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Linear waveguides in photonic-crystal slabs
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Linear waveguides in photonic-crystal slabs, two-dimensionally periodic dielectric structures of finite height,
are fundamentally different from waveguides in two-dimensional photonic crystals. The most important dis-
tinctions arise from the fact that photonic-crystal slab waveguides must be index-confined in the vertical
direction~while a band gap confines them horizontally!. We present a systematic analysis of different families
of waveguides in photonic-crystal slabs, and illustrate the considerations that must be applied to achieve
single-mode guided bands in these systems. In this way, the unusual features of photonic-crystal waveguides
can be realized in three dimensions without the fabrication complexity required by photonic crystals with
complete three-dimensional band gaps.
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I. INTRODUCTION

Photonic crystals, which prohibit the propagation of lig
for frequencies within a band gap, have enabled exciting n
ways to control light and construct integrated optic
devices.1 An important element of optical circuits is a linea
waveguide to carry light to and from components, and p
tonic crystals also provide unique advantages
waveguides. Photonic-crystal waveguides, guided by
band gap of the bulk crystal,1–4 can exhibit near-zero reflec
tion and loss through sharp bends5 and when coupled with
resonant cavities,6,7 due to the gap’s prevention of radiatio
losses. Previous theoretical studies of photonic-cry
waveguides, however, have been restricted to purely t
dimensional systems and have not examined the effect
vertical confinement. In this paper, we present a system
study of waveguide modes in a three-dimensional syst
photonic-crystal slabs. Photonic-crystal slabs are tw
dimensionally periodic dielectric structures of finite heig
that have a band gap for propagation in the plane and
index-confinement in the third dimension; they have be
proposed as a more-easily fabricated alternative to true th
dimensionally periodic photonic crystals.2,8–19 Although
their structure and properties strongly resemble those of t
dimensional crystals, slab systems require a fundamen
different, three-dimensional analysis.10,16,19We will demon-
strate how such analyses apply to waveguides and exp
the considerations that arise for line defects in photon
crystal slabs. We shall show that, merely to produce gui
modes~as well as to be single-mode and in-gap!, the param-
eters of the defect must be carefully chosen.

Waveguides must satisfy three criteria in order to achi
optimal performance in many integrated-optical-circuit a
plications; e.g., for maximum transmission through sh
bends~on the scale of the wavelength! and resonant cavities
First, of course, the waveguide must support true gui
modes~as opposed to resonances, as defined later!. This also
implies that the waveguide structure must be periodic al
the direction of propagation, in order to have a well-defin
Bloch wave numberk and to thereby propagate without r
flections. Second, the waveguide should be single mod
PRB 620163-1829/2000/62~12!/8212~11!/$15.00
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the frequency range of interest—this condition is necess
in Ref. 5 and the increased reflections in a multi-mode wa
guide are a straightforward consequence of coupled-m
theory.20 ~Extraneous modes may have little effect if co
pling to them through the bend or cavity can be made n
ligible, but this is not generally the case for wavelength-sc
structures.! Third, the guided mode should lie within th
band gap of a photonic crystal in order to prohibit radiati
losses ~which both decrease transmission and incre
reflection20!; otherwise, some losses are inevitable at a be
or resonator, which breaks translational symmetry.

Conventional linear dielectric waveguides operate by
dex confinement~total internal reflection, in the short
wavelength limit!. Such waveguides can be made to sati
the first two criteria from above~i.e., be guiding and single
mode!, and thereby have relatively high transmissi
through sharp bends and resonators.7,21,22 However, the ab-
sence of a photonic band gap means that transmissio
always limited by radiation losses. In a purely tw
dimensional photonic-crystal linear waveguide, a linear~one-
dimensionally periodic! defect is introduced into the crysta
creating a localized band that falls within and is guided
the photonic band gap.1–4 Light is therefore prohibited from
escaping the waveguide, and all three criteria can be satis
to achieve perfect transmission through bends and reso
cavities.5–7 These results have been experimentally co
firmed using structures that are uniform in the third dime
sion for many wavelengths, and thus approximate a tw
dimensional system;23 the large aspect ratios of suc
geometries and their lack of vertical confinement or a t
band gap in the guided modes limit their practical applic
tions, however. There are several other possibilities for re
izing photonic-crystal waveguides in three dimensions. T
most ideal structure, and the only way to totally elimina
radiation losses, would be a three-dimensionally perio
structure with a complete band gap, in which the photo
crystal completely surrounds the waveguide. Such structu
though, are challenging to construct at submicr
lengthscales.24–27 In this paper, we instead focus o
photonic-crystal slabs. Waveguides in photonic-crystal sl
are analogous to those in two-dimensional crystals, exc
8212 ©2000 The American Physical Society
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PRB 62 8213LINEAR WAVEGUIDES IN PHOTONIC-CRYSTAL SLABS
that they use index confinement in the third dimension. Si
lar waveguides, which use photonic-crystal confinemen
two dimensions and index confinement in the third, ha
been subject to experimental studies,28,29 as well as theoret-
ical work subsequent to the submission of this paper.30 There
is also another type of photonic-crystal waveguide that we
not consider in this paper, the photonic-crystal fiber.31–32

