to split the broadband signal into multiple wave-
length bands. Each output of the dispersive element is now 

routed to a tunable filter (instead of a second dispersive 

element), where we perform a high-resolution scan of the wave-
length band. Alternatively, the order of co-integrated compo-
nents can be reversed. 

[120,159,161,162] In that case, the broadband 

signal first passes a resonator, where a set of wavelengths with 

a spacing equal to the FSR is filtered out of the input. The fil-
tered wavelengths are then sent through a coarse dispersive

Fig. 4 Schematic representations of the types of time-domain modulated spectrometers. 

(a) Narrowband filter spectrometer based on an MRR with a thermo-optic phase shifter. (b) FT 

spectrometer consisting of an MZI with a tunable delay in one of the arms. (c) dFT spectrometer 

architecture 

[52] with double detector configuration. In each arm of the main MZI, optical switches 

route the light to one of two possible paths (either path 1 or path 2). Each combination of switch 

states gives a unique OPD at the main MZI output. (d) Tunable broadband filter spectrometer, 

where a wavelength multiplexing spectrometer based on an evanescently coupled multimode spi-

ral waveguide is combined with an optical switching matrix. 

[123] (e) Cascaded tunable MRR 

spectrometer. 

[118]
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splitting element, which routes each of the filtered wavelengths 

to a specific detector. Both the cascaded cavity as well as the co-
integrated approaches, however, require multiple photodetectors 

as well as an increased device footprint. The final approach we 

discuss is the engineering of the MRR system to obtain oper-
ation spanning multiple FSRs. A broadened Δλ could, for ex-
ample, be obtained by the Vernier effect 

[163,164] or using 

microgear resonators. 

[165] Recent works employ dispersion engi-
neering in photonic molecules, 

[115] selective mode coupling, 

[166] 

or cascaded MRRs. 

[117,118] Note that in these cases, the narrow-
band filter is effectively converted into a (sparse) broadband fil-
ter (Sec. 5.3) and reconstruction of the input spectrum is based 

on a measured matrix A (Sec. 3).

5.2 Fourier-Transform Spectrometers

The second type of spectrometers based on time-domain modu-
lation is the FT spectrometer [Fig. 4(b)], which can be regarded 

as the time-domain modulated counterpart of the stationary FT 

spectrometer that we discussed in Sec. 4.3. An FT spectrometer 

consists of a variable MZI, where in one or both of the arms a 

tunable delay is integrated to generate a tunable OPD between 

the two arms. The tunable delay can be implemented in various 

ways, including electro-optic modulators, 

[167,168] thermo-optic 

modulators, 

[119,120,169�171] or MEMS. 

[121,172] The resolution is 

inversely proportional to the maximum OPD that can be 

achieved by the tunable delay. As a result, for a given choice 

of modulator, we again observe a linear scaling behavior, where 

the resolution improves with increasing device footprint.
To increase the OPD beyond the typical on-chip phase mod-

ulators� tuning range, a combination of spatial heterodyne and 

time-domain modulated FT can be used. 

[170,172,173] In this case, 

each MZI is used to tune the OPL over a unique range of 

OPDs. A different combination of spatial heterodyne and 

time-domain modulated FT can be implemented by cascading 

a tunable FT with a spatial heterodyne FT spectrometer. 

[122] An 

alternative device architecture, the on-chip digital FT (dFT) 

spectrometer [Fig. 4(c)], 

[11,52,171,174�178] has also been proposed. 

In a dFT spectrometer, we integrate a cascaded array of optical 

switches on each arm of the interferometer. Each switch allows 

for toggling the optical path between two waveguides. Each per-
mutation of the optical switch states results in a unique OPD. 

Since switching of waveguide paths presents a far more efficient 

way to introduce phase delay compared to electro-optic or 

thermo-optic modulation, the waveguide lengths needed in 

dFT spectrometers to achieve the same OPD can be more than 

two orders of magnitude shorter. Instead of a linear scaling with
footprint, the number of optical states M is proportional to 2 

k ,
where k is the total number of optical switches. As a result, the 

spectral resolution also scales with 2 

k . This exponential scaling 

allows for a compact integrated device with a high optical per-
formance. It is worth highlighting that the dFT spectrometer rep-
resents the first example of a more generic class of time-domain 

modulated spectrometers based on cascaded tunable elements 

to achieve exponential scaling, where the total number M of op-
tical states scales with the product of state numbers across all 

elements. We shall see more examples of this class of spectrom-
eters in other sections. 

[118,124,125,179]

Finally, we note that for both stationary as well as time-
domain modulated FT spectrometers in a single-detector con-
figuration, on average, half of the photons in a broadband signal 

will be tossed out, since only constructively interfering photons

are retained. These �lost� photons can be reclaimed by imple-
menting a two-detector configuration. In this two-detector con-
figuration, instead of a 2 × 1 combiner at the end of the MZI, a
2 × 2 coupler is used [Fig. 4(c)]. By doing so, we can actually 

double the signal. If the spectrometer noise is dominated by the
detector noise, 

[180] the two detector approach achieves a net gain
of the SNR by a factor of 

��� 

2 

p 

compared to the single-detector
configuration.

