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We describe a novel approach based on topology optimization that enables automatic discovery of wavelength-scale
photonic structures for achieving high-efficiency second-harmonic generation (SHG). A key distinction from previous
formulation and designs that seek to maximize Purcell factors at individual frequencies is that our method aims to not
only achieve frequency matching (across an entire octave) and large radiative lifetimes, but also optimizes the equally
important nonlinear-coupling figure of merit β, involving a complicated spatial overlap-integral between modes. We
apply this method to the particular problem of optimizing micropost and grating-slab cavities (one-dimensional
multilayered structures) and demonstrate that a variety of material platforms can support modes with the requisite
frequencies, large lifetimes Q > 104, small modal volumes ∼�λ∕n�3, and extremely large β ≳ 10−2, leading to orders
of magnitude enhancements in SHG efficiency compared to state-of-the-art photonic designs. Such giant β alleviate
the need for ultranarrow linewidths and thus pave the way for wavelength-scale SHG devices with faster operating
timescales and higher tolerance to fabrication imperfections. © 2016 Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (050.1755) Computational electromagnetic methods.
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1. INTRODUCTION

Nonlinear optical processes mediated by second-order (χ�2�) non-
linearities play a crucial role in many photonic applications, includ-
ing ultrashort-pulse shaping [1,2], spectroscopy [3], generating
novel states of light [4–6], and quantum information processing
[7–9]. Because nonlinearities are generally weak in bulk media, a
well-known approach for lowering the power requirements of de-
vices is to enhance nonlinear interactions by employing optical res-
onators that confine light for long times (larger quality factorsQ) in
small volumes V [10–19]. Microcavity resonators designed for on-
chip, infrared applications offer some of the smallest confinement
factors available, but their implementation in practical devices has
been largely hampered by the difficult task of identifying wave-
length-scale (V ∼ λ3) structures supporting long-lived, resonant
modes at widely separated wavelengths and satisfying rigid fre-
quency-matching and mode-overlap constraints [15,20].

In this article, we extend a recently proposed formulation for the
scalable topology optimization of microcavities, where every pixel
of the geometry is a degree of freedom, to the problem of designing
wavelength-scale photonic structures for second-harmonic gener-
ation (SHG). We apply this approach to obtain novel micropost
and grating microcavity designs supporting strongly coupled fun-
damental and harmonic modes at infrared and visible wavelengths
with relatively large lifetimesQ1; Q2 > 104. In contrast to recently
proposed designs based on known, linear cavity structures hand

tailored tomaximize the Purcell factors orminimizemode volumes
of individual resonances, e.g., ring resonators [17,21–23] and
nanobeam cavities [19,24], our designs ensure frequencymatching
and small confinement factors, while simultaneously maximizing
the SHG enhancement factor Q2

1Q2jβ̄j2 to yield orders of magni-
tude improvements in the nonlinear coupling β̄ described by
Eq. (3) and determined by a special overlap integral between
the modes. These particular optimizations of multilayer stacks il-
lustrate the benefits of our formalism in an approachable and ex-
perimentally feasible setting, laying the framework for future
topology optimization of 2D/3D slab structures that are sure to
yield even further improvements. Inwhat follows, althoughwewill
primarily focus on the problem of SHG as a concrete demonstra-
tion of our technique, the proposed formulation can be extended to
many other problems of interest. For instance, in the area of quan-
tum science and technology, where quantum information carried
by photons needs to be communicated over long distance, our
technique can be used to realize efficient quantum frequency con-
version over the widest range, including that from visible to tele-
communicationwavelengths [25]. In fact, any nonlinear frequency
conversion problem that can stand to benefit from a chip-scale
nanophotonic platform can potentially benefit from this approach.
Our work constitutes a new approach to nonlinear photonic design
based on specially tailored aperiodic structures rather than conven-
tional hand designs.
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Most experimental demonstrations of SHG in chip-based
photonic systems [16,17,23,26–29] operate in the so-called
small-signal regime, where the lack of pump depletion leads to
the well-known quadratic scaling of harmonic output with inci-
dent power [30]. In situations involving all-resonant conversion,
where confinement and long interaction times lead to strong
nonlinearities and non-negligible downconversion [12,20], the
maximum achievable conversion efficiency �η ≡ Pout
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where χ�2�eff is the effective nonlinear susceptibility of the medium
(Supplement 1), andQ � � 1