This is a two-dimensionally periodic system of~in principle!
infinite thickness, in which the waveguide mode propaga
perpendicular to the plane of periodicity; in contra
photonic-crystal slab waveguides are of finite thickness
run parallel to the plane of periodicity. A waveguide oper
ing on principles similar to the fibers’ was also considered
Ref. 33.

In this paper, we analyze linear-defect waveguides in t
characteristic photonic-crystal slabs, a square lattice of
electric rods in air and a triangular lattice of air holes
dielectric, illustrated in Fig. 1. Above and below the slabs
semi-infinite ‘‘extruded’’ substrates with the same cross s
tions as the slabs, but having a lower dielectric constant.~We
use a substrate in order to model a more practical sys
than a suspended slab, and having the substrate on both
of the slab preserves the mirror symmetry that is crucial
the existence of a gap.! The band diagrams of these tw
structures are given in Figs. 2 and 3, respectively; their
culation and interpretation is described in Ref. 19. Each b
diagram includes a shaded region~defining the light cone!
and discrete~guided! bands lying below the light cone
which are confined vertically in the vicinity of the slab b
index confinement.~Thus, the slab forms a planar wav
guide, but in this paper we use the term ‘‘waveguide’’ on
to describe linear waveguides.! The presence of the ligh
cone, with the corresponding constraint that all guid
modes be index-confined in the vertical direction, gives r
to the most significant differences between photonic-cry
slabs and their two-dimensional cousins. The guided mo
are either even or odd with respect to the horizontal mir

FIG. 1. Photonic-crystal slabs.~a! Square lattice of dielectric
rods in air with« of 12.0, lattice constanta, radius 0.2a, and height
2.0a, with low-index ~e of 2.0! rods extending infinitely above an
below. ~b! Triangular lattice of air holes extending through both
high-index~e of 12.0! finite-height dielectric slab and low-index~e
of 2.0! semi-infinite dielectric regions above and below. The ho
have lattice constanta and radius 0.3a, while the high-index slab is
of thickness 0.5a.
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symmetry plane of the slab; this is analogous to TE and T
respectively, in two dimensions, although here the modes
not completely polarized except in the symmetry plane. T
rod and hole slabs have band gaps in their odd and e
modes, respectively, though these are not complete gaps
to the light cone. Nevertheless, in the gap noguidedmodes
exist for the corresponding symmetry. The slab band gap
been shown to support resonant cavities in point defects,16,17

and we will show in this paper that it can also confine wav
guide modes in linear defects. The differing thicknesses
the slabs derive from the polarizations of the modes exhi
ing the band gap, and were chosen to achieve large gap

In order to create a linear waveguide, we break the p
odicity of the slabs in one direction by creating linear defe

s

FIG. 2. Band structure for the rod slab from Fig. 1~a!. Hollow
and filled circles represent modes which are even and odd
respect to the horizontal (z50) mirror plane bisecting the slab
There is a band gap in the odd~TM-like! modes in the frequency
range 0.3362– 0.4292c/a.

FIG. 3. Band structure for the hole slab from Fig. 1~b!. Hollow
and filled circles denote even and odd modes as in Fig. 2. The
a band gap in the even~TE-like! modes in the frequency rang
0.2708– 0.3471c/a.
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8214 PRB 62JOHNSON, VILLENEUVE, FAN, AND JOANNOPOULOS
of various kinds, as shown in Fig. 4. The possible pertur
tions of the slab fall into two main categories: reduced-ind
waveguides, as in Fig. 4~a!, for which the amount of high-
index material is decreased; and increased-in
waveguides, as in Fig. 4~b!, for which the amount of high-
index material is increased. We also consider a third c
shown in Fig. 4~c!, in which a column of rods is remove
and replaced by a conventional dielectric ‘‘strip’’ waveguid
In all cases, we refer to the direction along the waveguide
x, the perpendicular in-plane direction asy, and the vertical
direction ~out of plane! asz.