5.3 Tunable Broadband Filter Spectrometers

In this class of spectrometers, a broadband transmission spec-
trum is tuned. These spectrometers employ the same principles 

as wavelength multiplexing spectrometers (Sec. 4.3), with the 

addition of active modulation of the broadband filters to vary 

the signal at one 

[124,125,181] or multiple photodetectors. 

[123,179,182�184] 

Similar to the dFT spectrometer, a photonic-switching-based 

approach has been applied to multimode-interference-based 

wavelength multiplexing spectrometers [Fig. 4(d)]. 

[123,179,182] 

Here, the switches are used to selectively launch modes into 

a multimode waveguide. Since the effective OPL in the multi-
mode waveguide is independent of the optical switches, the 

spectral resolution does not directly depend on the number of 

optical switches k. Instead, M and Δλ change with the number 

of optical switches. The relation between M and k depends on 

the exact device implementation. Scaling with k, 

[123] 2 

k , 

[179] and 

k 

2[182] has been demonstrated.
Alternative tunable broadband filter implementations include 

tunable coherent networks, 

[181,183] tunable-cavity-enhanced mode 

mixing, 

[125] and disordered metalenses with beam steering. 

[184] 

Similar to their stationary counterparts, these approaches em-
ploy resonators, evanescent coupling between waveguides, 

and cascaded filter elements to increase the effective OPL 

and decrease the correlation of transmission functions T i 

� λ � 

[Eq. (7)]. As a result, a complicated scaling behavior is recov-
ered. In the case of cavity-enhanced mode mixing, for example, 

the resolution is found to be relatively independent of the overall 

size of the resonator, but instead scales approximately linearly 

with the size of the mode mixing region. 

[125]

Finally, another tunable-MZI-based spectrometer was re-
cently proposed. 

[124] Instead of an FT spectrometer with a single 

MZI, multiple cascaded MZIs were used to generate a compli-
cated interference signal at the output. As a result, the resolution 

is no longer limited by the maximum OPD that can be achieved 

in a single MZI. An exponential scaling is recovered, where the 

scaling depends on the number of cascaded elements k and the 

number of states per element. An alternative approach to 

this type of exponential scaling employs cascaded MRRs 

[Fig. 4(e)], 

[118] which can be used to implement a broadband tun-
able filter (Sec. 5.1). With four tuning states per ring, M is pro-
portional to 4 

k . With a dispersion-engineered six-ring design 

(M � 4096) a record-high resolution-to-bandwidth ratio was 

achieved (Table 1).

6 Constraints to On-Chip Spectrometer 

Implementation

Now that we discussed the different types of PIC-based spec-
trometers and their performance metrics, we proceed to assess 

some fundamental constraints and design considerations for on-
chip spectrometers. These constraints determine the applicabil-
ity of on-chip spectrometers under different circumstances.
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In the following section, we treat the application areas where 

PIC-based spectrometers promise a significant impact.
The most significant limitation of waveguide-based spec-

trometers is the optical throughput: compared to free-space 

spectrometers, PIC-based spectrometers generally exhibit sig-
nificantly reduced optical throughput due to the small etendue 

of on-chip waveguides. In some spectrometer designs, such as 

resonator array spectrometers, 

[100] SWIFTS, 

[108] and specific 

wavelength multiplexing spectrometers, 

[103,106,139,140,146] the spec-
trometer etendue can be increased by coupling into multiple 

waveguides or slab waveguides. Nonetheless, the etendue gen-
erally remains small compared to free-space spectrometers, such 

as 2D filter-detector array spectrometers. 

[185,186] Therefore, PIC-
based spectrometers work best with light sources that have a 

high degree of spatial coherence. When dealing with a large-
area light source with low spatial coherence, the performance 

of on-chip spectrometers is severely limited.
Another important consideration relating to spectrometer 

applicability is the material platform on which to implement 

the spectrometer. Firstly, the wavelength range covered by 

PIC spectrometers is limited by the material platform. 

Silicon-on-insulator (SOI), which, due to its compatibility with 

standard complementary metal-oxide-semiconductor (CMOS) 

processing, allows for low-cost and scalable manufacturing, 

is the most widely used platform for PICs in the near-infrared 

(near-IR). However, due to considerable absorption in the vis-
ible range and at longer mid-IR wavelengths (>3.5 μm for 

oxide-cladded devices and >6.7 μm for suspended Si wave-
guides), the SOI platform is not suited for spectrometry outside 

of the short-wavelength part of the IR spectrum. In the visible 

range, silicon nitride (SiN) has emerged as a CMOS-compatible 

alternative. 

[8,187] Other material platforms are required for 

spectroscopic sensing in the so-called �fingerprint region� 

(7�20 μm, containing the primary absorption bands of many 

chemical and biological molecules). 

[7,188]

Beyond the transparency window, the choice of material can 

influence spectrometer performance. Waveguide losses are gen-
erally dominated by scattering loss, due to sidewall rough-
ness. 

[10] Processing capabilities and the resulting sidewall 

roughness are related to the choice of material platform. In 

the near-IR, SiN has emerged as a low sidewall roughness 

and thus ultralow-loss waveguide platform. 