Q rad � 1
Qc�−1 is the dimensionless qual-

ity factor (ignoring material absorption) incorporating radiative
decay 1

Q rad and coupling to an input/output channel 1
Qc . The

dimensionless coupling coefficient β̄ is given by a complicated,
spatial-overlap integral involving the fundamental and harmonic
modes (see Supplement 1 for details):
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where ε̄�r� � 1 inside the nonlinear medium and zero elsewhere.
Based on the above expressions, one can define the following
dimensionless figures of merit:

FOM1 � Q2
1Q2jβ̄j2
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FOM2 � �Q rad
1 �2Q rad

2 jβ̄j2; (5)

where FOM1 represents the efficiency per power, often quoted in
the so-called undepleted regime of low-power conversion [30], and
FOM2 represents an intrinsic upper bound that depends only on
the uncoupled cavity parameters, e.g., the intrinsic radiative lifetimes
Q rad. In particular, given a set of radiation loss rates, FOM1 is maxi-
mized when the modes are critically coupled, Q � Q rad

2 , in which
case FOMmax

1 � FOM2∕64, whereas the absolute maximum occurs
in the absence of radiative losses, Q rad → ∞, or equivalently, when
FOM2 is maximized. From either FOM, it is clear that, apart from
frequency matching and lifetime engineering, the design of optimal
SHG cavities rests on achieving a large nonlinear coupling β̄.

2. OPTIMIZATION FORMULATION

Optimization techniques have been regularly employed by the
photonic device community, primarily for fine-tuning the char-
acteristics of a predetermined geometry; the majority of these
techniques involve probabilistic Monte Carlo algorithms, such
as particle swarms, simulated annealing, and genetic algorithms
[31–33]. While some of these gradient-free methods have been
used to uncover a few unexpected results out of a limited number
of degrees of freedom (DOFs) [34], gradient-based topology op-
timization methods efficiently handle a far larger design space,
typically considering every pixel or voxel as a DOF in an extensive
2D or 3D computational domain, giving rise to novel topologies

and geometries that might have been difficult to conceive from
conventional intuition alone. The early applications of topology
optimization were primarily focused on mechanical problems
[35] and only recently were expanded to encompass photonic
systems, though largely limited to linear devices [34,36–42].

Recent work [37] considered topology optimization of the
cavity Purcell factor by exploiting the concept of local density of
states (LDOS). In particular, the equivalence between the LDOS
and power radiated by a point dipole can be exploited to reduce
Purcell-factor maximization problems to a series of small scattering
calculations. Defining the objective function maxε̄ f �ε̄�r�;ω� �
−Re�R drJ� · E�, it follows that E can be found by solving the
frequency domain Maxwell’s equations ME� iωJ, where M
is the Maxwell operator (Supplement 1) and J � δ�r − r0�êj.
The maximization is then performed over a discretized domain
defined by the normalized dielectric function, fε̄α � ε̄�rα�; α↔
�iΔx; jΔy; kΔz�g. A key realization in [37] is that, instead of maxi-
mizing the LDOS at a single discrete frequency ω, a better-posed
problem is that of maximizing the frequency-averaged f in the
vicinity of ω, denoted by hf i � R

dω 0W�ω 0;ω;Γ�f �ω 0�, where
W is some weight function defined over a specified bandwidth Γ.
Using contour integration techniques, the frequency integral can
be conveniently replaced by a single evaluation of f at a complex
frequency ω� iΓ [37]. For a fixed Γ, the frequency average effec-
tively forces the algorithm to favor minimizing V over maximizing
Q ; the latter can be enhanced over the course of the optimization
by gradually winding down Γ [37]. A major merit of this formu-
lation is that it features a mathematically well-posed objective as
opposed to a direct maximization of the cavity Purcell factor Q

V ,
allowing rapid convergence into extremal solutions.