The remainder of the paper begins with a discussion
the computational methods that we employed, followed
detailed analyses of reduced-index, increased-index,
strip waveguides in photonic-crystal slabs. We then sh
that waveguides along nearest-neighbor directions are
most feasible. Finally, by estimating a lower bound on
fraction of the electric-field energy in the dielectric, we arg
that it is not possible for photonic-crystal slabs to gui

FIG. 4. Linear defects, which give rise to waveguide modes
the rod and hole photonic-crystal slabs from Fig. 1. The low-ind
material is not shown, but ‘‘extrudes’’ above and below the str
tures as in Fig. 1.~a! Reduced-index waveguides, created
decreasing/increasing the radii of a line of nearest-neighbor r
holes, respectively.~b! Increased-index waveguides, created
increasing/decreasing the radii of a line of nearest-neighbor r
holes, respectively.~c! Dielectric-strip waveguide surrounded b
the rod slab, from which a line of nearest-neighbor rods has b
removed and replaced with the waveguide.
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modes that reside primarily in air~unlike two- or three-
dimensional crystals with complete gaps!. ~Guided modes
can still reside, however, in a reduced-index region.!

II. COMPUTATIONAL METHOD

The band structures of Figs. 2 and 3 were computed
described in Ref. 19, using preconditioned conjuga
gradient minimization of the Rayleigh quotient34 in a three-
dimensional plane-wave basis,35 with an imposed periodicity
at a large interval in the vertical direction. This is a gener
nonseparable, vectorial solution of the full Maxwell’s equ
tions in a complete three dimensional basis36,37—the only
approximations are the discretization of the system~i.e., the
planewave cutoff! and the imposition of a vertical superce
~which has a negligible effect on the localized, exponentia
decaying guided modes!. The light cone boundary is derive
from the lowest two-dimensional band of the low-index e
truded region.

Calculation of projected band structures for line defe
~linear waveguides! is similar to the above, except that a
additional supercell of seven or eight periods is used in
direction perpendicular to the waveguide.~Waveguide
modes are sufficiently localized so that the adjac
waveguides introduced by the supercell have a neglig
effect on the mode frequencies.! The bands from the unper
turbed slab are projected onto the Brillouin zone of the l
defect, and form the boundaries of the slab band continu
Both the slab bands and the light cone are depicted wit
uniform shading in the projected band structure, despite
varying density of states in these regions. Only modes
fall outside both the light cone and the slab bands are tr
guided in the line defect, decaying exponentially away fro
the waveguide. When the guided bands cross into the c
tinuum regions, they become resonances that extend
nitely away from the waveguide, albeit with low amplitud
We do not consider such resonance modes in this paper

III. REDUCED-INDEX WAVEGUIDES

Photonic-crystal waveguides formed by removing hig
index material,1,4,5 effectively reducing the index of the

n
x
-

s/

s/

n

FIG. 5. Projected band structure for the reduced-index rod-s
waveguide from Fig. 4~a!, showing the~odd-symmetry! guided
bands for various defect rod radii~compared to the bulk radius o
0.20a!.
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PRB 62 8215LINEAR WAVEGUIDES IN PHOTONIC-CRYSTAL SLABS
waveguide compared to its surroundings, are dram
demonstrations of the photonic band gap, as they have
analogues in conventional index guiding. Such wavegui
are also possible in photonic-crystal slabs, such as in
4~a! where we have reduced the radius of a line of rods
increased the radius of a line of holes. The effective inde
lower in the waveguide than in the surrounding slab, so t
modes can only be constrained horizontally by the band g
On the other hand, the index is higher in the waveguide t
the regions above and below the slab, so that modes ca
guided vertically by index confinement. In this section, w
will first consider the reduced-radius rod-slab waveguide
then the increased-radius hole-slab waveguide.

The dispersion relations for various reduced-radii rod-s
waveguides are shown in Fig. 5. There is only one guid
band for each radius, so the waveguide is single mode.
line defect is periodic along its axis, and so the dispers
relation is plotted on theG-X reduced Brillouin zone of this
lattice. The light cone and the bulk slab bands from Fig

FIG. 6. ~Color! Field cross sections for the rod-radius 0.14a
guided mode atX(0.3707c/a), showing thez component of the
electric field. The contours of the dielectric function are shown
black. ~a! Horizontal (xy) cross section in the plane bisecting th
slab (z50). ~b! Vertical (yz) cross section in the plane perpendic
lar to the waveguide and bisecting a row of rods.
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are projected onto theirG-X wave-vector component, resul
ing in the continuous shaded regions of Fig. 5. This ba
diagram continues symmetrically beyondX, so all of the
bands must have zero group velocity~slope! at X in order to
be analytic functions of the wave vector. This condition
the zero slope at the Brillouin-zone edge also applies to a
the other waveguide dispersion relations that we conside
this paper.~The zero slope is not apparent in Fig. 5 becau
the bands were only computed at a few points.!

