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For linear electromagnetic systems possessing time-reversal symmetry, we present an approach to bound
ratios of internal fields excited from different ports, using only the scattering matrix (S matrix), improving upon
previous related bounds by Sounas and Alù [D. L. Sounas and A. Alù, Phys. Rev. Lett. 118, 154302 (2017)]. By
reciprocity, emitted-wave amplitudes from internal dipole sources are bounded in a similar way. When applied
to coupled-resonant systems, our method constrains ratios of resonant coupling and decay coefficients. We also
obtain a relation for the relative phase of fields excited from the two ports and the ratio of field intensities
in a two-port system. In addition, although lossy systems do not have time-reversal symmetry, we can still
approximately bound loss-induced nonunitarity of the S matrix using only the lossless S matrix. We show
numerical validations of the near tightness of our bounds in various scattering systems.
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I. INTRODUCTION

In this paper, we introduce a method to bound the in-
ternal fields of linear scattering systems with time-reversal
symmetry, given only the S matrix relating incoming and out-
going wave modes (Fig. 1), often yielding significantly tighter
bounds than a precursor approach [1] while also extending to
bounds on more general quantities. Our central results are up-
per and lower bounds (3) on ratios of field amplitudes excited
by different ports (Sec. II) or, equivalently (by reciprocity),
emitted-wave amplitudes from a point dipole source into dif-
ferent ports (Sec. IV B). Compared with Ref. [1], our work
incorporates more information from the S matrix in order to
tighten the bounds and we also extend them to more general
quadratic ratios of linear functions of the fields. The near
tightness of our bounds is numerically validated in a variety
of. two-dimensional (2D) and 3D electromagnetic scattering
systems (Sec. III and Fig. 2), including a nonreciprocal exam-
ple [Figs. 2(e) and 2(f)]. We also obtain bounds on ratios of
resonant decay and coupling coefficients in coupled-resonant
systems (Sec. V), with previous two-port results [2] as a spe-
cial case. We also uncover equalities (20), (24), (27), and (29)
relating amplitude ratios and phase differences in two-port
systems (Sec. VI) [2]. Finally, although time-reversal sym-
metry typically prohibits or neglects loss (unless it is paired
with gain in a nonreciprocal system [3]), we show in Sec. VII
that we can also bound the loss-induced nonunitarity of the S
matrix to first order in the loss tangent, given only the lossless
S matrix.

There has been great recent interest and progress on bounds
on electromagnetic responses [4,5], driven in part by the
ability of large-scale optimization (“inverse design”) [6,7]
to explore a vast space of parameters for the design of

*Contact author: stevenj@math.mit.edu

scattering systems. Bounds help inform the design process
by delineating the attainable performance and indicating how
much additional performance could potentially be gained over
existing designs. Such upper bounds come in many different
forms, depending upon what quantity is being bounded and
what information is supplied. For example, given only the
materials and the design volume, one can bound absorption
and scattering cross sections [8,9] or emitted powers [8,10].
The bounds we consider in this paper are of a different flavor:
Given information about the scattered waves, but no informa-
tion on the materials other than their time-reversal symmetry
and linearity, what constraints are there on the internal fields
and related quantities? We were inspired by pioneering work
on such questions by Sounas and Alu [1]. Their relevant
results show that given a pair of ports in a linear system with
time-reversal symmetry and energy conservation, inequalities
can be derived for internal fields and the S parameter connect-
ing the two ports. Our work differs in several aspects. First,
our method exploits the entire S matrix instead of a single
S parameter, so that our bounds are usually tighter. Second,
our method can generate various inequalities and equalities
for different quantities involving fields excited from multiple
ports. Third, only time-reversal symmetry is needed to formu-
late our theory, while energy conservation (lack of dissipation
and gain) and Lorentz reciprocity, if satisfied, can be readily
incorporated.

As a special case, scattering in a coupled-resonant system
is also subject to our bounds, if the system has time-reversal
symmetry and is linear. For sufficiently long-lifetime res-
onances, coupled-resonant systems can often be modeled
by temporal coupled-mode theory (TCMT), in which scat-
tering is split into two pathways: a direct pathway and a
resonance-mediated indirect pathway [11,12]. TCMT gener-
ically describes such resonant systems using a minimal set of
ordinary differential equations whose terms are constrained
by general principles such as time-reversal symmetry or
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FIG. 1. Sketch of a multiport system and time reversal. (a) Struc-
ture with m ports. For incoming waves with unit amplitude at the kth
port, the output amplitude at each port is Sjk with j = 1, 2, . . . , m.
The field induced by this input is Ek . (b) Effects of time-reversal
operation. The directions of propagation of all waves are reversed
and the amplitudes become the complex conjugates.

reciprocity. The resonances are excited from input ports
and decay to output ports, which are quantified by resonant
coupling and decay coefficients in TCMT. Time-reversal sym-
metry relates these coefficients to the direct-pathway S matrix
[12]. In this work, expressed in terms of the direct-pathway
S matrix, our bounds reveal latent constraints on the resonant
coupling and decay coefficients and include some previous
results [2] as a special case. A different extension to Ref. [2]
was recently presented in Ref. [13].

As the starting point of this work, time-reversal symmetry
underlies all of our results. Time reversal is a transformation
t → −t that reverses the arrow of time [14–20]. In elec-
tromagnetism, this operation reverses the dynamics of fields
and sources, and requires material properties to be trans-
formed accordingly (e.g., loss becomes gain) in order for the
macroscopic Maxwell equations to still be satisfied. If the
time-reversed materials are identical to the original materials,
the system has time-reversal symmetry. For time-independent
materials in frequency domain, time-reversal symmetry re-
quires permittivity and permeability tensors to be real, and
magnetoelectric coupling tensors to be purely imaginary if
such couplings are nonzero as in bianisotropic materials [21].
Time-reversal symmetry also imposes constraints on the S
matrix of a scattering device [Fig. 1(a)], where S relates
amplitudes of input (ain) and output (aout) modes via aout =
Sain [22]. If a system has time-reversal symmetry, S sat-
isfies S∗S = 1 [11], where ∗ denotes complex conjugation
(not conjugate transposition) and 1 is the identity matrix.
An S matrix explicitly describes externally visible behavior
of the system by encapsulating the mapping from input to
output waves, but as this work shows, it also implicitly con-
strains internal electromagnetic fields excited from different
ports [1], as well as resonant coupling and decay coefficients
in a coupled-resonant system in the context of TCMT [12,
23–25]. This area of research complements previous studies
of fundamental limits on electromagnetic responses [4,5].

II. TIME-REVERSAL-SYMMETRY BOUNDS
IN A MULTIPORT STRUCTURE

Consider a time-independent structure with multiple ports.
The amplitudes of input and output waves are described by a
scattering matrix or S matrix. By convention, if the kth port

receives an input wave with unit amplitude while all other
ports have zero input, the output amplitude at the jth port is
S jk . The distribution of electric fields excited from port k is
denoted by Ek , as shown in Fig. 1(a). In this paper, we work
in frequency domain and the field amplitudes take complex
values. Time reversal reverses propagation of waves and con-
jugates the complex amplitudes, as depicted in Fig. 1(b). If
the system possesses time-reversal symmetry and linearity, the
complex-conjugate amplitude E∗

k can be expressed as a linear
combination of E j by E∗

k = ∑m
j=1 S∗

jkE j , where m is the num-

ber of ports [1]. A similar relation (L̂Ek )∗ = ∑m
j=1 S∗

jk L̂E j

holds for any real linear operator L̂ acting on all fields, since L̂
commutes with conjugation and the scalars S∗

jk . To formulate
our results, let us introduce a column vector E composed of
the L̂E j , i.e., E = (L̂E1, L̂E2, . . . , L̂Em)�, which thus satisfies

E∗ = S†E, (1)

with ∗ and † denoting complex conjugation and conjugate
transposition, respectively. If each E j = L̂E j has multiple ele-
ments, S here is understood as S ⊗ 1, with ⊗ and 1 denoting
the Kronecker product and the identity operator acting on
each E j , respectively. For example, if E j has n components
representing fields at different locations and/or in different
directions, 1 is understood as 1n; if E j is a function, 1 is
understood as the identity operator in the function space.
(More generally, each E j may be an element in a Hilbert space
with inner product of two vectors defined as E†

j Ek for discrete
cases or

´
E∗

j Ek for functions.) Our discussion hereafter as-
sumes discrete cases with n = 1 unless otherwise stated, but
the extension to n > 1 or functions is straightforward (e.g.,
matrices become block matrices).