A simple extension of the optimization problem from
single-mode to multimode cavities maximizes the minimum of
a collection of LDOS at different frequencies, while the objective
becomes: maxε̄α min�LDOS�ω1�; LDOS�2ω1��, which requires
solving two separate scattering problems, M1E1 � J1 and
M2E2 � J2, for the two distinct point sources J1, J2 at ω1

and ω2 � 2ω1, respectively. However, as discussed before, rather
than maximizing the Purcell factor at individual resonances, the
key to realizing optimal SHG is to maximize the overlap integral β̄
between E1 and E2, described by Eq. (3). Here, we suggest an
elegant way to incorporate β̄ by coupling the two scattering prob-
lems. We consider not a point dipole but an extended source J2 ∼
E2
1 at ω2 and optimize a single combined radiated power f �

−Re�R drJ�2 · E2� instead of two otherwise unrelated LDOS calcu-
lations. Hence, f yields precisely the β̄ parameter along with any
resonant enhancement factors �∼Q∕V � in E1 and E2. Intuitively,
J2 can be thought of as a nonlinear polarization current induced
by E1 in the presence of the second-order susceptibility tensor
χ�2�, and, in particular, is given by J2i � ε̄�r�Pjkχ

�2�
ijk E1jE1k

where the indices i; j; k run over the Cartesian coordinates. In
general, χ�2�ijk mixes polarizations, and f is a sum of different
contributions from various polarization combinations. In what
follows, we focus on the simplest case in which E1 and E2 have
the same polarization, corresponding to a diagonal χ �2� tensor de-
termined by a scalar χ�2�eff . Such an arrangement can be obtained
by, for example, proper alignment of the crystal orientation axes
[18,30]. With this simplification, the generalization of the linear
topology-optimization problem to the case of SHG becomes
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maxε̄αhf �ε̄α;ω1�i � −Re

��Z
J�2 · E2dr

��
;

M1E1 � iω1J1;

M2E2 � iω2J2;ω2 � 2ω1 (6)
where

J1 � δ�rα − r0�êj ; j ∈ fx; y; zg
J2 � ε̄�rα�E2

1j êj ;

Ml � ∇ ×
1

μ
∇ × −εl �rα�ω2

l ; l � 1; 2

εl �rα� � εm � ε̄α�εd l − εm�; ε̄α ∈ �0; 1�;
and where εd denotes the dielectric contrast of the nonlinear
medium and εm is that of the surrounding linear medium. Note
that ε̄α is allowed to vary continuously between 0 and 1; inter-
mediate values are penalized by threshold projection filters [43].
The scattering framework makes it straightforward to calculate
the derivatives of f with respect to ε̄α via the adjoint variable
method [35–37]. The optimization problem can then be solved
by any gradient-based algorithm, such as the method of moving
asymptotes [44].

Figure 1 describes the work flow of our optimization pro-
cedure. For computational convenience, the optimization is
carried out using a 2D computational cell (in the x–z plane),
though the resulting optimized structures are given a finite trans-
verse extension hy (along the y direction) to make realistic 3D
devices (see Fig. 3). In principle, the wider the transverse dimen-
sion, the better the cavity quality factors since they are closer to
their 2D limit, which consists only of radiation loss in the z di-
rection; however, as hy increases, β̄ decreases due to increasing
mode volumes. In practice, we chose hy of the order of a few vac-
uum wavelengths so as not to greatly compromise either Q or β̄.
We then analyze the 3D structures via rigorous finite-difference
time-domain (FDTD) simulations to determine the resonant life-
times and modal overlaps. By virtue of our optimization scheme,
we invariably find that frequency matching is satisfied to within
the mode linewidths.