These discrete bands, all of odd~TM-like! symmetry, de-
cay exponentially away from the defect because they fal
neither the light cone~vertically radiating modes! nor the
continuum of odd slab bands~which propagate freely within
the slab!, and so cannot couple with those extended mod
This strong confinement is illustrated in Fig. 6, which depi
horizontal and vertical cross sections of the electric-fieldz
component atX for the radius 0.14a line defect. We call this
an s mode because the field distribution around a rod
sembles ans electron state, in contrast to other wavegui
modes in subsequent sections.

By the time the defect radius decreases to 0.08a ~versus
0.20a in the bulk!, the guided mode has entirely disappear
into the light cone. This stands in stark contrast to a tw
dimensional lattice of rods, in which a line defect with th
rods entirely removed still supports a guided mode.1,4,5 This
difference is due solely to the slab’s constraint of vertic
index confinement—that is, the guided bands must lie o
side the light cone. The two-dimensional dispersion relat
of the removed-rod waveguide disappears into the upper
edge at a wave vector of roughly 0.4(2p)/a,1 so it is not
surprising that it falls into the light cone of the slab in th
case. Even more generally, however, we do not expe
photonic-crystal slab waveguide to support guided mo
that exist primarily in air—a large fraction of the electr
field must lie within the dielectric. The basic reason for th
is that the vertical confinement of the mode entails an ‘‘e
ergy cost,’’ and having much of the field within the dielectr
is the only way to bring the mode back down below the lig
cone. We quantify this argument in Sec. VII. In the case
the Fig. 5 waveguides, the fraction of the electric-field e
ergy inside the high dielectric atX ranges from 55% for
radius 0.10a to 68% for radius 0.18a. ~Nevertheless, the
mode is still within the reduced-index region and is not ind
guided in the plane.!

A reduced-index waveguide in the hole slab is formed
increasing the radius of a line of nearest-neighbor holes.
resulting band diagrams for various radii are shown in Fig
Here, only modes with even~TE-like! symmetry are de-
picted, since that is the symmetry of the bands exhibitin
gap. As with the rods, there is only a narrow range of ra
that supports guided modes~all of which are single mode!.
Although the radius 0.40a band is guided, it is barely in the
band gap, which begins at the maximum frequency of
lower slab bands. The projected band structure for line
fects retains a wave-vector quantum number, and this me
that the range of frequencies available for guided modes m
be greater than the range of the band gap, as is the case
at the K8 point. Since this quantum number disappears
bends and other places that break translational symme
however, it is important to consider only guided mod
within the true band gap.
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8216 PRB 62JOHNSON, VILLENEUVE, FAN, AND JOANNOPOULOS
The nearest-neighbor direction corresponds to theG-K
direction in the slab Brillouin zone, butK is not the edge of
the line-defect Brillouin zone. Figure 8 depicts how the
ciprocal lattice of the slab is projected to form the recipro
lattice of the line defect. The boundary of the projected B
louin zone lies halfway betweenG and m8 ~projected from
m!—this is the pointK8, projected fromM ~which lies half-
way betweenG andm!. Use of the correct projection is im
portant for the computation of the light cone and the s
bands continuum for Fig. 7.

As before, the waveguide band iss-like and strongly lo-
calized both vertically and horizontally, as shown in Fig.
In this case, we depict thez component of the magnetic fiel

FIG. 7. Projected band structure for the reduced-index hole-
waveguide from Fig. 4~a!, showing the~even-symmetry! guided
bands for various defect hole radii~compared to the bulk radius o
0.30a!.

FIG. 8. Diagram of how the reciprocal lattice is projected on
G-K ~vertical dashed line! for a nearest-neighbor line defect in th
hole slab. The black dots are the reciprocal lattice points, the
lined hexagon is the first Brillouin zone, and the gray triang
within it is the reduced Brillouin zone.K8 is the boundary of the
first Brillouin zone in the projected lattice.
-
l
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b
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because the mode is TE-like. Since the electric field loo
around the magnetic field like fields around a current, it
concentrated in the dielectric just as it was for the rods—
fraction of the electric-field energy inside the high dielect
at K8 ranges from 63% for radius 0.48a to 86% for radius
0.40a. The critical parameter in this case is the thickness
the narrow veins between the holes. It is only as that thi
ness approaches zero that the guided modes rise up far
the gap, while for small changes in defect hole radius th
are no modes at all in the gap. In contrast, when the rod-
radius is decreased, the electric field is forced directly i
the air and the frequency quickly increases even for sm
perturbations.

