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Discrete-mode cancellation mechanism for high-Q integrated
optical cavities with small modal volume
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A mechanism to reduce radiation loss from integrated optical cavities without a complete photonic bandgap is
introduced and demonstrated. It is applicable to any device with a patterned substrate (including both low
and high index-contrast systems), when it supports discrete guided or leaky modes through which power escap-
ing the cavity can be channeled into radiation. One then achieves the associated increase in Q by designing
the cavity such that the near-field pattern becomes orthogonal to these discrete modes, therefore canceling
the coupling of power into them and thus reducing the total radiation loss. The method is independent of
any delocalization mechanism and can be used to create high-Q cavities with small modal volume. © 2004
Optical Society of America
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A critical component of optical devices is a resonant
cavity, characterized by its radiation loss (or lifetime
Q) and its modal volume V . Without a complete pho-
tonic bandgap1 or special symmetries,2 cavities nor-
mally have intrinsic losses. However, incomplete-gap
systems, e.g., those that combine index guiding with
one- or two-dimensional bandgaps,3 are of widespread
interest because they are easily fabricated. Here, we
focus on systems in which the periodic pattern ex-
tends into the substrate (and the superstrate), with ei-
ther high or low vertical index contrast, such as those
shown in Figs. 1(a) and 1(b). In a uniform substrate
(e.g., a bridge4 or a membrane5 suspended in air), one
can achieve a strong peak in Q without modifying V
by forcing the cancellation of a multipole term in the
radiated far field6 or, in a related way, by canceling
the dominant Fourier components in the near f ield5,7 – 9;
the key feature, we argue, is a qualitative change in the
far-field–Fourier pattern. We show that this cancel-
lation mechanism is substantially modif ied by a pat-
terned substrate because the radiation is no longer
purely a continuum: It can be dominated by discrete
guided or leaky modes propagating vertically in the
central unpatterned region of the cladding [Fig. 1(c)].
In this case, which applies to arbitrary index-contrast
substrates, one forces an orthogonality of the near f ield
with such a discrete mode, resulting in a peak in Q.
Again, no sacrif ice in modal volume V is needed, un-
like in previous research, which showed how to in-
crease Q by delocalizing the mode either horizontally10

or vertically.11 In this Letter, first we describe the
general mathematical foundations for all such cancel-
lation mechanisms (with guided, leaky, and continuum
modes) and then we give two, two-dimensional example
systems (with high and low index contrast) illustrating
a factor-of-10 increase in Q. Improvement of the same
order is expected in three dimensions, as similar gains
were demonstrated in three dimensions for multipole-
based cancellations.6

Consider, as examples, the integrated cavities shown
in Figs. 1(a) and 1(b). If the resonant near f ield does
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not see the solid substrate and the air superstrate,
these can be ignored. This is true if the array of holes
is etched deep enough through the high-index slab,
such that the holes cover at least the decay length of the
waveguide mode.11 Labeling the vertical out-of-plane
direction z, we can now think of the effective patterned
cladding as a multilayered waveguide along z, which
at a resonant frequency v supports a complete set of
modes [with dependence exp�ibz 2 ivt�] that consists
of a continuous spectrum and possibly discrete index-
and bandgap-guided modes. Those modes propagat-
ing in z (real b) fall inside the radiation cone and
thus contribute to the total loss, whereas the evanes-
cent modes (complex b) do not. The mode profiles for
the transverse to z f ield components will be en�x, y�
and hn�x, y� for the discrete modes and e�b; x, y� and
h�b;x, y� for the continuum. Having ignored the solid

Fig. 1. (a) Photonic-crystal slab microcavity, (b) monorail
microcavity, and (c) two-dimensional model of the cavities
for the region in the vicinity of the defect.
© 2004 Optical Society of America



2310 OPTICS LETTERS / Vol. 29, No. 19 / October 1, 2004
substrate and the air superstrate, and dropping the x, y
dependence for simplicity, we can write the field out-
side the cavity as12
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If this complete set of modes is orthonormalized such
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namely, an incoherent sum of discrete terms and a
continuum. If the stored energy inside the cavity is
U �

R
udV , and u � 1/2 ejEj2 is the energy density,

then the two major f igures of merit that character-
ize a resonant cavity are quality factor Q (Ref. 13) and
modal volume V (Ref. 14):
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V � U�max�u� , (5)

where the introduced individual factors Qn
21 �

jcnj2�vU and Q21�b� � jc�b�j2�vU contribute inde-
pendently to the total Q. For a low-loss cavity, Q must
be large, whereas a small modal volume is usually
desired.

