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Calculation of nonzero-temperature Casimir forces in the time domain
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We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic
simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous
zero-temperature time-domain method, only a small modification is required, but we explain that some care
is required to properly capture the zero-frequency contribution. We validate the method against analytical
and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a
nonmonotonic behavior previously demonstrated in a pistonlike geometry.
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In this paper, we show how to compute nonzero-
temperature (T > 0) corrections to Casimir forces via time-
domain calculations, generalizing a computational approach
based on the finite-difference time-domain (FDTD) method
that we previously demonstrated for T = 0 [1,2]. New com-
putational methods for Casimir interactions [3–8] have become
important in order to model nonplanar micromechanical sys-
tems where unusual Casimir effects have been predicted, and
there has been increasing interest in T > 0 corrections [9–19],
especially in recently identified systems where these effects are
non-negligible [12]. Although T > 0 effects are easy to incor-
porate in the imaginary frequency domain, where they merely
turn an integral into a sum over Matsubara frequencies [20],
they are nontrivial in time domain because of the singularity
of the zero-frequency contribution, and we show that a naive
approach leads to incorrect results. We validate using both
a one-dimensional (1D) system where analytical solutions are
available and also a two-dimensional (2D) pistonlike geometry
[3,21] where we compare to a frequency-domain numerical
method. In the piston, we observe an interesting effect in which
a nonmonotonic phenomenon previously identified at T = 0
disappears for a sufficiently large T .

The Casimir force arises from fluctuations at all frequencies
ω, and the T = 0 force can be expressed as an integral F (0) =∫ ∞

0 f (ξ )dξ over Wick-rotated imaginary frequencies ω = iξ

[20]. At T > 0, this integral becomes a sum over “Matsubara
frequencies” ξn = nπωT for integers n, where ωT = 2kBT/h̄

and kB is Boltzmann’s constant [20]:

F (T ) = πωT

[
f (0+)

2
+

∞∑
n=1

f (nπωT )

]
. (1)

Equation (1) corresponds to a trapezoidal-rule approximation
of the T = 0 integral [8]. At room temperature, ξ = πωT cor-
responds to a “wavelength” 2π/ξ = 7 µm, much larger than
most experimental separations, so usually T > 0 corrections
are negligible [20]. However, experiments are pushing toward
> 1-µm separations in attempts to measure this phenomenon
[17,18], recently culminating in an experiment at several µm
that appears to clearly observe the T > 0 corrections [19]. In

addition, we have recently predicted much larger T corrections
with certain materials and geometries [12].

Many of the recent techniques to compute Casimir forces
in arbitrary geometries can be related to mature computational
methods from classical electromagnetism (EM) [8]. One
method is to use the fluctuation-dissipation theorem, by which
the mean-square electric and magnetic fields 〈E2〉 and 〈H 2〉
can be computed from classical Green’s functions [20], and the
mean stress tensor can be computed and integrated to obtain
the force [1–3]. In particular, at each ω, the correlation function
〈E2〉 is

〈Ej (x)Ek(x′)〉ω = − h̄

π
Im

[
ω2GE

jk(ω; x,x′)
]

coth

(
ω

ωT

)
, (2)

where GE
jk = (GE

k )j is the classical dyadic “photon” Green’s
function, proportional to the electric field in the j direction at
x due to an electric-dipole current in the k direction at x′, and
solves

[∇ × µ(ω,x)−1∇ × − ω2ε(ω,x)]GE
k (ω,x,x′) = δ3(x − x′)êk,

(3)

where ε is the electric permittivity tensor, µ is the magnetic
permeability tensor, and êk is a unit vector in direction k.
The magnetic-field correlation 〈H 2〉 has a similar form [1,2].
Note that the temperature dependence appears as a coth factor
(from a Bose-Einstein distribution). If this is Wick rotated to
imaginary frequency ω = iξ , the poles in the coth function
give the sum (1) over Matsubara frequencies [22]. In our
EM simulation, what is actually computed is the electric or
magnetic field in response to an electric or magnetic dipole
current, respectively. This is related to Gij by

Ejk(ω,x,x′) = −iωGE
jk(ω,x,x′), (4)

where Ejk(ω,x,x′) denotes the electric field response in the
j th direction due to a dipole current source J(ω,x,x′) = δ(x −
x′)êk [1].