There are many other ways to create reduced-in
waveguides. For example, one could remove a row of r
and then shift the lattices towards one another on either
of the waveguide. This might, however, be inconvenient
applications in high-density integrated optical devices, sin
lattice dislocations from different components may confli
When a row of rods is removed, one can run into additio
problems due to the electric field being concentrated in
adjacent rows of remaining rods. This leads to near deg
eracies between states that are even and odd with respe
they50 mirror plane, creating a multi-mode waveguide. Y
another way to create a reduced-index waveguide is to a
ally decrease the dielectric constant within a linear~one-
dimensionally periodic! region, without necessarily changin
the geometric structure.

IV. INCREASED-INDEX WAVEGUIDES

A waveguide can also be created by a line defect in wh
high-dielectric material is added, leading to an increased
fective index. As shown in Fig. 4~b!, we examine two types
of increased-index waveguides: first, a rod slab with a line
increased-radius rods; and second, a hole slab with a lin
decreased-radius holes. In general, increased-index de
can introduce two sorts of guided modes. First, there
modes that lie below both the light cone and the slab b
continuum—these modes are conventionally index-guid
horizontally as well as vertically. They do not satisfy o
third waveguide criterion, however: they do not lie in th
band gap, being below the lowest slab bands. Thus, we
not consider such guided bands here. The second typ
guided mode, which we shall study, is a state that is pu
down into the gap from the upper slab bands. Such a mod
confined horizontally purely by the band gap and inde
confined vertically, just like the reduced-index waveguid
in the previous section. Because these increased-in
modes derive from the upper slab bands, which have a hig
density of states and often come in degenerate pairs~at sym-
metry points!, there is a greater tendency here towards mu
mode waveguides. As we shall see, however, the sin
mode criterion can be satisfied if the effective index is n
increased too greatly.

Increasing the radii of a line of nearest-neighbor rods
sults in the band diagram of Fig. 10, showing the odd ba
for rod radii of 0.25a. This rod radius gives rise to a pair o
nondegenerate guided modes, labeledpx and py , but be-
cause these modes do not overlap in frequency the w
guide remains single mode.~Note that here, one can identif

b

t-
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PRB 62 8217LINEAR WAVEGUIDES IN PHOTONIC-CRYSTAL SLABS
modes with the same wave vector but opposite group vel
ties.! Figure 11 shows cross sections of the electric field
the two states at defect radius 0.25a. As can be seen in Fig
11, the field around a rod is similar to ap electron state,
oriented in thex and y directions for thepx and py states,
respectively.

When the defect rod radius is increased to 0.275a, three
additional states are pulled down into the gap, as show

FIG. 9. ~Color! Field cross sections for the hole-radius 0.4a
guided mode atK8(0.3026c/a), showing thez component of the
magnetic field. The contours of the dielectric function are shown
black. ~a! Horizontal (xy) cross section in the plane bisecting th
slab (z50). ~b! Vertical (yz) cross section in the plane perpendic
lar to the waveguide and bisecting a defect hole.

FIG. 10. Projected band structure for the increased-index
slab waveguide from Fig. 4~b!, showing the~odd-symmetry! guided
bands for defect rod radius 0.25a ~compared to the bulk radius o
0.20a!.
i-
r

in

Fig. 12. In this case, thepx and py states cross~which is
possible because they have different symmetry with resp
to the y50 mirror plane!, meaning that they are not singl
mode over their whole guided range. The states labeledpx

(2)

andpy
(2) have similar horizontal cross sections topx andpy ,

but are second-order excitations in their vertical cross sec
~i.e., their electric fields have two vertical nodes!. The state
labeledsH

(1) is a first-order vertical excitation of the lowes
TE-like band ~i.e., a single vertical node in the magnet
field!, which is s like in its Hz cross section.~The lowest
TE-like band is of even symmetry, but adding a vertical no
transforms it to odd symmetry and allows it to be guided
the gap.! Thepx

(2) , py
(2) , andsH

(1) states have no analogues
two dimensions.

Figure 13 shows the dispersion relation of even modes
the decreased-radius hole waveguides with radii of 0, 0.1a
and 0.25a. The waveguides are single mode at each f
quency, and there arepx andpy modes for each radius as fo
the rod slabs. In addition, the radius 0 and 0.15a waveguides
support a higher-orderdxy mode. All three modes for radiu
0.15a are depicted in Fig. 14.