[8,10] Lower wave-
guide losses not only promise higher optical throughput, but 

can directly influence spectrometer performance metrics. For 

example, due to these ultralow losses, the SiN platform prom-
ises higher Q resonators 

[189] than SOI, allowing for higher res-
olution in resonator-based spectrometers. Because of the lower 

refractive index contrast with the oxide cladding, however, SiN 

waveguides exhibit larger bending losses than Si waveguides. 

Consequently, SiN waveguides require larger bending radii, re-
sulting in a larger device footprint and limited microring FSR. 

Finally, we discuss the thermal stability of on-chip spectrom-
eters. Changes to the on-chip temperature generate refractive 

index changes in the waveguide through the thermo-optic effect. 

As the TO coefficient in most PIC platforms is positive, an in-
crease in temperature generally yields redshifted transmittance 

functions T i 

� λ � . 

[124,147,190�192] The most straightforward solution is 

active monitoring and regulation of the temperature of the PIC, 

e.g., with a thermo-electric cooler. Such thermal control, how-
ever, increases the power consumption of the device. 

Alternatively, monitoring the on-chip temperature allows 

for compensation for temperature variations by applying a

correction to the matrix G that accounts for the thermally in-
duced shift in T i 

� λ � . 

[192,193] Consider the case of a classical dis-
persive or resonator-based spectrometer with a square, diagonal 

G as a concrete example. At higher temperatures than designed 

for, wavelength λ j 

can be collected at detector channel i < j 

instead of the intended channel i � j. When the chip temper-
ature at the time of measurement is known, this offset between 

the detector and the wavelength channel can be corrected. A 

drawback in this case of a diagonal G matrix (especially for de-
signs with a larger FSR than Δλ) is potential loss of spectral 

information, 

[147] resulting from the fact that the signal at the edge 

of the bandwidth is no longer collected at any detector. 

Spectrometer designs based on non-diagonal G matrices, i.e., 

spectrometers implementing broadband filters, are better 

equipped to handle large temperature changes, since even 

though T i 

� λ � changes with temperature, light from all wave-
lengths continues to reach the detector. By performing calibra-
tion over a large range of temperatures, the entire input spectrum 

can thus be recovered over a larger temperature range. 

[147,193] 

Finally, thermal stability can be taken into account during the 

design of the spectrometer. 

[142] Firstly, the material platform in 

which the spectrometer is integrated is important. The TO 

coefficient for SiN, e.g., is significantly smaller than the TO co-
efficient for Si. Consequently, spectrometers implemented on 

SiN are generally more thermally stable than on SOI. Secondly, 

one can aim to design the spectrometer such that the spectral 

response does not change with temperature, e.g., by adding 

an extra optical component that compensates for the temperature 

dependence of the filters. 

[190,194] In a recent work, an athermal 

echelle grating 

[194] was implemented by compensating for the 

thermally induced tilt in the phase front in the grating with 

the thermal response of an asymmetric MZI at the input of 

the device.

7 Integrated Photonic Spectrometer 

Applications

We discuss four application areas where PICs promise key ad-
vantages and opportunities as a result of their reduced SWaP-C 

metrics.

7.1 Biological and Chemical Sensing

Both absorption and Raman spectroscopy are powerful tech-
niques to directly identify chemical and biological samples. 

[1,14] 

Due to the size and cost of traditional spectrometers, this 

spectroscopic analysis is historically performed in a laboratory 

setting. There is however an increasing demand for spectrom-
eters that can be brought out into the field, enabling on-site 

analysis for a wide range of applications, including industrial, 

environmental, or toxic gas sensing, 

[195] point-of-care diagnos-
tics, 

[196] bioprocess monitoring, 

[197,198] and forensics. 

[199] 

Integrated photonics provides a unique opportunity for so-
called lab-on-chip system integration, wherein the light source, 

sensing element, and detector are all integrated into the same 

platform [Fig. 5(a)]. 

[200�203] Spiral waveguides and on-chip res-
onators allow for long interaction lengths with a small foot-
print. 

[204,205] Compared to other (on-chip) sensing techniques, 

such as refractive index sensing [Fig. 5(b)], 

[200] spectroscopic 

sensing [Fig. 5(c)] offers high selectivity without the need 

for target-specific functionalization or labeling. Unlike sensors 

relying on surface functionalization coatings, which are typi-
cally for single-use only due to the irreversible binding nature
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of the coatings, lab-on-chip systems based on spectroscopic 

sensing can be repeatedly used, e.g., for applications where con-
tinuous monitoring is needed. Furthermore, waveguide-based 

sensing can provide enhanced sensitivity in Raman spectros-
copy. 

[206�209]

Recent work in integrated spectrometers for sensing applica-
tions includes gas sensing, 

[162,172] sensing of volatile organic 

compounds, 

[128] absorption sensing, 

[118,138] and Raman spectros-
copy. 

[110] One specific example focused on a spectrometer for 

sensing multiple gases, such as HF, CO, H 2 

S, and CO 2 

, at wave-
lengths between 1310 and 1930 nm. 