Starting from the above relation and defining a matrix
function

gS (X ) = ReX + FSReXFS
� + FSImX − ImXFS

�, (2)

with FS = ImS(1m + ReS)−1 and � representing matrix
transposition, our main result (proved in Appendix A) is
bounds on the generalized Rayleigh quotient for chosen m ×
m Hermitian matrices V and W (depending on the quantity
being bounded, as discussed below):

λmin[GS (V,W )] � E†WE
E†VE � λmax[GS (V,W )], (3)

where GS (V,W ) = gS (V )−1gS (W ) is a matrix, V is chosen
so that gS (V ) is positive definite or negative definite, λmin

and λmax denote the minimum and maximum eigenvalues
(guaranteed to be real), and E �= 0 (but the involved fields
may not necessarily be inside the scattering media or devices).
We also assume that 1m + ReS is invertible, which is almost
always satisfied. (A remedy for singular cases is mentioned in
Appendix C.) The bounds are attained at E = (1 + iFS

�)ψ ,
where ψ is the corresponding eigenvector of GS (V,W ). Var-
ious inequalities can be produced by Eq. (3) via different
choices of L̂, W , and V .

The most straightforward application of Eq. (3) is to
bound relative intensities (or any linear combination thereof)
of the fields (e.g., at a single point, and/or a single direc-
tion, and/or volume averaged, etc.) excited from different
ports. In particular, with real diagonal matrices V = 1m and
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W = diag(w1, . . . ,wm), Eq. (3) becomes

λmin[GS (V,W )] �
m∑

k=1

wkηk � λmax[GS (V,W )], (4)

where ηk is an “intensity ratio” defined by

ηk = ‖Ek‖2∑m
j=1 ‖E j‖2

. (5)

For a specified location r, typical choices of each element
of E (choices of L̂) are a field component Ek = Ek (r) · n̂ in
direction n̂ or the entire field vector Ek = Ek (r). (For choices
such as Ek = Ek (r) that contain multiple components, similar
to S ⊗ 1n above, the matrices V and W could be understood
as V ⊗ 1n and W ⊗ 1n.) One can also allow each element of E
to involve multiple locations or even continuous volumes. For
example, consider the choice Ek = √

εEk , with ε being a real
symmetric positive-definite permittivity tensor, where ε and E
are functions of location. This choice, with the usual integral
inner product [26], yields the fraction of electric-field energy:

ηk =
´

d3x Ek (x) · Dk (x)∑m
j=1

´
d3x E j (x) · D j (x)

, (6)

where D = εE is the electric displacement field and x denotes
the location. This fraction is also bounded by the S matrix as
in Eq. (4).

If GS (V,W ) happens to be zero, the inequalities in Eq. (3)
reduce to the equalities

E†WE = 0, gS (W ) = 0. (7)

An example of such a situation is presented in Sec. VI.

III. NUMERICAL VERIFICATION ON MULTIPORT
STRUCTURES

Here, we numerically validate Eq. (4) in several example
systems, with the choice Ek = Ek (r) · n̂, where the vector n̂
is set as coordinate directions x̂, ŷ, or ẑ. We focus on the
trade-off between a pair of intensity fractions η j and ηk , where
j and k label two selected ports. This corresponds to choosing
w j,wk ∈ R while setting all other weights w� �= j,k to zero.
Equation (4) then becomes

λmin(w j,wk ) � w jη j + wkηk � λmax(w j,wk ), (8)

where λmin(w j,wk ) is a function of w j and wk for a given S.
In a multiport structure with m � 3, given w j and wk that are
not simultaneously zero, Eq. (8) typically permits a “linear
strip” lying between two parallel lines in (η j, ηk ) space. By
varying the ratio w j/wk , this strip changes (in both orientation
and width), and the intersection of the strips for all w j/wk

yields the feasible region for η j and ηk . For any given system,
the main goal of the numerical validation is to see how tight
the bounds are: How completely do the observed values of
(η j, ηk ) (e.g., for different r and n̂) fill up the feasible region
allowed by our bounds?

In this section, all media are dielectric with real permittiv-
ity, vacuum magnetic permeability, and zero magnetoelectric
couplings. We consider three examples, shown in Fig. 2
and discussed below. Electromagnetic simulations were

performed with a free-software implementation of the finite-
difference time-domain (FDTD) method [27], except where
otherwise noted. In each case, we show the feasible set pre-
dicted by our bounds as a white region, the infeasible set as
a black region, and numerical observations as colored data
points. For comparison, we also plot the relevant bounds from
the previous work [1] as the cyan curves, where the curvilinear
and straight segments correspond to

η j + ηk − 2|S jk|√η jηk � 1 − |S jk|2, η j + ηk � 1, (9)

respectively. [For small |S jk|, the former inequality ap-
proaches the latter, while the latter is immediately implied
by the definition of the fractions in Eq. (5), which sum up
to one.] In each example, we find that the numerical results
lie within our predicted feasible set and nearly saturate our
constraints, whereas the bounds of Ref. [1] are much looser.
The tightness of our inequalities (3), (4), and (8) compared
with the previous inequalities (9) can be attributed to two
reasons. First, our inequalities exploit the entire S matrix
instead of a single S parameter. Second, the first inequality
in Eq. (9) was derived via the Cauchy-Schwarz inequality,
which weakens the bounds, whereas the derivation of our
inequalities, as detailed in Appendix A, does not involve a
weakening step. In addition, the first inequality in Eq. (9)
relies on power conservation but our inequalities (3), (4), and
(8) do not, which implies that our inequalities are more widely
applicable.

First, we simulate an asymmetric six-port system based
on a periodic grating composed of a substrate (silica, refrac-
tive index n = 1.45) and ridges (silicon nitride, n = 2.02) in
vacuum, as shown in Fig. 2(a). The incident light is monochro-
matic plane waves in the xy plane with the Hz (in-plane
E field) polarization. We consider fields satisfying periodic
boundary conditions, which effectively restricts incoming and
outgoing waves to be either normal incidence (perpendicular
to the substrate) or be one of a finite set of diffracted orders
[26]. By choosing a wavelength in the range �/2 < λ < � for
the minimum period �, there are only two possible diffracted
beams on either side, effectively forming a system with six
ports as shown in Fig. 2(a). To validate Eq. (4), the S matrix
and fields induced by a unit-amplitude input from each single
port need to be computed. We evaluate the in-plane field in-
tensities |E� · n̂|2 for � = 1, . . . , 6 and n̂ = x̂, ŷ in the grating,
the substrate, and nearby free space. Here, the two selected
ports labeled by j and k are shown in Fig. 2(a). The feasible
region for η j and ηk , illustrated as the white area in Fig. 2(b),
is nearly filled by the dots, which represent the simulation
data. The data points close to the diagonal correspond to the
locations where fields can be strongly excited from both ports.
In contrast, the data points in the vicinity of the origin come
from locations that are nearly inaccessible from either of the
two ports. In this example, the origin is included in the feasible
region. [As discussed in Appendix B, in an m-port system,
time-reversal symmetry does not forbid intensitylike fractions
in Eq. (5) associated with at most 
(m − 1)/2� ports from
being zero simultaneously at certain locations.]