Depending on the design, the discrete terms in
Eq. (3) may often carry a significant portion of the
total radiated power, so Q is limited by some Qn, as
shown below. In that case, one can achieve a sig-
nificant increase in Q by canceling the corresponding
expansion coeff icients. These are determined by
the near-f ield pattern Et0�x, y� � Et�x,y, z � 0� and
Ht0�x, y� � Ht�x, y, z � 0�:∑
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One can achieve cancellation of cn by forcing the near
field to be orthogonal to its associated mode by proper
design of the defect, for example, by tuning its di-
electric constant or shape. Similarly, elimination of a
mode c�b� within the continuum can be imposed again
through Eq. (6). In any case, cancellation of an eigen-
mode of this generalized Fourier-type basis set for the
near f ield implies, according to Fraunhofer diffraction
theory, a corresponding nodal direction in the far field.

The multilayered waveguide formed by the pat-
terned cladding might also support discrete modes of
the leaky type. Their contribution to the radiated
field associated with the continuum can be made
evident by application of a steepest-descent approxi-
mation to Eq. (1) for some angle of observation. If
then leaky wave poles b̃m are crossed during the
deformation of the integration path in the complex b

plane, Eq. (1) becomes15∑
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Inasmuch as leaky modes do not belong to a complete
orthogonal set, relations of the form of Eq. (3) or (4)
cannot be rigorously written. Still, canceling a dis-
crete coefficient c̃m in expression (7) should result in
an increase of radiation Q if the associated leaky wave
carries a significant portion of the f ield radiated within
the continuum.

Just like the free-space cancellations,6 such a
discrete-mode cancellation involves only small changes
in the near-field pattern to force the orthogonality
relation, and it does not rely on delocalization. Modal
volume can thus be kept small and nearly constant.

To illustrate the principles above, we used the sim-
plified two-dimensional model of Fig. 1(c) to describe
the region in the vicinity of the cavities in Figs. 1(a)

Fig. 2. Results for ncore � 3.35, nclad � 3.17, d � 680 nm,
L � 320 nm, wa � 150 nm, and woff � 125 nm. (a) Q
total, Q of the guided mode, Q of the continuum, and
V��l�ndef�2 versus ndef (wdef is adjusted such that l �
1.55 mm); (b)– (d) resonant f ield at three values of ndef .
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Fig. 3. Results for ncore � 3.45, nclad � 1.45, d � 1 mm,
L � 300 nm, wa � 100 nm, and woff � 100 nm. (a) Q total,
Q of the guided mode, Q of the continuum, and V��l�ndef �2
versus ndef ; (b)– (f ) resonant f ield at f ive values of ndef.

and 1(b). TE ( y-polarized) modes were examined by
an eigenmode expansion method.16 A periodic array
of deep air grooves is etched all the way through
a single-mode symmetric slab waveguide, opening
a bandgap in the x direction. We then introduce a
defect by making one waveguide section longer. The
resonant field will leak power vertically out of the
cavity. To study the effects of defect variations on
radiation loss, we varied the index ndef of a part of the
waveguide core [Fig. 1(c)] while simultaneously adjust-
ing its length wdef , to keep the resonant wavelength
fixed; maintaining a fixed position in the gap is crit-
ical to preserving the localization and not confusing
the cancellation and delocalization mechanisms for
improving Q.

For a low index-contrast InP�GaInAsP (n � 3.35
3.17) waveguide with a bandgap in the 1.205
1.949-mm range, a typical field plot for the second-
order (two nodes in the defect) resonance at l �
1.55 mm is shown in Fig. 2(b). The majority of the
radiation loss is index confined in the central region
to a discrete, vertically propagating guided mode,
whereas some of the extended modes e�b; x�exp�ibz�
have been removed by the bandgap. For ndef � 3.29
the guided mode is canceled [Figs. 2(a) and 2(b)]
with a corresponding factor-of-10 increase in total
Q, and the peak is limited only by the continuum to
Q � 58,000. Moreover, the modal volume is almost
independent of the tuning and is very small, of the
order of 0.28�l�ndef�2 [Fig. 2(a)].

A high-index-contrast Si�SiO2 (n � 3.45 1.45) wave-
guide with a 1.205 1.651-mm bandgap has, for the
same resonance at l � 1.55 mm, a field pattern as
in Fig. 3(b). Because of the smaller cladding index
variation (air SiO2) the discrete guided mode is now
less confined, and its contribution to radiated power
is no longer dominant but is similar to that of the
continuum. Two equally prominent cancellations are
now present: One of the discrete eigenmode types pre-
sented in this Letter, at ndef � 3.142 [Figs. 3(a) and
3(c)], and one of the multiple types6 at ndef � 3.221
[Figs. 3(a) and 3(e)]. The total Q is maximized to Q �
21,000 midway, at ndef � 3.18 [Figs. 3(a) and 3(d)].
The null in the far-field pattern is sweeping in angle
from the vertical z to the horizontal x directions as tun-
ing parameter ndef is varied and a different discrete
or extended mode is canceled. The modal volume is
again roughly constant and is even smaller than be-
fore at 0.11�l�ndef�2 [Fig. 3(a)].
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