[162] The proposed design 

consisted of a multimode-waveguide-grating-based filter array 

in combination with tunable MRRs. The authors were able to 

implement a chip-scale spectrometer for high-resolution sensing 

(0.08�0.37 nm) over this broad bandwidth using four multi-
mode waveguide gratings as bandpass filters, each centered 

on a narrow wavelength band of interest (6�10 nm at 1310, 

1560, 1570, and 1930 nm). In another study, 

[118] a cascaded 

MRR spectrometer is used to measure the reflectance spectra 

of various plastic and coffee samples as well as the concentra-
tion-dependent transmission spectra of various solutions (such 

as ethanol or glucose aqueous solutions). The authors train a 

support vector machine to identify the different plastic or coffee 

samples on the reconstructed spectra. Additionally, the inte-
grated spectrometer achieves a detection limit of 0.1% glucose 

in solution, comparable to that of a benchtop dispersive and a 

benchtop FT spectrometer.

7.2 Telecommunications

Optical fibers provide high-bandwidth, low-loss optical commu-
nications worldwide. Recent years, however, have seen a signifi-
cant increase in data traffic and a demand for even faster (6G) 

data transmission, due to the rise of big data, artificial intelli-
gence, and the internet of things. To keep up with these increas-
ing demands, network communication is being extended from 

the C+L-bands into the S-, E-, O-, and U-bands. Dynamic con-
trol is essential for energy-efficient operation of a multi-band

network, allowing for scaling up or scaling down the network 

depending on the network traffic. 

[214�216]

Dynamic (software-based) control of modern networks 

(Fig. 6) is only possible with optical network monitoring. 

[217,218] 

Efficient monitoring throughout the entire network requires 

low-cost, compact monitors that are able to track the individual 

wavelength channels. Integrated photonic spectrometers have 

the potential to fulfill these requirements for low-cost large-scale 

manufacturing and can provide real-time monitoring of the indi-
vidual channels. Initial proposals for such optical channel mon-
itors rely on classical dispersive elements such as echelle 

gratings 

[219] and AWGs 

[220] to directly monitor the optical power, 

SNR, and wavelength drift in the channels. An alternative mon-
itoring approach is so-called �homodyne detection�, for which 

monitoring is based on the interference spectrum between the 

monitored signal and a tunable laser. 

[214,221] In a recent work, 

[222] 

a spectrometer design using a tunable MRR cascaded with two 

interlaced AWGs was proposed for high-resolution (∼1.4 GHz 

or ∼0.01 nm) optical network monitoring in the C-band (1530� 

1565 nm) on a SiN platform.

Fig. 5 (a) Example of an integrated photonic lab-on-chip system. Reprinted with permission from 

Ref. 210 © Chinese Laser Press. (b) Refractive index sensing for lead detection using function-

alized MZIs. Adapted from Ref. 211 under Creative Commons license. 

[212] (c) Waveguide-based 

methane absorption sensor. Reprinted with permission from Ref. 213 © Optical Society of 

America.

Fig. 6 Dynamic software-based control and management of 

optical networks. Reprinted with permission from Ref. [223] 

© Optical Society of America.
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7.3 Spectral Domain Optical Coherence Tomography

Optical coherence tomography (OCT) is an interferometric 

3D imaging technique that provides high-resolution, cross-
sectional imaging for a wide range of scientific and medical 

applications. 

[224] It is the gold standard for retinal imaging 

(Fig. 7) in ophthalmology and is increasingly used in cardiol-
ogy, dermatology, and other medical fields. Additionally, 

OCT is applied in non-destructive testing (NDT) to provide in-
formation on subsurface structures and uniformity in manufac-
turing, aviation, automotive, display panels, and medical 

devices.
While there are a few embodiments of time-domain and 

Fourier-domain OCT, spectrometers play a crucial role in 

spectral-domain optical coherence tomography (SD-OCT). The 

bandwidth and resolution of the spectrometer directly influence 

the axial resolution and signal-to-noise ratio of the OCT system, 

making it an essential component in the performance of OCT. 

Traditionally, benchtop dispersive spectrometers are used in 

OCT systems, but there have been recent investigations into in-
tegrated photonic approaches. PICs allow for the miniaturiza-
tion of OCT systems, making them more portable and 

accessible for various applications, including point-of-care diag-
nostics and field use. Additionally, the integration of photonic 

components onto a single chip can lead to substantial cost re-
ductions by simplifying manufacturing processes and reducing 

the need for bulky, discrete optical elements. In recent years, 

there has been an effort to bring other components of the 

OCT system onto PICs, 

[226] including beam splitters, 

[227,228] delay 

lines, 

[227,229] and light sources. 

[230]

Notably, one of the latest works in the field developed two 

OCT spectrometer designs based on AWGs on a SiN platform. 

The devices featured sufficiently broad bandwidths (22 and 

48 nm centered around 800 nm) to provide high axial resolution 

(10.7 and 6.5 μm, respectively). 

[225] These were the first 

instances where PIC-based spectrometers were used to provide 

in-vivo retinal OCT imaging (Fig. 7) and achieved sensitivity 

above 90 dB. High sensitivity is crucial for medical applications 

due to the critical importance of accurate diagnosis, as it ensures 

detailed and precise imaging necessary for identifying and mon-
itoring medical conditions. This innovation builds on AWG-
based spectrometers 

[92,126,231] and OCT demonstrations, 

[161,232,233] 

which focus on wavelengths around 800 or 1300 nm, including 

imaging demonstrations of human skin. 