In the second example, we consider a 3D grating with
two-dimensional periodicity along both x and y directions.
The minimum period is the same for both directions and the
media are the same as those in the previous example. Let the
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FIG. 2. Numerical validation based on multiport systems. (a) Periodic grating composed of a substrate (silica, refractive index n = 1.45)
and ridges (silicon nitride, n = 2.02) with the minimum period � in the x direction and translational invariance in the z (out-of-plane) direction.
The height of the ridges and the thickness of the substrate are both h = 0.6�. The widths of the ridges are b1 = 0.4� and b2 = 0.1�. The
width of the gap between the two ridges is also b2 = 0.1�. The grating is illuminated by plane waves with in-plane polarization at the
wavelength 0.8�. The incoming plane waves are restricted to a few specific in-plane directions so that a six-port system is effectively formed.
Our numerical validation focuses on the two ports labeled by j and k. (b) Feasible and infeasible regions predicted by time-reversal-symmetry
bounds and data points from simulation for the system in (a). In the Cartesian coordinate system spanned by η j and ηk , the simulation data for
x and y field components are represented by red and green dots, respectively. The white region is permitted by Eq. (4), while the black region is
forbidden. The cyan curve represents the bounds in Eq. (9). (c) Periodic grating composed of a substrate (silica) and rectangular pillars (silicon
nitride). The structure forms a square lattice with a period � in both the x and y directions. The height of the pillars and the thickness of the
substrate are both h = 0.75�. The length and width of each pillar are b1 = 0.625� and b2 = 0.25�. Each unit cell contains two pillars making
an angle of 60◦. The wavelength is 1.25�. With incoming plane waves propagating in the ±z directions and polarized in the x or y directions,
a four-port system is effectively formed. Our numerical validation focuses on the two ports labeled j and k. (d) Feasible and infeasible regions
predicted by time-reversal-symmetry bounds and data points from simulation for the system in (c). The simulation data for x, y, and z field
components are represented by red, green, and blue dots, respectively. The coordinate system, white and black regions, and the cyan curve
have the same meaning as that in (b). (e) Time-reversal-symmetric but nonreciprocal film suspended in vacuum with normal-incidence plane
waves polarized in the x or y directions. The film is made of a fictitious medium with a real but asymmetric permittivity tensor. The ratio of
film thickness to wavelength is 1.56. (f) Feasible and infeasible regions predicted by time-reversal-symmetry bounds and data points from
simulation for the system in (e). The coordinate system, red and green dots, and white and black regions have the same meaning as that in (b).
The cyan curve depicts the bound in the second inequality of Eq. (9).

incident light be monochromatic plane waves that propagate
perpendicularly to the substrate surface and have a wavelength
too large to allow diffracted orders. With both linear (Ex and
Ey) polarizations taken into account, such a system has four
ports, each of which is assigned to either polarization on either
side, as shown in Fig. 2(c). Here, the V-shaped pattern in
each unit cell mixes the two polarizations and hence makes
this four-port system distinct from a trivial combination of
two-port systems. We evaluate the field intensities |E� · n̂|2
for � = 1, . . . , 4 and n̂ = x̂, ŷ, ẑ at locations in the grating,
the substrate, and nearby free space. The observed intensity
fractions η j and ηk again nearly fill the feasible region calcu-
lated from the S matrix, as shown in Fig. 2(d). In contrast to
the six-port system above, the origin η j = ηk = 0 is excluded
from the feasible region, as discussed in Appendix B. In other
words, η j = ηk = 0 is forbidden at any location in this system.

In the third example, we consider a medium with a real
asymmetric permittivity tensor, which breaks reciprocity but
still preserves time-reversal symmetry [3], in contrast to the
previous systems that have both Lorentz reciprocity and time-
reversal symmetry. A thin film made of such a medium is
suspended in vacuum, as Fig. 2(e) shows. This medium is
assigned a relative permittivity:

ε =
⎛
⎝εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎠ =

⎛
⎝ 2 1.5 0

0.9 3 0
0 0 1

⎞
⎠. (10)

For normal-incidence plane waves, this system has four ports
(two polarizations on each side), similar to the previous ex-
ample. The S matrix and fields here are computed via a
transfer-matrix method [28]. Given two ports labeled by j and
k, the intensity fractions η j and ηk evaluated in the film and
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nearby free space for both x and y components again satisfy
(and nearly saturate) the time-reversal-symmetry bounds, as
Fig. 2(f) shows. As in the previous example, the origin η j =
ηk = 0 is excluded by the bounds.

IV. PROPERTIES AND COROLLARIES

In this section, we discuss some immediate corollaries of
our time-reversal-symmetry bounds. Additional discussion of
the properties of the bounds can be found in Appendices C
and D.

A. Bounds on other types of fields

For fields that transform in the same way as E under time
reversal, such as electric displacement fields, the bounds still
apply. If a minus sign appears in addition to complex con-
jugate under time reversal, such as magnetizing fields and
magnetic fields, either side of Eq. (1) and hence FS in Eq. (2)
should be multiplied by −1 and becomes −ImS(1 + ReS)−1.
If both V and W are real matrices, like those for inten-
sity fractions in Eq. (4), the bounds are the same for all
these fields with or without the minus sign in FS . However,
some quantities, such as

´
d3x J∗ · E with a general complex

time-invariant vector field J, do not transform in either way.
Nontrivial bounds on the generalized Rayleigh quotient for
this integral may be beyond the reach of time-reversal symme-
try alone, but related quantities can be bounded as described
in Appendix E.

B. Bounds on emitted waves

If a point dipole source couples with the output modes, the
emitted-wave amplitudes at the ports are bounded in a similar
way as Eq. (3) under time-reversal symmetry. (If the scatter-
ing device is a one- or two-dimensional periodic structure,
a periodic array of point dipole sources is considered here.
Possible extensions to Bloch-periodic and isolated sources in
periodic structures are discussed in Sec. VIII.) To be specific,
the amplitude Ak of the emitted wave at the kth port from
a point dipole source with the direction n̂ and location r is
proportional to the field Ek (r) · n̂ evaluated in a complemen-
tary system whose S matrix is S�, as detailed in Appendix F.
Consequently, the emitted power Pk at the kth port is propor-
tional to |Ek (r) · n̂|2 in the complementary system. Averaging
over all directions n̂, the mean emitted power is proportional
to |Ek (r)|2 in the complementary system.

Therefore, with S replaced by S� in Eq. (3), time-reversal
symmetry constrains the amplitudes of emitted waves as

λmin[GS� (V,W )] � A†WA
A†VA � λmax[GS� (V,W )], (11)

where A = (A1, . . . , Am)� is a column vector consisting of
the emitted-wave amplitude Ak at each port k. Similarly, the
emitted power Pk ∝ |Ak|2 is constrained as

λmin{GS� [1, diag(w1, . . . ,wm)]} �
m∑

k=1

wkη
emit
k

� λmax{GS� [1, diag(w1, . . . ,wm)]},
(12)

with the emitted-power fraction defined as

ηemit
k = Pk∑m

j=1 Pj
. (13)

A system satisfying Lorentz reciprocity implies S = S�, in
which case the excited fields and the emitted-wave amplitudes
are constrained by the same bounds. Among time-reversal
symmetry, Lorentz reciprocity, and energy conservation, any
two imply the third [3,11,25]. Therefore, if both time-reversal
symmetry and energy conservation are satisfied, the bounds
on the excited fields and the emitted-wave amplitudes also
coincide.

V. APPLICATION TO COUPLED RESONANCE

In this section, we apply the time-reversal-symmetry
bounds in Eqs. (3) and (4) to coupled-resonant systems de-
scribed by temporal coupled-mode theory (TCMT), valid
for long-lifetime resonances [12]. In previous work, with
time-reversal symmetry and energy conservation satisfied si-
multaneously, resonant decay coefficients were identical to
resonant coupling coefficients, both of which were subject to
the same bounds [2,13]. Here, with only time-reversal sym-
metry being assumed, resonant decay and coupling rates are
not necessarily identical and can be bounded separately.