In both the rod and the hole slabs, increasing the amo
of dielectric brings more and more states into the gap, wh
makes it harder to achieve single-mode waveguides. One
ameliorate that situation by removing a row of holes a
then shifting the lattices on either side of the waveguide
wards one another~reducing the effective index in the wave
guide!. Such a waveguide was considered for the hole str
ture in two dimensions by Ref. 3, and similar geometr
should be feasible in photonic-crystal slabs.

V. STRIP WAVEGUIDES IN PHOTONIC-CRYSTAL
SLABS

In this section, we study another possible photonic-crys
slab waveguide, formed by replacing a row of rods in t

n

d-

FIG. 11. ~Color! Horizontal (z50) Ez field cross sections for
the rod-radius 0.25a guided modes atX. ~a! px guided mode
(0.3887c/a). ~b! py guided mode (0.4205c/a).
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8218 PRB 62JOHNSON, VILLENEUVE, FAN, AND JOANNOPOULOS
slab of Fig. 1~a! with a conventional dielectric strip wave
guide of the same thickness as the slab, as shown in
4~c!. As before, there is a low-index substrate with the sa
cross section as the slab and waveguide both above an
low this structure.

In Fig. 15 we show the odd-symmetry band diagram
such a waveguide with a width of 0.25a. In this case, the
frequency axis extends down below the slab band continu
so that both the index-guided modes~dashed lines, below the
slab bands! and the gap-guided modes~solid lines! are vis-
ible. The two gap-guided modes atX are shown in Fig. 16—
they differ by a 90° phase shift—and the horizontal cro
sections of the index-guided modes are nearly identica
those of the gap-guided modes. The vertical cross section
the gap- and index-guided modes differ sharply, however
shown in Fig. 17—the index-guided mode is the fundamen
mode and the gap-guided mode is a second-order excita

In the absence of the rod slab, both of the modes sho
would lie below the light cone and be purely index-guide
Furthermore, since the strip has translational symmetry,
Brillouin zone that we apply in Fig. 15 would be artificial—
the guided bands would simply fold back and forth at t
zone boundaries and be degenerate atX. Because this folding
is synthetic, the guided modes do not couple with the li
cone even when they fold on top of it. Adding the rod slab
this system has three effects: first, the frequencies of the
are perturbed; second, the degeneracy atX is broken by the
true periodicity of the system; and third, an upper cutoff
the guided modes is introduced by the light cone~since the
band folding is no longer artificial!. ~Also, if it were not for
the band gap of the rods, the gap-guided modes would o
be resonances—they would couple with the slab and l
slowly away.! Because the guided modes are strongly loc
ized around the dielectric strip, however, the effect of
rods is small. The bands shown in Fig. 15 have an ro
mean-square deviation of less than 1% from the bands o
isolated strip, and the splitting atX is also less than 1%
Because of the true periodicity of the system, the folded b
structure must be analytic and the bands thus have
group velocity atX—due to the weakness of the perturb

FIG. 12. Projected band structure for the increased-index
slab waveguide from Fig. 4~b!, showing the~odd-symmetry! guided
bands for defect rod radius 0.275a.
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tion, though, the slope drops towards zero only as the w
vector comes within 1% ofX. The greater the periodic per
turbation, the greater the splitting and the larger the region
low group velocity, leading eventually to the highly nonlin
ear dispersions of the previous sections.

Despite the similarity in frequency with the modes of
isolated strip, the waveguide here has a signific
advantage—it supports~single-mode! bands in the photonic
band gap, which will inhibit losses in the cases of sha
bends and cavity interactions. The index-guided low
modes in this structure, on the other hand, have no advan
over a conventional waveguide. These modes might oth
wise be preferred since they are the fundamental mode
the waveguide; if this is an important consideration, they c
be pushed up into the band gap by reducing the waveg
width to 0.10a ~at the expense of increased height-to-wid
aspect ratio!.

VI. WAVEGUIDES IN OTHER DIRECTIONS

In the preceding sections, we have only conside
waveguides in the nearest-neighbor directions of the sla
Another possibility might be waveguides in the other sy
metry directions~i.e., along next-nearest neighbors!, as this
is known to give rise to guided modes in two dimension4

Because of the presence of the light cone, however, s
waveguides are not possible in the photonic-crystal s
structures of Fig. 1.