[228] In a follow-up 

work, 

[234] an OCT spectrometer comprised of a single, 512

channel AWG was used for in-vivo imaging of zebrafish, larvae, 

and human skin with a sensitivity of 92 dB.

7.4 Astronomy

Spectroscopic techniques are fundamental to astronomy and are 

used to determine chemical composition, measure motion, and 

detect exoplanets, among other applications. 

[235,236] These astro-
physical studies require large-diameter (D) telescopes to collect 

light from faint and distant sources. Conventional spectroscopic 

instrumentation scales in size with D and consequently scales 

with D 

2 to D 

3 in terms of volume, mass, and cost. 

[235,237] The 

field of astrophotonics provides a path towards spectroscopic 

instrumentation at reduced SWaP-C.
In astrophotonics, light is coupled from a (large) telescope 

into a fiber and can then be coupled further into an integrated 

circuit. Although light coupling from the telescope into a fiber 

was already proposed in 1988, 

[238] the coupling efficiency has 

been limited by atmospheric turbulence. 

[236] With recent devel-
opments in adaptive optics, the coupling efficiency to fibers has 

significantly improved, 

[239] and astrophotonics is becoming in-
creasingly important to astronomical instrumentation. For a 

more complete overview of the field of astrophotonics, we direct 

interested readers to other review articles. 

[236,240] Here, we briefly 

discuss integrated photonic spectrometers developed for astro-
nomical purposes.

Although there is interest in using echelle gratings (due to 

their larger finesse) 

[235,237] or FT spectrometers (for high-resolu-
tion, broadband operation), 

[235] most demonstrations of integrated 

spectrometers for astronomy have so far focused on AWGs 

(Fig. 8). 

[91,237,241] One notable study 

[242] found that by removing the 

input waveguides and instead coupling light directly from a fiber 

into the free propagation region of an AWG, the resolution in-
creased (δλ reduced from 0.63 to 0.22 nm at 1540 nm wave-
length) while simultaneously allowing for light injection from 

multiple fibers or sources into the same spectrometer. Similarly, 

on the output side of the AWG, the different spectral channels 

were not collected in a set of output waveguides. Instead, for 

these astronomical spectrometers, the focal plane of the output 

coupler was aligned with the edge of the chip, and the spectrum 

was imaged with an off-chip camera. 

[91,242] In another recent 

study, 

[144] the solar spectrum was collected with a telescope 

and routed to a multimode interference spectrometer. The authors 

showed accurate reconstruction of the Fraunhofer A absorption 

line in the solar spectrum (located at a wavelength of 760 nm).

Fig. 7 (a) OCT set-up for retinal imaging with an AWG-based dispersive spectrometer. (b) 3D 

image of the retina as recorded with this set-up. (c) Corresponding OCT angiography (OCTA) 

image calculated from B-scan repetitions. Adapted from Ref. 225 under Creative Commons 

license. 

[212]
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8 Selecting the Right Spectrometer

In this section, we discuss how to select the right spectrometer 

for an intended application. Per application, the ideal spectrom-

eter type depends on the requirements with respect to the per-

formance metrics (δλ, Δλ, and SNR). Here, we start with the

spectrometer of choice when resolution is the most important 

metric. In Secs. 4 and 5, we discussed the relationship between 

resolution and footprint for the different types of spectrometer 

designs [Fig. 9(a)]. In this section, we focus on whether the in-
tended application requires narrowband or broadband operation 

[Fig. 9(b)].

Fig. 8 Schematic of a telescope set-up integrated with AWG-based on-chip spectrometers for 

exoplanet spectroscopy. Reprinted from Ref. [235] under Creative Commons license.

Fig. 9 Here we plot (a) the spectrometer footprint and (b) the normalized bandwidth (Δλ norm 

� 

Δλ
λ 

) 

as a function of the resolving power (R � 

λ
δλ
) for various integrated spectrometers. An overview of

the plotted data can be found in Appendix A.
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For narrowband operation, resonator-based spectrometers are 

promising candidates. Resonator-based spectrometers allow for 

very high resolution that is only limited by the resonators� Q. 

Additionally, due to the narrow transmission function of a res-
onator, these spectrometers are able to selectively measure the 

target wavelengths without interference from any of the back-
ground. Notably, in recent work, a tunable MRR in combination 

with an MRR array was used to achieve a high resolution of
5 pm over a bandwidth of 9.7 nm. 

[114] Alternatively, spatially 

dispersed wavelength multiplexing spectrometers, such as sta-
tionary FT 

[51] or multimode-interference-based spectrometers, 

[102] 

are well-suited for high resolution under narrowband operation. 

With a so-called speckle-enhanced FT spectrometer, 

[103] a high 

resolution of 3 pm over a 12 nm bandwidth was achieved 

(Table 1). However, we do note that this speckle-enhanced FT 

relies on the detection of light propagating both in strip wave-
guides as well as the substrate of the SOI PIC. Therefore, an 

off-chip camera is required to detect the spectrometer�s output 

signals.
For broadband operation, due to the bandwidth-resolution 

trade-off, resonator-based spectrometers generally are not the 

best choice. Instead, a design that allows for exponential scaling 

with device footprint is needed to achieve high-resolution, 

broadband operation on-chip. Designs that allow for such scal-
ing include cascaded MRRs, 

[118] dFT, and tunable broadband fil-
ter spectrometers. 