3. OPTIMAL DESIGNS

Table 1 characterizes the FOMs of some of our newly discovered
microcavity designs, involving simple micropost and gratings
structures of various χ�2� materials, including GaAs, AlGaAs, and
LiNbO3. The low-index material layers of the microposts consist
of alumina (Al2O3), while gratings are embedded in either silica
or air (see Supplement 1 for details). Note that, in addition to
their performance characteristics, these structures significantly
differ from those obtained by conventional methods in that tradi-
tional designs often involve rings [17,18], periodic structures, or
tapered defects [24], which tend to ignore or sacrifice β̄ in favor of
increased lifetimes, and for which it is also difficult to obtain
widely separated modes [19]. Figure 2 illustrates one of the opti-
mized structures—a doubly resonant rectangular micropost cavity
with alternating AlGaAs∕Al2O3 layers—along with spatial pro-
files of the fundamental and harmonic modes. For convenience,
we consider modes with the same polarization (major field com-
ponent Ey): although AlGaAs (similar to GaAs) has a non-
vanishing off-diagonal tensor element χ�2�xyz , it can couple the
Ey components of fundamental and second-harmonic modes if
the crystal plane is appropriately oriented in the (111) direction
[19]. The cavity designed by our approach differs from conven-
tional microposts in that it does not consist of periodic bilayers,
yet it supports two localized modes at precisely λ1 � 1.5 μm and
λ2 � λ1∕2. In addition to having large Q rad ≳ 105 and small
V ∼ �λ1∕n�3, the structure exhibits an ultralarge nonlinear cou-
pling β̄ ≈ 0.018 that is almost 1 order of magnitude larger than
the best overlap found in the literature (see Fig. 3).

An interesting aspect of the optimized structures is the appear-
ance of deeply subwavelength features ∼1%–5% of λ1n , leading to
a kind of metamaterial geometry in the optimization direction; we
surmise that these arise regardless of starting conditions in order to
accommodate a delicate cancellation of the out-going radiation
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Fig. 1. Work flow of the design process. The DOFs in our problem
consist of all of the pixels along the x direction of a 2D computational
domain. Starting from a vacuum or uniform-dielectric slab, the optimi-
zation seeks to develop an optimal pattern of material layers (with a fixed
thickness in the z direction) that can tightly confine light at the desired
frequencies while ensuring maximal spatial overlap between the confined
modes. The developed 2D cross-sectional pattern is truncated at a finite
width in the y direction to produce a fully 3D micropost or grating cavity
that is then simulated by FDTDmethods to extract the resonant frequen-
cies, quality factors, eigenmodes, and corresponding modal overlaps.
Here, it must be emphasized that we merely performed 1D optimization
(within a 2D computational problem) because of limited computational
resources; consequently, our design space is severely constrained.

Table 1. SHG Figures of Merit, Including Frequencies λ, Overall and Radiative Quality Factors Q ; Qrad , and Nonlinear
Coupling β Corresponding to the Fundamental and Harmonic Modes of Topology-Optimized Micropost and Grating Cavities
of Different Material Systems

Structure hx × hy × hz�λ31� λ�μm� (Q1;Q2) (Qrad
1 ;Qrad

2 ) β FOM1 FOM2

(1) AlGaAs∕Al2O3 micropost 8.4 × 3.5 × 0.84 1.5–0.75 (5000, 1000) (1.4 × 105, 1.3 × 105) 0.018 7.5 × 106 8.3 × 1011
(2) GaAs gratings in SiO2 5.4 × 3.5 × 0.60 1.8–0.9 (5000, 1000) (5.2 × 104, 7100) 0.020 7 × 106 7.5 × 109
(3) LN gratings in air 5.4 × 3.5 × 0.80 0.8–0.4 (5000, 1000) (6700, 2400) 0.030 8.4 × 105 9.7 × 107
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(resulting in high Q) and constructive nonlinear overlap (large β)
at the precise designated frequencies. In particular, we find that
these features are not easily removable, as their absence greatly per-
turbs the quality factors and frequency matching. Here, it is
worth mentioning that this level of structural sensitivity is typically
absent in modes confined by traditional bandgap mechanisms via
Bragg scattering [10]. However, to the best of our knowledge, no
structure exists that possesses multiple bandgaps with strongly
confined modes (Q > 104) at vastly disparate frequency regimes,
not to mention modes that exhibit a large nonlinear overlap. In
contrast, topology optimization suggests that one needs very care-
ful interference cancellations enabled by aperiodic arrangement
and subwavelength features to simultaneously achieve precise fre-
quency matching and optimal nonlinear overlap.