The problem is that, for the next-nearest-neighbor dir
tions, the edge of the projected Brillouin zone comes at
small a wave vector, and the resultant folding of the lig
cone eliminates the band gap. For example, the next-nea
neighbor direction in the hole slab corresponds to theM
direction. When the reciprocal lattice is projected ontoG-M ,
however, one of the reciprocal lattice points~n in Fig. 8! falls
onto M. Therefore, the Brillouin-zone edge is atM /2, at
which point the light-cone frequency is only 0.223c/a. Since
this upper cutoff for guided modes is lower than the g

d-

FIG. 13. Projected band structure for the increased-index h
slab waveguide from Fig. 4~b!, showing the ~even-symmetry!
guided bands for defect hole radii 0, 0.15a, and 0.25a ~compared to
the bulk radius of 0.30a!. For each radius, there are two or thre
guided bands:px ~solid line!, py ~dashed line!, anddxy ~dotted line,
triangles!. Guided bands for a defect hole radius of 0, in which
row of holes is entirely removed, are shown in bold.
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FIG. 14. ~Color! Horizontal (z50)Hz field cross sections for
the hole-radius 0.15a guided modes atK8. ~a! px guided mode
(0.2874c/a). ~b! py guided mode (0.3148c/a). ~c! dxy guided
mode (0.3377c/a).

FIG. 15. Projected band structure for the strip waveguide i
rod slab, from Fig. 4~c!, showing the~odd-symmetry! guided bands
for waveguide width 0.25a. There are two pairs of guided band
gap-guided~solid lines! and index-guided~dashed lines!. The gap-
guided bands are split atX into a 0.07% gap, while the index-guide
bands are split atX into a 0.8% gap.
bottom, there is no band gap and photonic-crys
waveguides are not possible. Similarly, in the rod s
~square lattice!, the Brillouin-zone boundary for the next
nearest-neighbor direction is also atM /2, corresponding to a
light-cone frequency of 0.332c/a— again below the gap bot
tom.

If the rod slab were suspended in air~i.e., no substrate!,

a

FIG. 16. ~Color! Horizontal (z50)Ez field cross sections for the
0.25a strip-waveguide gap-guided modes atX. ~a! Lower gap-
guided mode (0.3626c/a). ~b! Upper gap-guided mode
(0.3629c/a).

FIG. 17. ~Color! Vertical (y50)Ez field cross sections of a uni
cell, parallel to and bisecting the waveguide, for the str
waveguide gap-guided and index-guided modes atX. ~a! Upper
gap-guided mode (0.3629c/a). ~b! Lower index-guided mode
(0.2632c/a).
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the light cone atM /2 would be at a frequency of 0.354c/a,
while the band-gap bottom rises to only 0.3397c/a, leaving a
slight ~4%! band gap. So, in general, next-nearest-neigh
waveguides in photonic-crystal slabs are not impossible,
the available band gap is greatly reduced from the near
neighbor case.

VII. ESTIMATING THE FIELD ENERGY
IN THE DIELECTRIC

In Sec. III, we suggested that much of the field ene
must lie within the dielectric material, not in the air, in ord
for a waveguide mode to fall underneath the light cone a
be guided. In this section, we justify that claim; moreov
we find an analytic relationship between a mode’s locali
tion and the fraction of it inside the high-index materia
explaining why some waveguide modes from tw
dimensional systems cannot exist in a slab. First, we deri
rigorous lower bound on the fraction of the electric fie
energy inside the dielectric, in terms of the spatial exten
the mode and the degree to which it is transverse. Then
approximate the transversality and spatial confinement of
mode to compute a numerical value for this lower bou
and compare with the results of our exact calculations.

The frequency of a guided mode can be expressed a
expectation value of the Maxwell operator for the elect
field, evaluated over the unit cell:

v25
^Eu¹3¹3uE&

^Eu«~xY !uE&
, ~1!

where we takec to be unity. Now, we suppose that the d
electric function is piecewise constant, and write the fielduE&
as a sum of fieldsuE& i , such thatuE& i equalsuE& where the
dielectric is« i and is zero elsewhere. Then, we can rewr
equation~1! as

v25
^Eu¹3¹3uE&

^EuE& (
i

1

« i
S i^Eu« i uE& i

^Eu«~xY !uE& D
5

^Eu¹3¹3uE&

^EuE& (
i

f i

« i
. ~2!

Here, f i is the fraction of the electric field energy that is
the dielectric« i , and must sum to unity. In order to b
guided, the frequency in Eq.~2! must be less than the ligh
cone frequencyv lc at that point in the Brillouin zone. We
will write the electric field in a Fourier basis, in which cas
the curl operations become simply the total Fourier wa
vectork squared. Because the electric field is not divergen
less, however, the curl also projects out the longitudinal fi
component uEL&, leaving only the transverse compone
uET&. ~uET& is divergenceless but not curl-free, whileuEL& is
curl-free but not divergenceless.uEL& is the static electric
field of the bound charges.! In this case, the combination o
Eq. ~2! with the guiding constraint become:

^k2&ET

^ETuET&

^EuE& (
i

f i

« i
,v lc

2 <kB
2. ~3!