[124] The unique scaling in these types of 

spectrometers is ideal for achieving a large number of optical 

states M, thus enabling enhanced broadband performance. 

Furthermore, we note that these spectrometers� bandwidth is 

actually not limited by the bandwidth of the individual compo-
nents, such as the optical switches. A switching-based device, 

for example, does not require perfect power switching between 

the different waveguides, as long as each switch permutation 

generates a unique spectral transmittance T i 

� λ � . Ultimately 

the bandwidth and resolution of these spectrometers will only 

be limited by the waveguide single-mode condition and the 

SNR.
In the remainder of this section, we discuss the best choices 

for integrated spectrometers based on the SNR. Time-domain 

FT and tunable broadband filter spectrometers exhibit a theoreti-
cal SNR advantage over spatially dispersed and time-domain 

modulated narrowband filter spectrometers, known as the 

�multiplex advantage� or �Fellgett�s advantage�. 

[243] This 

SNR advantage occurs when the main source of noise is from 

the photodetector (as opposed to light-intensity-dependent noise 

contributions, such as photon shot noise or background 

noise). 

[180] For classical dispersive and resonator-based spec-
trometers, the input spectrum is split into many spectral chan-
nels and each spectral channel is detected separately. 

Multiplexing spectrometers and SWIFTS similarly spread the 

optical intensity over multiple detectors. As a result, the signal 

at the detector is diminished. Time-domain FT and tunable 

broadband filter spectrometers concentrate the light on a single 

or a few detectors, allowing for superior SNR. This SNR en-
hancement holds when comparing the same measurement band-
width or, in other words, the same integration time. The 

enhancement factor depends on the spectrometer configuration, 

and the specific formalisms can be found elsewhere. 

[180] It is 

important to note that this SNR advantage is generally non-
existent when working with a sparse spectrum that only offers 

a few discrete spectral lines. In the spatially dispersed wave-
length multiplexing designs, however, due to the use of

broadband filters, the diminished SNR persists even in the case 

of sparse spectra.
When optical noise spillover becomes significant, time-

domain modulated FT and tunable or spatially dispersed multi-
plexing spectrometers suffer from �Fellgett�s disadvantage�. 

When the matrix G is non-diagonal, optical noise from all wave-
length channels can impact the measurement. In this case, low-
intensity signals can be overshadowed by large photon shot 

noise from another wavelength with high light intensity, for ex-
ample, in the case of laser spectroscopy.

9 Future Directions

Finally, we discuss the direction in which the field of integrated 

spectrometry is headed. We first discuss expected developments 

in terms of spectrometer design, before discussing expected in-
novation in terms of signal analysis.

Integrated spectrometer designs have moved from classical 

dispersive and resonator-based designs with a one-to-one corre-
spondence between detector i and spectral channel j, towards 

underdetermined A matrices and computational reconstruction 

(Sec. 3). Recently, we have seen the emergence of spectrometer 

designs whose number of optical states M and thus performance 

metrics scale exponentially. This exponential scaling promises 

integrated spectrometers with both ultrahigh resolution and ul-
trabroad bandwidth. Early demonstrations of such architectures, 

such as the dFT spectrometer, 

[52] employ optical switches to 

achieve this exponential scaling (2 

k for k switches). More recent 

work has demonstrated the potential for further enhanced scal-
ing by cascading tunable elements, such as MZIs 

[124] or 

MRRs. 

[118] With n states per tunable element, the scaling factor 

is increased to n 

k . We expect this trend to continue, with future 

breakthroughs in spectrometer designs that allow for excep-
tional performance improvements with the number of integrated 

elements.
These types of exponentially scaling spectrometers generally 

suffer from Fellgett�s disadvantage. Co-integration of these 

spectrometers with additional filters or careful design of the 

spectrometer�s spectral filters can overcome this disadvantage. 

In the case of laser spectroscopy, for example, the SNR can be 

significantly improved with a notch filter, filtering out the un-
desired laser line.

Furthermore, we note that current on-chip spectrometer dem-
onstrations rely heavily on off-chip functionalities. A large por-
tion of the research discussed in this review employs off-chip 

photodetectors or cameras for data collection. Moreover, the dis-
cussed spectrometers generally only collect the data, while post-
processing and spectral reconstruction are then performed on a 

computer. As integrated photonics technology matures, we an-
ticipate that more and more components of the spectrometer will 

be integrated on-chip.
On-chip/waveguide-integrated photodetectors are an on-

going topic of research. 

[244,245] Currently, integrated photonic 

foundries offer Ge photodetectors 

[246] directly integrated on Si 

waveguides. Unsurprisingly, a large portion of the spectrometers 

covered in this review that use on-chip photodetectors employ 

such Ge-on-Si diodes. 

[52,139,160,179] Other implementations are 

based on metal-semiconductor-metal photodetectors, 

[82] two 

photon absorption, 

[156] and single-photon detectors. 

[87,88] Out of 

these, on-chip single-photon detectors offer an obvious advan-
tage in terms of SNR. However, the demonstrated spectrometers 

with single-photon detectors require cryogenic temperatures for 

operation, limiting the spectrometer�s application and increasing
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the costs. Integrated avalanche photodetectors offer a promising 

alternative. These avalanche photodetectors offer sensitivity up 

to the single-photon level at or near room temperature 

[247�249] and 

have been shown for ultraviolet, 

[250] visible, 

[249,251] near-IR, 

[248,252] 

and mid-IR wavelengths. 