Let us consider a single-mode optical resonance coupled
with m ports. In TCMT [12], the dynamics of the amplitude a
of the resonant mode is described by

da

dt
= (iω0 − γ )a + κ�s+, s− = Cs+ + ad, (14)

where ω0 denotes the resonant frequency, γ denotes the
resonant decay rate (with its inverse being the lifetime of
resonance), and t denotes time. The incoming and outgoing
wave amplitudes are denoted by s+ and s−, respectively. The
coupling coefficients between s+ and the resonant mode are
denoted by κ. The coupling coefficients between s− and the
resonant mode, namely, the decay coefficients, are denoted by
d. The direct pathway without resonance is described by the
scattering matrix C. Here, each of s+, s−, κ, and d is a column
vector with m elements, and C is an m × m matrix.

If the system obeys time-reversal symmetry, we prove in
Appendix G that the resonant coupling and decay coefficients
are bounded by a very similar Rayleigh-quotient relation:

λmin[GC (V,W )] � κ†W κ

κ†V κ
� λmax[GC (V,W )],

λmin[GC� (V,W )] � d†W d
d†V d

� λmax[GC� (V,W )],

(15)

with GC (V,W ) = gC (V )−1gC (W ) and GC� (V,W ) =
gC� (V )−1gC� (W ), where gC and gC� are defined in
the same fashion as in Eq. (2). In particular, similar to
Eqs. (4) and (5), with V = 1m and a real diagonal matrix
W = diag(w1, . . . ,wm), Eq. (15) yields inequalities for the
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resonant coupling rates |κk|2 and decay rates |dk|2:

λmin[GC (V,W )] �
∑m

k=1 wk|κk|2∑m
k=1 |κk|2 � λmax[GC (V,W )],

λmin[GC� (V,W )] �
∑m

k=1 wk|dk|2∑m
k=1 |dk|2 � λmax[GC� (V,W )].

(16)

If the system has Lorentz reciprocity, C is symmetric and
κ = d. With both time-reversal symmetry and Lorentz reci-
procity, d and κ obey the same bounds and the denominators
in Eq. (16) can be explicitly written as d†d = κ†κ = 2γ [12].
With the resonant coupling and decay rate γk for each port
given as |dk|2 = |κk|2 = 2γk , Eq. (16) reduces to

λmin[GC (V,W )] �
∑m

k=1 wkγk

γ
� λmax[GC (V,W )]. (17)

For multiple resonant modes coupled with each other and
with multiple ports [23], the time-reversal-symmetry bounds
in Eqs. (15) and (16) apply separately to each resonant mode
in the context of TCMT.

VI. TWO-PORT STRUCTURE

A. Amplitude-phase relation in a two-port structure

In this section, we study a two-port structure possessing
time-reversal symmetry in both the general case with Ek =
L̂Ek and coupled-resonant systems described by TCMT. The
results here can stem from the time-reversal-symmetry equal-
ity (7) as sketched below, and can also be derived directly
starting from Eq. (1) without resorting to Eq. (7). One can
also obtain the results in this section using more complicated
approaches.

The general form of a two-port S matrix possessing time-
reversal symmetry is

S = eiζ

(
eiφ

√
1 − t1t2 t1

t2 −e−iφ
√

1 − t1t2

)
, (18)

with ζ , φ, t1, t2 ∈ R, and t1t2 � 1. Solving gS (W ) = 0 yields

W ∝
(

−t1
√

1 − t1t2eiφ

√
1 − t1t2e−iφ t2

)
. (19)

According to Eq. (7), W then satisfies E†WE = 0, which can
be rearranged algebraically to

|E2|2
|E1|2 + 2

√
1 − t1t2 cos(θ + φ)

t2

|E2|
|E1| = t1

t2
, (20)

where θ denotes the phase difference θ = arg(E∗
1E2) and we

assume t2 �= 0. If t1 �= 0 but t2 = 0, one can rewrite Eq. (20)
or relabel the two ports; if t1 = t2 = 0, E†WE = 0 reduces to
|E1||E2| cos(θ + φ) = 0. The equality (20) not only reveals the
strong dependence between the intensity ratio and the phase
difference, but also yields

|1 − √
1 − t1t2|

|t2| � |E2|
|E1| �

1 + √
1 − t1t2

|t2| , (21)

which can be obtained more straightforwardly by setting w1 =
1 and w2 = −1 in Eq. (4) with S in Eq. (18). According to

Eqs. (11) and (12), the emitted-wave amplitudes and radiated
power at the ports from an internal point dipole source are
constrained similarly as Eqs. (20) and (21):

|A2|2
|A1|2 + 2

√
1 − t1t2 cos(θ + φ)

t1

|A2|
|A1| = t2

t1
, (22)

|1 − √
1 − t1t2|

|t1| �
√

P2

P1
� 1 + √

1 − t1t2
|t1| . (23)

If the system additionally has Lorentz reciprocity, yielding
t1 = t2, Eqs. (20) and (21) are simplified as

|E2|2
|E1|2 + 2r cos(θ + φ)

t

|E2|
|E1| = 1, (24)

1 − r

1 + r
� |E2|2

|E1|2 � 1 + r

1 − r
, (25)

with t = t1 = t2 and r = √
1 − t2. Due to reciprocity, the

emitted-wave amplitude Ak and power Pk of this system obey
the same relations as Ek and |Ek|2, respectively. In a polar-
coordinate system with |E2|/|E1| and θ = arg(E∗

1E2) being the
polar axis and polar angle, respectively, each of Eqs. (20)
and (24) represents a circle, while each of Eqs. (21) and (25)
represents an annulus, as exemplified in Fig. 3(b).

For a two-port optical resonator with time-reversal sym-
metry, with the direct-pathway scattering matrix C taking the
general form as Eq. (18), the resonant coupling coefficients κ1

and κ2 satisfy

|κ2|2
|κ1|2 + 2

√
1 − t1t2 cos(θ + φ)

t2

|κ2|
|κ1| = t1

t2
, (26)

with θ = arg(κ∗
1 κ2). This equality yields

|1 − √
1 − t1t2|

|t2| � |κ2|
|κ1| �

1 + √
1 − t1t2

|t2| . (27)

Likewise, the resonant decay d1 and d2 satisfy

|d2|2
|d1|2 + 2

√
1 − t1t2 cos(θ + φ)

t1

|d2|
|d1| = t2

t1
, (28)

with θ = arg(d∗
1 d2). This equality yields

|1 − √
1 − t1t2|

|t1| � |d2|
|d1| �

1 + √
1 − t1t2

|t1| . (29)

Both Eqs. (27) and (29) can also be obtained from Eq. (16).
If the system also has Lorentz reciprocity that allows t1 = t2,
κ1 = d1, and κ2 = d2, Eqs. (26)–(29) can all be simplified. In
particular, Eqs. (27) and (29) become

1 − r

1 + r
� γ2

γ1
� 1 + r

1 − r
, (30)

with γk = |κk|2 = |dk|2 representing the resonant coupling
and decay rates. The same inequalities as Eq. (30) were also
derived in Ref. [2].

B. Numerical verification on a two-port structure

We simulate an asymmetric two-port system based on a pe-
riodic grating composed of a substrate (silica, refractive index
n = 1.45) and ridges (silicon nitride, n = 2.02) in vacuum,
as depicted in Fig. 3(a). The incident light is monochromatic
plane waves that propagate perpendicularly to the substrate,
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FIG. 3. Numerical validation of the amplitude-phase relation on
a two-port system. (a) The periodic grating is the same as that in
Fig. 2(a). The wavelength is 1.2�, so that the period is subwave-
length, which allows only zeroth-order diffraction in transmission
and reflection. (b) Feasible and infeasible regions predicted by time-
reversal-symmetry bounds and data points from simulation for the
system in (a). We use a polar-coordinate system with the polar
axis and polar angle being |E2|/|E1| and θ = arg(E∗

1E2 ), respectively.
The gray and black areas are allowed and disallowed by Eq. (25),
respectively. On top of the gray area, only the white circle satisfies
Eq. (24) and thus is permitted, which is occupied by the red and
green dots corresponding to x and y field components from numerical
simulation.

with in-plane polarization (i.e., magnetic field parallel to the
ridges) and a wavelength too large to support diffracted or-
ders, yielding a two-port system. Given r in Eq. (25), the
allowed range of the intensity ratio can be obtained. In a
polar-coordinate system with the polar axis |E2|/|E1| and polar
angle θ = arg(E∗

1E2), Eq. (25) permits only the gray annulus
in Fig. 3(b). Given also φ, the feasible circle in Eq. (24)
can be determined, as shown by the white circle on top the
gray area in Fig. 3(b). To test this equality, fields induced
by a unit-amplitude input wave from each port were com-
puted by an FDTD method [27]. We evaluated the in-plane
field components Ek · x̂ and Ek · ŷ for k = 1, 2 in the grating,
the substrate, and nearby free space. As illustrated by red
(x component) and green (y component) dots that overlap the

feasible circle in Fig. 3(b), the observed fields indeed satisfy
Eq. (24) and fill up the feasible circle.