This equation can be solved for each point on a surface to
integrate the stress tensor, and for each frequency to integrate
the contributions of fluctuations at all frequencies. Instead of
computing each ω separately, one can use a pulse source in
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time, whose Fourier transform contains all frequencies. As
derived elsewhere [1,2], this corresponds to a sequence of time-
domain simulations, where pulses of current are injected and
some function �(t) of the resulting fields (corresponding to the
stress tensor) is integrated in time, multiplied by an appropriate
weighting factor g(t). We perform these simulations using the
standard FDTD technique [23], which discretizes space and
time on a uniform grid. In frequency domain, Wick rotation
to complex ω(ξ ) is crucial to obtain a tractable frequency
integrand [3,8], and the analog in time domain is important to
obtain rapidly decaying fields (hence short simulations) [1,2].
In time domain, one must implement complex ω indirectly:
Because ω only appears explicitly with ε in Eq. (3), converting

ω to the complex contour ω(ξ ) ≡ ξ
√

1 + iσ
ξ

is equivalent to

operating at a real frequency ξ with an artificial conductivity
ε(r) → ε(r)(1 + iσ

ξ
) [1,2]. (One cannot use purely imaginary

frequencies ω = iξ in time domain, because the corresponding
material ε → −ε has exponentially growing solutions in time
[1].) Thus, by adding an artificial conductivity everywhere, and
including a corresponding Jacobian factor in g(t), one obtains
the same (physical) force result in a much shorter time (with the
fields decaying exponentially due to the conductivity). (Note
that the resulting “time” is not physical time but is instead a
mathematical construction equivalent to a frequency-domain
calculation for equilibrium or quasistatic problems.)

Now, we introduce the basic idea of how T > 0 is incor-
porated in the time domain, and explain where the difficulty
arises. The standard T > 0 analysis of Eq. (1) is expressed
in frequency domain, so we start there by exploiting the
fact that the time-domain approach is derived from a Fourier
transform of a frequency-domain approach. In particular, g(t)
is the Fourier transform of a weighting factor g[ω(ξ )] [1,2].
At real ω, the effect of T > 0 is to include an additional
factor coth[ω(ξ )

ωT
] in the ω(ξ ) integral from Eq. (2). So, a naive

approach is to replace g[ω(ξ )] with

g[ω(ξ )] → g[ω(ξ )] coth

[
ω(ξ )

ωT

]

= −iξ

(√
1 + iσ

ξ

)
(1 + iσ/2ξ ) coth

[
ω(ξ )

ωT

]
, (5)

using the g [ω(ξ )] expression for T = 0 from [1], and then
Fourier transform this to yield g(t). However, there is an
obvious problem with this approach: The 1/ω singularity in
coth[ω(ξ )

ωT
] means that Eq. (5) is not locally integrable around

ξ = 0, and therefore its Fourier transform is not well defined.
If we naively ignore this problem, and compute the Fourier
transform via a discrete Fourier transform, simply assigning
an arbitrary finite value for the ξ = 0 term, this unsurprisingly
gives an incorrect force for T > 0 compared to the analytical
Lifshitz formula for the case of parallel perfect-metal plates in
one dimension [24], as shown in Fig. 1 (green dashed line).

Instead, a natural solution is to handle ω �= 0 by the coth
factor as in Eq. (5), but to subtract the ω = 0 pole and handle
this contribution separately. We will extract the correct ω = 0
contribution from the frequency-domain expression Eq. (1),
convert it to time domain, and add it back in as a manual
correction to g(t). In particular, the coth[ω(ξ )

ωT
] function has

poles at ω = inπωT for integers n. When the ω integral is
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FIG. 1. (Color online) Comparison between FDTD (red circles)
and the analytical Lifshitz formula [25] (blue line) for the Casimir
force between perfect-metal plates in one dimension with separation
a. The ω = 0 and ω �= 0 contributions to the Matsubara sum (1) are
plotted separately, in addition to the total force. The straightforward
method of including the coth(h̄ω/2kT ) Bose-Einstein factor in the
FDTD integration (green dashed line) gives an incorrect result
because the ω = 0 pole requires special handling.