To understand the mechanism of improvement in β̄, it is
instructive to consider the spatial profiles of interacting modes.
Figure 2(b) plots the y components of the electric fields in the
x–z plane against the background structure. Since β̄ is a net total

of positive and negative contributions coming from the local
overlap factor E2

1E2 in the presence of nonlinearity, not all local
contributions are useful for SHG conversion. Most notably, one
observes that the positions of negative anti-nodes of E2 (light red
regions) coincide with either the nodes of E1 or alumina layers
(where χ�2� � 0), minimizing negative contributions to the
integrated overlap. In other words, improvements in β̄ do not
arise purely due to tight modal confinement, but also from
the constructive overlap of the modes enabled by the strategic
positioning of field extrema along the structure.

From an experimental point of view, the realization of the
multilayer stack is well documented in the literature [45,46]:
(i) stacks of AlxGa1−xAs∕AlyGa1−y As layers can be readily grown
(metal organic chemical vapor deposition or molecular beam epi-
taxy), where x and y are chosen so that the layers are lattice
matched and also x ∼ 1 and y ∼ 0; (ii) the pillar can be defined
using electron beam lithography and reactive ion etching (e.g., us-
ing Cl-based chemistry); (iii) the structure is placed in the oxida-
tion furnace: then high Al content layers (AlxGa1−x As) are
oxidized and turned into Al2O3 (AlOx , to be precise), whereas
low Al content layers are intact. This takes advantage of the
well-known fact that large Al content AlGaAs layers can be oxi-
dized much faster than low Al content ones. Additionally, the mi-
cropost cavity can be naturally integrated with quantum dots and
quantum wells for cavity QED applications [47]. Similar to other
wavelength-scale structures, the operational bandwidths of these
structures are limited by radiative losses in the lateral direction
[10,48,49], but their ultralarge overlap factors more than com-
pensate for the increased bandwidth, which ultimately may prove
beneficial in experiments subject to fabrication imperfections and
for large-bandwidth applications [1,2,6,50].

Based on the tabulated FOMs (Table 1), the efficiencies and
power requirements of realistic devices can be directly calculated.
For example, assuming χ�2�eff �AlGaAs� ∼ 100 pm∕V [18], the
AlGaAs∕Al2O3 micropost cavity (Fig. 2) yields an efficiency of
P2;out
P2
1
� 2.7 × 104∕W in the undepleted regime when the modes

are critically coupled, Q � Q rad

2 . For larger operational band-
widths, e.g., Q1 � 5000 and Q2 � 1000, we find that
P2;out
P2
1
� 16∕W. When the system is in the depleted regime and

critically coupled, we find that a maximum efficiency of 25%
can be achieved at Pcrit

1 ≈ 0.15 mW, whereas, when assuming
smaller Q1 � 5000 and Q2 � 1000, a maximum efficiency of
96% can be achieved at Pcrit

1 ≈ 0.96 W.

4. COMPARISON AGAINST PREVIOUS DESIGNS

Table 2 summarizes various performance characteristics, includ-
ing the aforementioned FOM, for a handful of previously studied
geometries with length scales spanning from millimeters to a
few micrometers. Figure 3 demonstrates a trend among these
geometries toward increasing β̄ and decreasing Q rad as device sizes
decrease. Maximizing β̄ in millimeter-to-centimeter scale bulky
media translates to the well-known problem of phase matching
the momenta or propagation constants of the modes [30]. In
this category, traditional whispering gallery mode resonators
(WGMRs) offer a viable platform for achieving high-efficiency
conversion [26]; however, their ultralarge lifetimes (critically de-
pendent upon material-specific polishing techniques), large sizes
(millimeter length scales), and extremely weak nonlinear coupling
(large mode volumes) render them far from optimal chip-scale
devices. Although miniature WGMRs, such as microdisk and

y

z

x(a) (b)

hy
hz

hx

Fig. 2. (a) Schematic illustration of a topology-optimized micropost
cavity with alternating AlGaAs∕Al2O3 layers and dimensions hx × hy ×
hz � 8.4 × 3.5 × 0.84�λ31�. For structural details, please refer to
Supplement 1. (b) x–z cross section of the Ey components of two local-
ized modes of frequencies λ1 � 1.5 μm and λ2 � λ1∕2.