VII. APPLICATION TO LOSSY MEDIA

As time-reversal symmetry requires permittivity and per-
meability to be real, their imaginary parts, which are
responsible for loss, must be negligible at the frequency of
interest for our bounds in the preceding sections to hold.
However, when the loss is small but not negligible, it turns
out that the time-reversal-symmetry bounds can still impose
constraints on some loss-induced features.

Let us set Ek = √
σEk with σ = ωImε. Here, we assume

that all media in the system have symmetric Reε, real and
symmetric magnetic permeability tensors, and zero magneto-
electric couplings; wherever σ is nonzero, we assume it to be
isotropic and positive. Therefore, the corresponding lossless
system with σ = 0 satisfies time-reversal symmetry and does
not have gain or loss, while time-reversal symmetry breaking
and power dissipation are introduced by σ > 0. One can de-
fine the fraction of power dissipation as

ηk =
´

d3x σ (x)|Ek (x)|2∑m
j=1

´
d3x σ (x)|E j (x)|2 , (31)

where the domain of integration includes all regions with
nonzero σ . On the other hand, when only the kth port is
excited by unit-amplitude input, the time-average dissipated
power is related to the nonunitarity of S by

ˆ
d3x σ (x)|Ek (x)|2 ∝ 1 −

m∑
j=1

|S(σ ) jk|2, (32)

where S(σ ) denotes the S matrix in the presence of nonzero
σ . Therefore, the fraction of dissipated power in Eq. (31)
associated with each port and the weighted sum can be
written as

ηk = 1 − ∑m
j=1 |S(σ ) jk|2

tr[1m − S(σ )
†S(σ )]

,

m∑
k=1

wkηk = tr{W [1m − S(σ )
†S(σ )]}

tr[1m − S(σ )
†S(σ )]

,

(33)

with W = diag(w1, . . . ,wm) being a real diagonal matrix. For
small loss, now let us approximate all Ek (x) terms to zeroth
order in σ by the corresponding fields in the lossless (σ = 0)
system. This introduces an error in Ek (x) that is first order in
σ , an error in Eq. (32) that is second order in σ , and an error
in the ratio of Eq. (31) that is first order in σ . Consequently,
if we bound Eq. (31) for the σ = 0 fields using Eq. (4),
which is applicable to the lossless fields, the results will also
apply to the nonunitarity of S in Eq. (33) up to a first-order
correction O(σ ):

λmin[GS(0) (V,W )] � tr{W [1m − S(σ )
†S(σ )]}

tr[1m − S(σ )
†S(σ )]

+ O(σ )

� λmax
[
GS(0) (V,W )

]
, (34)

with V = 1m, W = diag(w1, . . . ,wm), and S(0) representing
the S matrix of the lossless background system.
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As an example, let us apply Eq. (34) to a two-port structure
with loss and investigate its accuracy for different magnitudes
of σ . In a two-port structure with time-reversal symmetry,
the reflectance is the same on both sides, as manifested by
|S11|2 = |S22|2 in Eq. (18). In the presence of lossy media,
|S11|2 �= |S22|2 is possible, but the extent of such loss-induced
asymmetry in reflectance is constrained (approximately) by
our bounds. Here, we consider a reciprocal two-port system
with t1 = t2 in Eq. (18) and set w1 = 1,w2 = −1 in Eq. (34).
The asymmetry in reflectance normalized by total loss can
then be bounded as

−r(0) �
|S(σ )11|2 − |S(σ )22|2

2 − ∑2
j=1

∑2
k=1 |S(σ ) jk|2

+ O(σ ) � r(0), (35)

where r(0) =
√

1 − t2
1 =

√
1 − t2

2 is the magnitude of the re-
flection amplitude in the lossless background system. These
inequalities align with intuition: in a structure with high trans-
parency (small r(0)), there can be little asymmetry in the lossy
reflectances |S(σ )11|2 and |S(σ )22|2 because light from both
sides passes through the structure and experiences similar
loss; in contrast, for a structure with high reflectance, the
field penetration (hence, loss) can be very different for light
incident from the two sides.

We numerically verify Eq. (35) for a two-layer film, as
shown in the inset of Fig. 4. The incident light is monochro-
matic plane waves that propagate perpendicularly to the film,
so that a two-port system is formed. The thicknesses and per-
mittivities for the two layers in the film are selected randomly,
and nonzero Imε is introduced in only one of the layers for
any given structure. The S matrix and fields here are com-
puted via a transfer-matrix method [28]. The asymmetry in
reflectance normalized by total loss very closely corresponds
to the ±r(0) bounds if Imε is relatively small, as the left
panel of Fig. 4 shows. If Imε is not small enough compared
to Reε, noticeable violations can occur, as the right panel
illustrates, but these violations of our approximate constraints
are surprisingly rare even for Imε = Reε.

VIII. CONCLUSION

In this work, we have formulated time-reversal-symmetry
bounds on internal fields in linear electromagnetic systems
in terms of the S matrix and verified the bounds numer-
ically. There are a number of potential extensions of this
approach. Since the premises in this work are time-reversal
symmetry and linearity, a natural question is how to make
corrections if either or both premises are violated to a small
but non-negligible extent. The bounds hold approximately if
nonlinearity is negligibly small (at the powers and frequencies
of interest), and could also be applied to linearizations of
small perturbations around a nonlinear steady state. However,
the treatment of larger nonlinearity, such as by a next-order
correction, remains to be solved. Likewise, the bounds can
hold to the extent that material loss is negligible, and we also
showed in Sec. VII that first-order extensions to lossy systems
can work surprisingly well to predict loss-induced changes
in S. Approximate extensions of the field-intensity bounds
themselves for non-negligible loss seems an interesting open
question. Our approach may be potentially applied to estimate

FIG. 4. Numerical validation of approximate (first-order) bounds
on loss-induced asymmetric reflection on a two-port system. As
shown in the inset, the structure is a double-layer film. The medium
in each layer has homogeneous isotropic permittivity, vacuum per-
meability, and zero magnetoelectric coupling. The thickness and
permittivity of each layer are picked randomly. These quantities of
each layer are picked independently from those of the other layer. For
a wavelength λ and relative permittivity ε, the thickness of this layer
is chosen in the interval [0, λ/

√
Reε) and Reε/ε0 is in [1,16). When

loss is added, the ratio Imε/Reε is fixed as labeled in the lower-left
corner of each figure. We always add loss in one layer while keeping
the other lossless, with the choice of lossy layer indicated by red or
blue dots. For loss added in each layer, 20 000 random cases are
generated. The white and black triangular regions are permitted and
forbidden by Eq. (35), respectively. The data points from simulation
almost all lie in the white feasible region in (a), with a relative small
dissipation; but in (b) with large dissipation, noticeable violations
(dots in the black regions) are observed.

intensity-dependent behaviors in multiport structures, e.g., the
extent of nonreciprocity that relies on intensity-dependent
permittivity [29–33] or the field overlap with a desired field
pattern at different excitation arrangements [34,35]. For peri-
odic systems, we have derived our bounds for periodic waves
and/or point dipole sources, but it would be interesting to ex-
tend them to Bloch-periodic boundary conditions [26], which
poses a challenge because such boundary conditions break
time-reversal symmetry; isolated point sources could then be
analyzed via superpositions of Bloch-periodic point sources
[36]. Finally, although our bounds in this work are derived for
electromagnetic waves, similar results should apply to other
physical contexts, such as acoustics and quantum mechanics,
in which similar time-reversal principles appear [18,37].