Wick rotated, the residues of these poles give the Matsubara
sum Eq. (1) via contour integration [22]. If we subtract the
n = 0 pole from the coth, obtaining

gn>0(ξ ) = g[ω(ξ )]

{
coth

[
ω(ξ )

ωT

]
− ωT

ω(ξ )

}
, (6)

the result of the time-domain integration of gn>0(t)�(t) will
therefore correspond to all of the n > 0 terms in Eq. (1), nor is
there any problem with the Fourier transformation to gn>0(t).
Precisely this result is shown for the 1D parallel plates in Fig. 1,
and we see that it indeed matches the n > 0 terms from the
analytical expression. To handle the ω = 0 contribution, we
begin with the real-ω T = 0 force expression, following our
notation from the time-domain stress-tensor method [1,2]:

Fi = Im
h̄

π

∫ ∞

0
dωgR(ω)�i(ω), (7)

where gR(ω) = −iω is the weighting factor for the σ = 0
real ω contour and �i(ω) = �E

i (ω) + �H
i (ω) is the surface-

integrated stress tensor (electric- and magnetic-field contri-
butions). From Eq. (1), the ω = 0 contribution for T > 0 is
then

Fi,(n=0) = lim
ω→0+

Im

[
h̄

π

1

2
(−iω)�i(ω)

2πkBT

h̄

]
(8)

= lim
ω→0+

Re[−ω�i(ω)kBT ]. (9)

(Notice that h̄ cancels in the ω = 0 contribution: This term
dominates in the limit of large T where the fluctuations can
be thought of as purely classical thermal fluctuations.) To
relate Eq. (9) to what is actually computed in the FDTD
method requires some care because of the way in which
we transform to the ω(ξ ) contour. The quantity �E

i (ω) is
proportional to an integral of Eij (ω) = −iωGij (ω), from
Eq. (4). However, the ω(ξ ) transformed system computes
�̃E

i (ξ ) ∼ Ẽij (ξ ) = −iξG̃ij (ξ ), where G̃(ξ ) solves Eq. (3)
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with ω2ε(r) → ξ 2(1 + iσ
ξ

)ε(r), but what we actually want

is −iωGij (ω)|ω=ω(ξ ) = −iω(ξ )G̃ij (ξ ). Therefore, the correct
ω = 0 contribution is given by

lim
ω→0+

�E
i (ω) = lim

ξ→0+

ω(ξ )

ξ
�̃E

i (ξ ). (10)

Combined with ω(ξ )kBT factor from Eq. (9), this gives an n =
0 contribution of �̃|ξ=0+ multiplied by −ω(ξ )2kBT/ξ |ξ=0+ =
σkBT . This ω = 0 term corresponds to a simple expression in
the time domain, since �̃|ξ=0+ is simply the time integral of
�̃(t) and the coefficient σkBT is merely a constant. Therefore,
while we originally integrated gn>0(t)�̃(t) to obtain the n > 0
contributions, the n = 0 contribution is included if we instead
integrate

[gn>0(t) + σkBT ]�̃(t). (11)

The term [gn>0(t) + σkBT ] generalizes the original g(t)
function from [1] to any T � 0.

We check Eq. (11) for the 1D parallel plate case in Fig. 1
against the analytical Lifshitz formula [25]. As noted above,
the gn>0 term (6) correctly gives the n > 0 terms, and we also
see that the σkBT term gives the correct n = 0 contribution,
and hence the total force is correct.

As another check, we consider a more complicated pis-
tonlike geometry [3]], shown schematically in the inset of
Fig. 2. Two square rods lie between two sidewalls, which
we solve here for the 2D case of z-invariant fluctuations. At
T = 0, such geometries exhibit an interesting nonmonotonic
variation of the force between the two blocks as a function
of sidewall separation d [3,21], which does not arise in the
simple pairwise-interaction heuristic picture of the Casimir
force. This can be seen in the solid lines of Fig. 2, where the
nonmonotonicity arises from a competition between forces
from transverse-electric (TE, E in-plane) and transverse-
magnetic (TM, E out-of-plane) polarizations [26], which can
be explained by a method-of-images argument [21]. In Fig. 2,
the solid lines are computed by a T = 0 frequency-domain
boundary-element method (BEM) [7], whereas the circles are
computed by the T = 0 FDTD method [1,2], and both methods
agree. We also compute the force at T = 1 × πch̄/kBa where
the ξ = 0+ term dominates. We see that the FDTD method
with the T > 0 modification Eq. (11) (diamonds) agrees with
the frequency-domain BEM results (dashed lines), where the
latter simply use the Matsubara sum (1) to handle T > 0.