Fig. 3. Scatter plot of �Q rad
1 �2Q rad

2 versus nonlinear overlap jβ̄j2 for rep-
resentative geometries, including WGMRs [26], microring and nanoring
resonators [17,18], photonic crystal slabs, and nanobeam cavities [16,19].
A trend toward decreasing lifetimes and increasing overlaps is observed as
devices become increasingly smaller. Meanwhile, it remains an open prob-
lem to discover structures with high Q , small V , and large jβ̄j (shaded
region).
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microring resonators [17,27,29], show increased promise due to
their smaller mode volumes, improvements in β̄ are still hardly
sufficient for achieving high efficiencies at low powers.
Ultracompact nanophotonic resonators, such as the recently pro-
posed nanorings [18], 2D photonic crystal defects [16], and
nanobeam cavities [19], possess even smaller mode volumes but
prove challenging for design due to the difficulty of finding well-
confined modes at both the fundamental and second-harmonic
frequencies [16]. Even when two such resonances can be found
by fine-tuning a limited set of geometric parameters [18,19], the
frequency-matching constraint invariably leads to suboptimal spa-
tial overlaps, which severely limits the maximal achievable β̄.

Our optimization method seeks to maximize intrinsic geomet-
ric parameters of an unloaded cavity, e.g., Q rad and β̄, whereas the
loaded cavity lifetime Q depends on the choice of coupling
mechanism, e.g., free-space, fiber, or waveguide coupling, and is
therefore an external parameter that can be considered independ-
ently of the optimization. When evaluating the performance
characteristics, such as FOM1, we assume total operational life-
times Q1 � 5000; Q2 � 1000. In comparing Tables 1 and 2,
one observes that, for a comparable Q , the topology-optimized
structures perform significantly better in both FOM1 and
FOM2 than any conventional geometry, with the exception of
the lithium niobate (LN) gratings, whose lowQ rad lead to slightly
lower FOM2. Generally, the optimized microposts and gratings
perform better by virtue of a large and robust β̄ which, notably,
is significantly larger than that of existing designs. Here, we have
not included in our comparison those structures that achieve non-
negligible SHG by special poling techniques and/or quasi-phase-
matching methods [29,30,51], though their performance is still
suboptimal compared to the topology-optimized designs. Such
methods are highly material-dependent and are thus not readily
applicable to other material platforms; instead, ours is a purely
geometrical topology optimization technique applicable to any
material system.

5. CONCLUDING REMARKS

In conclusion, we have presented a formulation that allows for
large-scale optimization of SHG. Applied to simple micropost
and grating structures, our approach yields new classes of micro-
cavities with stronger performance metrics over existing designs.
One potentially challenging aspect for fabrication in the case of
gratings is the presence of deeply subwavelength features, which
would require difficult high-aspect-ratio etching or growth tech-
niques. Another caveat about wavelength-scale cavities is that they
are sensitive to structural perturbations near the cavity center,
where most of the field resides. In our optimized structures, the

FOMs are robust to within ∼	 20 nm variations (approximately
one computational pixel). One possible way to constrain the
optimization to ensure some minimum spatial feature and robust-
ness is to exploit so-called regularization filters and worst-case
optimization techniques [43], which we will consider in future
work. However, subwavelength features and structural sensitivity
should not be an issue for the micropost cavities since each
material layer can be grown/deposited to a nearly arbitrary thick-
ness with angstrom precision [47,48].

Our micropost cavities represent fundamentally new photonic
designs obtained by a novel design process—arguably, they could
not have been designed from intuition alone. Furthermore, the
proposed optimization framework provides a natural versatile tool
to tackle various challenging scenarios and exotic applications in
nonlinear photonics including, for example, higher-order fre-
quency conversion processes with more than two modes, as well
as problems that require conversion of single photons and quan-
tum states of light.

Funding. Air Force Office of Scientific Research (AFOSR)
(FA9550-14-1-0389); Army Research Office through the
Institute for Soldier Nanotechnologies (W911NF-13-D-0001);
National Science Foundation (NSF) (DGE1144152).

See Supplement 1 for supporting content.
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