[253,254]

The next step towards full on-chip integration is the integra-
tion of the electronic control and read-out circuit with the 

photonic circuit. There are two approaches towards this co-
integration. In the first approach, for example, proposed by 

TSMC, 

[255] an electronic die is directly bonded onto the PIC. The 

second approach, as, for example, offered at GlobalFoundries, 

[256] 

consists of monolithic integration of electronic and photonic cir-
cuits onto a single die. As these platforms mature, they will en-
able true �end-to-end� spectrometer design, where the optical 

circuit, signal read-out, and signal processing are co-designed 

and integrated onto a single chip.
Finally, we note that spectrometers have so far mainly fo-

cused on direct reconstruction of a discretized equally spaced 

input spectrum s, 

[51,52] while some works employ radial basis 

functions 

[23] (such as Gaussians 

[116,155] ), separation of sparse nar-
rowband and smooth broadband spectral components, 

[124,166] and

neural networks. 

[117,144] Reconstruction can potentially be im-
proved by exploring other, carefully chosen basis functions 

for unknown spectra. Additionally, sampling of the input spec-
trum at unequally spaced wavelength points 

[35] and various regu-
larization techniques can be explored. Such choices in basis and 

discretization require prior knowledge of the input spectrum and 

are likely to be application specific. For applications that rely on 

spectral information but do not require explicit knowledge of the 

spectrum itself, one could opt to train a model or neural network 

to directly perform the task at hand. 

[107,257]

Appendix A: Performance Metrics
In this appendix, we provide an overview of the experimentally 

demonstrated performance metrics for the various categories of 

integrated photonic spectrometers. Some of the data listed here 

is plotted in Fig. 9. For each category of integrated photonic 

spectrometer, a separate table is compiled.

A.1 Classical Dispersive Spectrometers

Table 2 Overview of Performance Metrics for On-Chip Classical Dispersive Spectrometers 

a

Ref. Year Method λ c 

(nm) δλ (nm) Δλ (nm) M F (mm 

2 ) D

[89] 2007 AWG 1545 0.2 20 50 64 50 

[79] 2010 Echelle grating 1550 0.8 2.4 3 24 3

[94] 2010 PhC grating 1560 2.5 55 22 0.384 22

[80] 2013 AWG 3800 9.6 77 6 0.75 6

[80] 2013 Echelle grating 3800 10 105 8 3.06 8

[81] 2013 Echelle grating 1550 3.2 115 8 0.56 8

[81] 2013 Echelle grating 1650 7 121 14 0.24 14

[81] 2013 Echelle grating 2125 6 150 16 0.54 16

[81] 2013 Echelle grating 2320 5 60 8 1.04 8

[81] 2013 AWG 2200 1.6 13 6 1 6

[81] 2013 AWG 2200 4.8 38 6 0.48 6

[82] 2013 Echelle grating 850 0.5 30 60 54 60

[83] 2014 Echelle grating 1550 12.7 125 15 4 15

[95] 2014 Planar holograms 740 0.15 148 926 200 926

[96] 2014 Hologram + interferometers 790 0.145 142 20

[90] 2016 AWG 760 0.5 4 8 2.8 8

[91] 2017 AWG 1550 1.6 9 5 112 5

[84] 2018 Echelle grating 1550 0.5 60 121 9 121

[85] 2018 Echelle grating 1545 4.9 25 5 2.25 5

[86] 2019 Echelle grating 1300 4.5 18 4 0.02 4

[87] 2019 Echelle grating 1300 7 1400 4

[87] 2019 Echelle grating 1550 2.5 160

[92] 2019 AWG 860 1.5 60 40 0.62 40

[93] 2020 Cascaded AWGs 1550 1 195 195 110 195

[88] 2023 Echelle grating 1505 0.4 20 16 0.2 16

[98] 2023 Metalenses 1550 0.14 50 32 0.01 32

a For each example, the year of publication of the referenced paper, implementation method, center wavelength λ c 

, spectral resolution δλ, bandwidth 

Δλ, number of measurements M , footprint F , and number of detectors D are listed.
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A.2 Resonator Array Spectrometers

A.3 Wavelength Multiplexing Spectrometers

Table 3 Overview of Performance Metrics for On-Chip Resonator Array Spectrometers 

a

Ref. Year Method λ c (nm) δλ (nm) Δλ (nm) M F (mm 

2 ) D

[99] 2011 MRR 1580 0.6 50 84 1 84 

[100] 2012 PhC cavity 840 0.3 35 100 0.004 100

[126] 2021 MRR + AWG 860 0.75 57.5 70 1.4 70

[129] 2021 PhC cavity 1580 5 70 38 0.0007 38

[128] 2022 MRR 3410 23 90 4 0.01 4

[101] 2023 MRR 809 0.17 12 3 0.15 3

a For each example, the year of publication of the referenced paper, implementation method, center wavelength λ c 

, spectral resolution δλ, bandwidth 

Δλ, number of measurements M , footprint F , and number of detectors D are listed.