For experimental systems in which one can easily measure
the S matrix but not the internal fields within the structure, our
bounds allow one to deduce information about this previously
inaccessible regime from only exterior measurements. For
computational systems in which one is designing an asym-
metric response to emission or excitation, perhaps by inverse
design [6,7,38], theoretical bounds such as ours provide a
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measure of global optimality to help assess the local optima
generated by nonconvex optimization.
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APPENDIX A: BOUNDS ON RAYLEIGH QUOTIENTS

If the vector E were not constrained by time-reversal
symmetry but allowed to take any nonzero values, the gener-
alized Rayleigh quotient in Eq. (3) would be bounded trivially
by the minimum and maximum eigenvalues of the matrix
V −1W . Time-reversal symmetry constrains E as Eq. (1),
which shrinks the attainable range of the generalized Rayleigh
quotient. To prove the nontrivial bounds in Eq. (3), instead
of using the complex matrices V,W and constrained complex
vector E directly, one can recast the original quotient as an
equivalent one with real matrices and an unconstrained real
vector, which can be found via first expanding the field vector
E and the S matrix into their real and imaginary parts so that
Eq. (1) becomes

ReE − iImE = (ReS� − iImS�)(ReE + iImE ). (A1)

Equating the imaginary parts on both sides, one can obtain

(1m + ReS�)ImE = ImS�ReE, (A2)

which is equivalent to

ImE = FS
�ReE, (A3)

with FS = ImS(1m + ReS)−1 if 1m + ReS is nonsingular,
which is assumed hereafter; in the unlikely event that it is
singular, this can be corrected by a unitary change of basis as
discussed in Appendix C. Hence, ReE can be chosen as an un-
constrained real vector, which determines ImE via Eq. (A3).
(One can also choose ImE as the unconstrained real vector
that determined ReE , and will finally reach the same bounds.)

Expanding a Hermitian matrix X and the vector E into their
real and imaginary parts and employing Eq. (A3), one can
obtain

E†XE = (ReE )�gS (X )ReE, (A4)

where gS (X ), defined in Eq. (2), is a function of X given S
and always yields a real symmetric matrix from a Hermitian
X . For Hermitian matrices V and W , the generalized Rayleigh
quotient restricted by Eq. (A2) can be written as

E†WE
E†VE = (ReE )�gS (W )(ReE )

(ReE )�gS (V )(ReE )
, (A5)

where ReE is an unrestricted nonzero real vector. If the real
symmetric matrix gS (V ) is positive definite, Eq. (A5) is a gen-
eralized Rayleigh quotient and the Courant-Fischer theorem
applies [39]: it is bounded above and below by the maximum
and minimum eigenvalues of the matrix gS (V )−1gS (W ).

As mentioned above, g(V ) is positive definite. For exam-
ple, we typically choose V = 1m, in which case gS (V ) =
1m + FSF�

S is necessarily positive definite. These results also
hold if gS (V ) is negative definite: by flipping the signs of both
W and V , one recovers a positive definite gS (−V ).

APPENDIX B: NULL INTENSITY AND SKEW FRACTION

For full-rank gS (V ), if W is restricted to a real matrix, the
rank of gS (V )−1gS (W ) satisfies [40]

rank[gS (V )−1gS (W )] = rank[gS (W )]

= rank(W + FSW F�
S )

� rank(W ) + rank(FSW F�
S )

� rank(W ) + min[rank(FS ), rank(W )]

� 2rank(W ). (B1)

Therefore, if rank(W ) � 
(m − 1)/2�, the matrix
gS (V )−1gS (W ) cannot have full rank, so at least one of
its eigenvalues must be zero.

Let us consider a real diagonal matrix W =
diag(w1, . . . ,wm) as the choice for Eq. (4). Following
the above argument, if the number of nonzero elements in
w1, . . . ,wm is not greater than 
(m − 1)/2�, at least one
of the eigenvalues of gS (V )−1gS (W ) is zero, which allows∑

k wkηk to reach zero even if those nonzero weights are all
positive or all negative. This behavior implies that, given at
most 
(m − 1)/2� ports, time-reversal symmetry does not
forbid all intensity fractions η j associated with these ports to
be zero simultaneously, as exemplified in Fig. 2(b).

As a complement to the above situation, gS (W ) and hence
gS (V )−1gS (W ) usually have full rank if the real matrix W
has rank(W ) � 
(m − 1)/2� + 1, since for generic S one ex-
pects FS to be a full-rank nonsparse matrix. Therefore, given
at least 
(m − 1)/2� + 1 ports, time-reversal symmetry usu-
ally forbids intensity fractions associated with these ports to
be zero simultaneously at any locations, as exemplified in
Figs. 2(d) and 2(f). One can apply similar arguments to V :
apart from full-rank matrices such as 1m, setting V as some
nearly full-rank matrices may still allow gS (V ) to be positive
definite or negative definite. In particular, let V be a diago-
nal matrix with each element being either zero or one. If at
least 
(m − 1)/2� + 1 of these diagonal elements are equal to
one, the matrix g(V ) is usually positive definite. Therefore, in
addition to the fraction in Eq. (5), one can often introduce a
skew fraction in which the denominator does not include all
the ports and relevant inequalities similar to Eq. (4) can then
be formulated.

APPENDIX C: EFFECTS OF UNITARY
TRANSFORMATION

In this Appendix, we discuss the effects of unitary transfor-
mations of input and output modes [41–44] on the generalized

063518-9



MA, PESTOURIE, AND JOHNSON PHYSICAL REVIEW A 111, 063518 (2025)

Rayleigh quotient and its bounds. Under a unitary change U
of basis, the S matrix and fields become

S → U �SU, E → U �E, (C1)

with U †U = 1m and m denoting the number of ports. For
example, changing reference planes for the ports amounts to
applying a portwise phase transformation U = exp(i�), with
� being a real diagonal matrix. If modes belonging to dif-
ferent ports are mixed, U can be nondiagonal. Time-reversal
symmetry requires S to be a coninvolutory matrix, which
satisfies S∗S = 1m [11]. The transformed S matrix, namely,
U �SU , is still a coninvolutory matrix. The transformed S
matrix U �SU and transformed fields U �E together still
satisfy (1).

If both V and W are diagonal, as in Eq. (4), both the
numerator and denominator of the generalized Rayleigh quo-
tient contain only intensitylike terms that do not depend on
the reference planes of the ports. Consequently, the gener-
alized Rayleigh quotient in Eq. (3) does not change under
U = exp(i�), with � being a real diagonal matrix. If V , W ,
or both are nondiagonal, cross terms appear, which involve
phases differences between fields excited from different ports.
Consequently, U = exp(i�) generally alters the generalized
Rayleigh quotient. Generically, the generalized Rayleigh quo-
tient in Eq. (3) is invariant if U � commutes with both V and
W , namely, U �V = VU � and U �W = WU �. This condition
is satisfied, for example, when U performs a global phase
transformation, namely, U = exp(i�) with � ∝ 1m.

When the generalized Rayleigh quotient is unchanged un-
der Eq. (C1) with some choices of U , the bounds in Eq. (3)
also remain the same. To demonstrate such invariance of
bounds, instead of dealing with the bounds directly, one can
note that the bounds are always attainable, as discussed in
Appendix A. Since the bounded quantity does not vary under
the transformation and the bounds are attainable, the bounds
do not change either.

As mentioned in Sec. II, the time-reversal-symmetry
bounds in Eq. (3) requires 1m + ReS to be invertible, which
may not be satisfied by very unusual examples of S, but can
usually be restored by a global phase transformation U =
exp(i�) with some random �.