Interestingly, Fig. 2 shows that the nonmonotonic effect
disappears for T = 1 × πch̄/kBa, despite the fact that the
method-of-images argument of [21] ostensibly applies to the
ξ = 0+ quasistatic limit (which dominates at this large T )
as well as to ξ > 0. The argument used the fact that TM
fluctuations can be described by a scalar field with Dirichlet
boundary conditions (vanishing at the metal), and in this
case the sidewalls introduce opposite-sign mirror sources
that reduce the interaction as d decreases; in contrast, TE
corresponds to a Neumann scalar field (vanishing slope), which
requires same-sign mirror sources that increase the interaction
[21]. In Fig. 2, however, while the T = 1 × πch̄/kBa TM force
still decreases as d decreases, the TE force no longer increases
for decreasing d at T = 1 × πch̄/kBa. The problem is that
the image-source argument most directly applies to z-directed
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FIG. 2. (Color online) Comparison between FDTD (circles and
diamonds) and BEM frequency domain (solid and dashed lines) calcu-
lation of the 2D Casimir force (z-invariant fluctuations) between two
perfect-metal sidewalls (separation d), normalized by the proximity
force approximation for the 2D parallel plates FPFA = h̄cζ (3)/8πa2.
At T = 0 (circles and solid lines) total force (black) varies nonmono-
tonically with d , due to competition between TE (red) and TM (blue)
polarizations [21]. At T = 1 × πch̄/kBa (dashed lines and diamonds)
BEM and FDTD match, but the nonmonotonicity disappears.

dipole sources in the scalar-field picture—electric JE
z currents

for TM and magnetic JH
z currents for TE—while the situation

for in-plane sources (corresponding to derivative of the scalar
field from dipolelike sources) is more complicated [27]. For
a sufficiently large T dominated by the ξ = 0+ contribution
(as here), we find numerically that the JH

z sources no longer
contribute to the force as ξ → 0+. Intuitively, as ξ → 0+ a
magnetic dipole produces nearly constant (wavelength → ∞)
field, which satisfies the Neumann conditions and hence is not
affected by geometry. Instead, numerical calculations show
that the TE ξ = 0+ contribution is dominated by JE

x sources
and the corresponding electric stress-tensor terms, which turn
out to slightly decrease in strength as d decreases. (A related
effect is that, for small d, it can be observed in Fig. 2 that
the T = 1 force is actually smaller than the T = 0 force,
again due to the suppression of the TE contribution. Since the
force diverges as T → ∞, this means that the force changes
nonmonotonically with T at small d; a similar nonmonotonic
temperature dependence was previously observed for Dirichlet
scalar-field fluctuations in a sphere-plate geometry [15].)

In contrast, if we consider the three-dimensional constant
cross-section problem with z-dependent fluctuations, corre-
sponding to integrating eikzz fluctuations over kz [20]; then
we find that the nonmonotonic effect is preserved at all T .
This is easily explained by the fact that, for perfect metals,
kz �= 0 is mathematically equivalent to a problem at kz = 0
and ξ → √

ξ 2 + k2
z [3,28], and so the n = 0 Matsubara term

still contains contributions equivalent to ξ > 0 in which the JH
z

mirror argument applies and the situation is similar to T = 0.
In any case, this 2D disappearance of nonmonotonicity seems
unlikely to be experimentally relevant, because we find that
it only occurs for T >∼ 0.7 × πch̄/kBa, which for a = 1 µm
corresponds to T >∼ 5000 K .

Thus, a simple (but not too simple) modification to our
previous time-domain method allows off-the-shelf FDTD
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software to easily calculate Casimir forces at nonzero temper-
atures. Although the disappearance of nonmonotonicity em-
ployed here as a test case appears unrealistic, recent predictions
of other realistic geometry and material effects [12], combined
with the fact that temperature effects in complex geometries
are almost unexplored at present, lead us to hope that future
work will reveal further surprising temperature effects that
are observable in micromechanical systems. Although various
authors have debated which model ε(ω) most accurately
reflects experiments [10,11,17–19], computational methods
such as the one here are independent of such debates, since
any desired material can be inserted in the computation (using
standard techniques to express material dispersion in FDTD
[23]). For example, although the perfect metals used in our
examples are obviously an artificial material, it has been argued

that if the perfect metal is viewed as the limit of a Drude model
then the n = 0 contribution should be omitted [10] for the TM
mode (using our TE/TM convention)—in our computational
method, this is accomplished simply by dropping the second
term from Eq. (11) during the TM calculation (and it turns out
that nonmonotonicity still disappears in a similar manner).
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