Table 4 Overview of Performance Metrics for Spatially Dispersed Wavelength Multiplexing Spectrometers 

a

Ref. Year Method λ c (nm) δλ (nm) Δλ (nm) M F (mm 

2 ) D

[57] 2013 Scattering 1512 0.75 25 33 0.005 33 

[133] 2013 FT 1550 0.04 0.75 32 12 18

[134] 2013 FT 1550 0.05 2 32 24 32

[135] 2015 FT 3750 2.7 54 42 95 42

[102] 2016 Multimode spiral 1520 0.01 2 40 0.25 40

[51] 2017 FT 1550 0.03 0.78 14 14

[136] 2017 FT 1400 4.8 600 201 165 201

[137] 2019 FT 1550 0.038 0.5 34 4.75 34

[103] 2020 Speckle-enhanced FT 1556 0.003 12 640 100 640

[132] 2020 Scattering 755 0.3 15 13 0.02 13

[132] 2020 Scattering 955 1 15 13 0.02 13

[132] 2020 Scattering 1550 3 40 13 0.02 13

[104] 2021 Scattering 1556 0.25 30 8 0.0004 8

[105] 2021 Stratified waveguides 1560 0.45 180 32 0.009 32

[106] 2021 Coherent network 776 0.02 12 8 0.11 8

[139] 2021 FT 1568 0.09 0.6 16 4.5 16

[140] 2021 FT 1460 0.05 340 16 10 16

[141] 2022 FT 850 3.4 400 32 3.06 32

[107] 2023 Disordered lattice 1545 0.015 40 4096 1 4096

[142] 2023 FT 1560 0.4 7 32 27 32

[143] 2023 FT 1550 3 35 16 1.64 16

[146] 2023 Coherent network 1520 0.1 10 25 0.026 5

[147] 2023 Self-coupled waveguides 1550 0.1 100 64 3 64

[144] 2024 Multimode interference 795 1 40 0.625

[144] 2024 Multimode interference 795 0.05 2 144000 144000

[145] 2025 Multimode interference 1570 0.1 30 12 0.0003 12

[148] 2025 Metasurfaces 1550 0.047 40 1200 0.045 1200

a For each example, the year of publication of the referenced paper, implementation method, center wavelength λ c 

, spectral resolution δλ, bandwidth 

Δλ, number of measurements M , footprint F , and number of detectors D are listed.
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A.4 Stationary-Wave Integrated Fourier-Transform Spectrometers

A.5 Tunable Narrowband Filter Spectrometers

Table 5 Overview of Performance Metrics for Stationary-Wave Integrated Fourier-Transform Spectrometers 

a

Ref. Year Method λ c (nm) δλ (nm) Δλ (nm) M F (mm 

2 ) D

[150] 2017 Copropagative 900 6 100 0.1 

[108] 2018 Lippmann 633 0.16 256 2000 0.032 2000

[109] 2018 Tunable SWIFTS 1500 40 1000 347 0.001 5

[153] 2020 Tunable SWIFTS 1550 5.5 500 10 87

[110] 2024 Lippmann 842.5 0.2 75 160 5.12 160

a For each example, the year of publication of the referenced paper, implementation method, center wavelength λ c 

, spectral resolution δλ, bandwidth 

Δλ, number of measurements M , footprint F , and number of detectors D are listed.

Table 6 Overview of Performance Metrics for On-Chip Tunable Narrowband Filter Spectrometers 

a

Ref. Year Method λ c 

(nm) δλ (nm) Δλ (nm) M F (mm 

2 ) D

[159] 2010 MRR + AWG 1488 0.1 10 100 2 25   

[111] 2016 MRR 1580 0.15 19 126 0.6 1

[160] 2019 MRR + AWG 1555 0.1 25.4 254 9 9

[112] 2022 PhC cavity 1455 0.5 12.3 25 1

[113] 2022 FP cavity array 1472 0.43 73.2 170 0.026 5

[113] 2022 FP cavity array 1472 0.51 102.7 201 0.036 7

[114] 2022 MRR + MRR array 1550 0.005 9.7 17389 0.35 11

[155] 2022 PhC cavity 1556 0.32 16 100 0.0045 3

[161] 2022 MRR + AWG 1300 0.2 70 350 0.12 10

[115] 2023 Photonic molecule 1550 0.04 100 2501 0.004 1

[116] 2023 Microdisk 1505 0.01 0.3 65 0.24 1

[116] 2023 Microdisk 1510 0.2 20 321 0.24 1

[166] 2023 Multimode MRR 1550 0.08 100 1250 0.0007 2

[117] 2024 Cascaded MRRs 1550 0.1 200 2187 0.004 3

[117] 2024 Cascaded MRRs 1550 2 200 192 0.004 3

[118] 2024 Cascaded MRRs 1440 0.008 520 4096 0.6 1

[156] 2024 MRR 1550 0.4 10 0.0003 1

[157] 2024 MRR + lattice filter 1550 0.2 35 1.9 8

[158] 2025 MRR + lattice filter 1550 0.2 40 0.21 4

a For each example, the year of publication of the referenced paper, implementation method, center wavelength λ c 

, spectral resolution δλ, bandwidth 

Δλ, number of measurements M , footprint F , and number of detectors D are listed.
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