APPENDIX D: BOUNDS ON A DECOMPOSABLE SYSTEM

In some situations, typically due to symmetry mismatch or
spatial separation, a multiport system can be divided into two
or more subsystems that are decoupled from each other, such
that any input to the ports of a subsystem cannot contribute
to output in another subsystem and, vice versa, any output
from the ports in a subsystem cannot be contributed by input
in another subsystem. For example, in 2D systems such as
shown in Fig. 2(a), the Hz and Ez polarizations are decoupled
[26]. The S matrix of the entire system is thus block diagonal:

S =
p⊕

�=1

S(�), (D1)

where
⊕

denotes the direct sum and p is the number of
diagonal blocks of S, which is also the number of subsystems.
Within each subsystem, Eq. (1) holds true as E (�)∗ = S(�)†E (�),

where E (�) is the segment of E associated with this subsystem.
If V and W are block diagonal in the same manner as S, one
can formulate the inequalities in each subsystem:

λmin[GS(�) (V (�),W (�) )] � E (�)†W (�)E (�)

E (�)†V (�)E (�)

� λmax[GS(�) (V (�),W (�) )]. (D2)

For the block-diagonal S matrix in Eq. (D1), if V and W
are block diagonal in the same manner, the inequalities (D2)
satisfied by each subsystem also imply the inequalities (3) for
the total system. In other words, Eq. (3) is not independent of
Eq. (D2). To see this connection, one can first decompose the
generalized Rayleigh quotient for the whole system as

E†WE
E†VE =

∑p
�=1 E (�)†W (�)E (�)∑p
�=1 E (�)†V (�)E (�)

, (D3)

which is confined by individual subsystems as

min
�

E (�)†W (�)E (�)

E (�)†V (�)E (�)
�

∑p
�=1 E (�)†W (�)E (�)∑p
�=1 E (�)†V (�)E (�)

� max
�

E (�)†W (�)E (�)

E (�)†V (�)E (�)
. (D4)

Since S, V , and W have the same block-diagonal structure, so
does GS (V,W ), which implies

λmin[GS (V,W )] = min
�

λmin[GS(�) (V (�),W (�) )],

λmax[GS (V,W )] = max
�

λmax[GS(�) (V (�),W (�) )].
(D5)

On the other hand, Eq. (D2) implies

min
�

λmin[GS(�) (V (�),W (�) )] � min
�

E (�)†W (�)E (�)

E (�)†V (�)E (�)
,

max
�

E (�)†W (�)E (�)

E (�)†V (�)E (�)
� max

�
λmax[GS(�) (V (�),W (�) )].

(D6)

From Eqs. (D3)–(D6), Eq. (3) can be recovered.

APPENDIX E: COMPLEX LINEAR OPERATION
ON FIELDS

If the linear operation L̂ is complex, Eq. (1) does not hold
and the time-reversal-symmetry bounds usually need to be
corrected. In this Appendix, we consider a complex vector
field J(x) and its overlap with the field Ek (x), such that
Ek = ´

d3x J∗(x) · Ek (x).
Unless under some special circumstances such as ReJ ∝

ImJ, the generalized Rayleigh quotient is bounded trivially as

λmin(V −1W ) � E†WE
E†VE � λmax(V −1W ), (E1)

where the S matrix and time-reversal symmetry play no role in
the bounds, in contrast to the nontrivial inequalities in Eq. (4).
To elucidate the attainability of these trivial bounds, we begin
with a stronger proposition: an arbitrary complex number zk

can be assigned to each Ek as Ek = zk if the field distributions
satisfy[
1m

´
d3x ReJ(x) · +F�

S

´
d3x ImJ(x)·

F�
S

´
d3x ReJ(x) · −1m

´
d3x ImJ(x)·

]
ReE(x) =

(
ReZ
ImZ

)
,

(E2)
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where the integrands are understood as the functions given by
the dot product; E(x) denotes a column vector composed of
field distributions, namely, E(x) = [E1(x), . . . , Em(x)]�; and
Z denotes a column vector composed of desired zk for k =
1, . . . , m, namely, Z = (z1, . . . , zm)�, such that E = Z . This
equation stems from the relation within E(x), namely,

ImE(x) = F�
S ReE(x), (E3)

which resembles Eq. (A2). Splitting J(x) and E(x) into real
and imaginary parts and using Eq. (E3), one can obtainˆ

d3x J(x) · E(x)

=
ˆ

d3x
{

ReJ(x) · ReE(x) + ImJ(x) · ImE(x)

+ i[ReJ(x) · ImE(x) − ImJ(x) · ReE(x)]
}

=
ˆ

d3x
{

ReJ(x) · ReE(x) + ImJ(x) · F�
S ReE(x)

+ i[ReJ(x) · F�
S ReE(x) − ImJ(x) · ReE(x)]

}

= [(
1 F�

S

) + i
(
F�

S −1
)]ˆ

d3x

[
ReJ(x) · ReE(x)

ImJ(x) · ReE(x)

]
.

(E4)

Therefore,
´

d3x J(x) · E(x) = Z is equivalent to

(1 F�
S )

ˆ
d3x

[
ReJ(x) · ReE (x)

ImJ(x) · ReE (x)

]
= ReZ,

(F�
S − 1)

ˆ
d3x

[
ReJ(x) · ReE (x)

ImJ(x) · ReE (x)

]
= ImZ,

(E5)

which can be written compactly as Eq. (E2).
As an approximation of the overlap integral, one can con-

sider a discretized version as Ek = ∑n
�=1 J∗(x�) · Ek (x�), with

the volume factor in the integral being discarded and n rep-
resenting the number of locations. Analogues to Eq. (E2),
E = Z can be attained if the field distributions satisfy(

1m ⊗ ReJ � + F�
S ⊗ ImJ �

F�
S ⊗ ReJ � − 1m ⊗ ImJ �

)
ReE =

(
ReZ

ImZ

)
, (E6)

where we define J as a column vector that contains each
component of J at each location, and E as a column vec-
tor that contains each component of E j at each location for
j = 1, . . . , m, such that

J †E =
n∑

�=1

⎡
⎢⎣J∗(x�) · E1(x�)

...

J∗(x�) · Em(x�)

⎤
⎥⎦. (E7)

One can also expand J∗(x) and each Ek (x) in terms of
functions that form an orthonormal basis. With J and E
understood as column vectors composed of the expansion
coefficients, Eq. (E6) can be regarded as an approximation or
alternative to Eq. (E2).

If J contains at least three nonzero elements while this
column vector and the S matrix are not too special, such that

the coefficient matrix in the parentheses on the left-hand side
of Eq. (E6) has full row rank but does not have full column
rank, this linear equation is underdetermined, which has in-
finitely many solutions for ImE, from which one can compute
the corresponding imaginary part ImE using Eq. (E3). If J
contains only two elements while this vector and the S matrix
are not too special, such that the coefficient matrix has both
full row rank and column rank, this linear equation has a single
solution for ReE. In special cases such as ReJ ∝ ImJ, this
linear equation generally has no solution unless the S matrix
and Z are also special enough.

As discussed above, in a typical situation, assigning an
arbitrary set of values Z = (z1, . . . , zm)� to E is permitted by
time-reversal symmetry. If E is set as the eigenvector of V −1W
corresponding to the minimum or maximum eigenvalue, the
trivial lower or upper bound in Eq. (E1) is attained. Although
allowed by time-reversal symmetry, these trivial bounds may
not be reached given a specific structure and a specific com-
plex vector field J, even if ReJ ∝ ImJ is avoided, because the
field distributions E, which observe the Maxwell equations,
cannot be chosen arbitrarily.

Although time-reversal symmetry alone generally cannot
impose nontrivial bounds on the generalized Rayleigh quo-
tient for

´
d3x J∗(x) · Ek (x) in the same fashion as Eq. (3),

time-reversal symmetry may still impose nontrivial bounds
on some related quantities. For example, consider a ratio
defined as

ρk =
∣∣´ d3x J∗(x) · Ek (x)

∣∣2∑m
j=1

´
d3x E j (x) · D j (x)

, (E8)

where the domains of the integrals are the same and
the media are assumed to have real symmetric positive-
definite permittivity tensors. One can introduce a discretized
version as

ρk =
∣∣∑n

�=1 J∗(x�) · Ek (x�)
∣∣2∑m

j=1

∑n
�=1 E j (x�) · D j (x�)

, (E9)

where the subscript � runs over all locations and directions.
This fraction can be bounded in the same manner as Eq. (4),
with W = diag(w1, . . . ,wm) and GS being replaced by

(J+WJ �
+ + J−WJ �

− )[(FSF�
S + 1m) ⊗ �]−1, (E10)

where � is a diagonal or block-diagonal matrix containing the
relative permittivity tensor for each location and direction, and
we also introduce

J+ = 1m ⊗ ReJ + FS ⊗ ImJ ,

J− = FS ⊗ ReJ − 1m ⊗ ImJ ,
(E11)

where J represents the column vector for the components of
J at all relevant locations, with the same meaning as that in
Eqs. (E6) and (E7).

If the linear operation L̂ is simply scalar multiplication by
a complex number, Eq. (1) only needs to be slightly tweaked
and all the time-reversal-symmetry inequalities in the main
text still hold true.

APPENDIX F: BOUNDS ON EMITTED WAVES

In this Appendix, we discuss in more detail the
emission from an internal point dipole source and the
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time-reversal-symmetry bounds on the amplitudes, presented
in Sec. IV B. Let E, D, H, and B denote the complex am-
plitudes of electric, displacement, magnetizing, and magnetic
fields, respectively. The constitutive relations are

D(r, ω) = ε(r, ω)E(r, ω) + ξ (r, ω)H(r, ω),

B(r, ω) = ζ (r, ω)E(r, ω) + μ(r, ω)H(r, ω),
(F1)

where ε and μ are permittivity and permeability tensors,
respectively; ξ and ζ are tensors describing magnetoelectric
couplings [45]. The two Maxwell equations with curl are

∇ × H + iω(εE + ξH) = Je,

∇ × E − iω(ζE + μH) = −Jm,
(F2)

where Je and Jm are electric and magnetic current densities,
respectively.

On the other hand, in a complementary system with [46,47]

ε̃ = ε�, μ̃ = μ�, ξ̃ = −ζ�, ζ̃ = −ξ�, (F3)

fields and currents satisfy

∇ × H̃ + iω(ε̃Ẽ + ξ̃H̃) = J̃e,

∇ × Ẽ − iω(ζ̃ Ẽ + μ̃H̃) = −J̃m.
(F4)

From Eqs. (F2), (F3), and (F4), after some algebra, one can
obtain‹

∂V
(E × H̃ − Ẽ × H) · dA

=
˚

V
(Ẽ · Je + H · J̃m − E · J̃e − H̃ · Jm ) dV, (F5)

where V and ∂V denote a region and its surface, respectively,
and dA is the surface-element vector parallel to the normal
pointing outward. If the only impressed current in the region
V is J̃e, the above relation becomes‹

∂V
(E × H̃ − Ẽ × H) · dA = −

˚
V

E · J̃e dV, (F6)

where Ẽ and H̃ are excited by J̃e.
Let the boundary ∂V intersect the input and output chan-

nels and be distant from the scattering media. If the scattering
device is a one- or two-dimensional periodic structure, ∂V can
be chosen as a pair of planes on either side of the periodic
structure. As a typical scenario, we assume that the media
far from the scattering region have real symmetric ε, μ, and
ξ = ζ = 0, and that the geometry of each channel has trans-
lational invariance in the direction of mode propagation. In
the original structure (without tildes in labels of fields), when
the input only comes from the kth port with a unit amplitude,
the fields at ∂V can be written as

E = Ein
k +

m∑
j=1

c jEout
j , H = Hin

k +
m∑

j=1

c jHout
j , (F7)

where each c j represents a complex coefficient. On the other
hand, the input and output modes are related as

Ein
k = Eout∗

k , Hin
k = −Hout∗

k . (F8)

Therefore, the left-hand side of Eq. (F6) becomes‹
∂V

(E × H̃ − Ẽ × H) · dA

=
‹

∂V

(
Eout∗

k × H̃ + Ẽ × Hout∗
k

) · dA

+
m∑

j=1

c j

‹
∂V

(
Ein∗

j × H̃ + Ẽ × Hin∗
j

) · dA. (F9)

Since Ẽ and H̃ are the fields of the outgoing wave in the far-
field region, the second term on the right-hand side of Eq. (F9)
vanishes, while the remaining first term is proportional to the
kth output mode coefficient, which is denoted by Ak hereafter.

In particular, when J̃e is a point dipole source located at r
oriented along a unit vector n̂, i.e., J̃e ∝ n̂ δ(x − r), the field
component E(r) · n̂ is singled out on the right-hand side of
Eq. (F6). (If the scattering device is a one- or two-dimensional
periodic structure, J̃e is understood as a periodic array of point
dipole sources.) Due to the assumption that the input only
comes from the kth channel with a unit amplitude, one can
replace E(r) · n̂ here with Ek (r) · n̂ and obtain

Ak ∝ Ek (r) · n̂. (F10)

Similarly, the output power Pk obeys

Pk ∝ |Ak|2 ∝ |Ek (r) · n̂|2. (F11)

If the orientation of the point dipole source is completely
random, the average emitted power carried by that mode is

Pk ∝ |Ek (r) · n̂|2 = |Ek (r)|2
3

, (F12)

where the bar denotes the average over n̂. Consequently, Ak ,
Pk , and Pk in the complementary system satisfy the same
time-reversal-symmetry bounds as the fields in the original
system. Conversely, the time-reversal-symmetry bounds on
emitted-wave amplitudes from a point dipole source in the
original system should coincide with the bounds on fields
in the complementary system. The S matrix of the comple-
mentary system is S� if the S matrix of the original system
is S. Therefore, time-reversal-symmetry bounds on emitted-
wave amplitudes from a point dipole source can be obtained
immediately from the corresponding bounds for fields via
replacing S with S�. The S matrix is symmetric if the media
are reciprocal, requiring

ε = ε�, μ = μ�, ξ = −ζ�, ζ = −ξ�. (F13)

Therefore, the time-reversal-symmetry bounds on the fields
induced by input coincide with those on emitted-wave ampli-
tudes from a point dipole source.

APPENDIX G: BOUNDS ON RESONANT COUPLING
AND DECAY COEFFICIENTS

Finally, in this Appendix, we prove the bounds from Sec. V
for coupled-resonant systems described by TCMT. When ex-
cited at the frequency ω, the resonant amplitude is

a = κ�s+
γ + i(ω − ω0)

. (G1)
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Given the input wave only from the kth port with a unit
amplitude, the resonant amplitude is

ak = κk

γ + i(ω − ω0)
, (G2)

which is proportional to the magnitude of Ek at a given loca-
tion in the resonator and a given frequency, and further implies

E†WE
E†VE = κ†W κ

κ†V κ
, (G3)

where each component of E can be considered as Ek . There-
fore, similar to Appendix A, the generalized Rayleigh quotient
with κ also satisfies the bounds in Eq. (3), in which S is the
overall S matrix:

S = C + dκ�

γ + i(ω − ω0)
. (G4)

For |ω − ω0| � γ , the term for resonance in Eq. (G4),
namely, the second term on the right-hand side, vanishes and
S can be approximated by C. Let us assume that such ω is

still in the frequency range over which C, d, κ, and γ do not
change and TCMT is still valid. The bounds for κ can then
be expressed in terms of C instead of S and the first lines of
Eqs. (15) and (16) can be obtained.

The analysis of resonant decay is similar. Based on
Eqs. (11) and (12), the second lines of Eqs. (15) and (16)
can be obtained. We obtain Eqs. (11) and (12) under the
assumption of sustained excitation, which is approximately
fulfilled if the timescale of resonant decay 1/γ is much longer
than the period of waves 1/ω0, namely, ω0 � γ , which is a
typical premise of TCMT.

The same results can alternatively be derived from the
time-reversal-symmetry requirements in TCMT [25]:

C�κ∗ = −κ, Cd∗ = −d. (G5)

For multiple resonant modes coupled with each other and with
multiple ports [23], Eq. (G5) holds for each resonant mode
and hence the bounds are applicable to each resonant mode
coupled with multiple ports.
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