Here,kB is the Bloch wave vector in the Brillouin zone o
the line defect, and the second relation is derived from
r
ut
st-
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e
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e
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e

fact that the light cone must lie beneath the light cone
vacuum.̂ k2&ET

is the mean-square wave vector of the tran
verse field, which is inversely related to the mode’s spa
confinement. We will denote the transverse fraction of
field, ^ETuET&/^EuE&, by f T . If we have a two-componen
system~dielectric « and air!, Eq. ~3! leads to the following
rigorous lower bound on the fraction of energy in the diele
tric:

f diel.
12kB

2/~ f T^k2&ET
!

121/«
. ~4!

The more localized the field is, the greater becomes
mean-square wave vector and the greater the minimumf diel .

In order to evaluate equation~4! further, we need to esti-
mate both f T and a lower bound on the mean-squa
wavevector. We treat the wave vector by breaking it into
Cartesian components and examining each component s
rately ~dropping theET subscript!:

^k2&5^kx
2&1^ky

2&1^kz
2&. ~5!

Since the field is of the Bloch form~for a system periodic in
x! and kB is restricted to the first Brillouin zone, it can b
shown that̂ kx

2& is bounded below bykB
2. Furthermore, we

will simply drop the^ky
2& term, which corresponds to hori

zontal confinement of the waveguide mode—we consider
best case for creating a guided mode, when it is very wea
confined in the plane~e.g., near the gap edge!.

^k2&>kB
21^kz

2&. ~6!

Up to this point, we have maintained a strict lower bou
on f diel . Now, however, we will make two approximation
The first is based upon the observed mode profile, such a
Figs. 6 and 9. We are only interested in modes that are
calized inz, so we assume that the vertical mode profile i
Gaussian with a standard deviation less than the heighth of
the slab, and thus

^kz
2&>

1

h2 . ~7!

Second, in the case of the rod slab, we will assumef T to be
nearly unity—that is, neglect the longitudinal component
the field. We justify this assumption by noting that the fiel
of the rod modes are very similar to those of the tw
dimensional structure,19 in which the TM electric field is
divergenceless. The only longitudinal component com
from the small regions near the rod ends where the elec
field has a component normal to the dielectric surface.~For
example, the rod-slab defect-radius 0.10a mode is 86%
transverse atX.!

Finally, combining Eqs.~4!, ~6!, and ~7!, we have the
following approximate lower bound on the fraction of ele
tromagnetic energy in the dielectric~for TM-like fields!:

minimum f diel
tm-like'

1

~@hkB#211!~121/«!
. ~8!

In the case of the rod slab at theX point, this lower bound
evaluates to 0.545, which is very close to the minimum
55% that we observed for the smallest defect rod suppor
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guided modes~radius 0.10a!. If we instead takef T to be the
observed value of 0.86, then the minimumf diel becomes
0.457.

In contrast, let us consider the purely two-dimensio
system of rods. Here, there is no light cone, so the upp
bound on the frequency is a constantvmax ~the top of the
gap! instead ofkB . Also, there is no vertical confinemen
and the TM electric field is fully transverse. Thus, Eq.~4!
becomes the following strict bound:

f diel
tm .

12vmax
2 /~kB

21^ky
2&!

121/«
. ~9!

Therefore, for small Bloch wave vectorskB ~or for large
vmax! in two dimensions, it is possible to both confine in t
y direction and also have a low fraction of the field in t
dielectric. This corresponds precisely to what is observed
Ref. 1, in which guiding in air is demonstrated, but not ne
the edge of the Brillouin zone~large kB!. ~Similarly, it
should be possible to guide primarily in air using thre
dimensional crystals with a complete band gap.!

We should emphasize that the lower bounds deri
above hold for the electric-field energy, not the magne
field energy. Indeed, for the reduced-radius rod waveguid
we observed the fraction of the magnetic-field energy in
dielectric to drop as low as 15%~for radius 0.14a rods!.
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VIII. CONCLUDING REMARKS

Photonic-crystal slabs, with their hybrid approach of i
plane band gap combined with vertical index-confineme
promise a viable route to achieving photonic-crystal wa
guide effects in real systems. We have shown how sing
mode, in-gap waveguides can be achieved in a variety
ways with photonic crystal slabs. At the same time, the fin
height of the slabs and restriction of index confinement h
given rise to fundamentally new concerns compared to tw
dimensional systems. For example, slab waveguides do
support modes guided in air or along next-nearest-neigh
directions, unlike in two dimensions. Thus, photonic-crys
slab waveguides require a full three-dimensional analy
for which the formalism of the projected band structure p
vides a powerful visual and analytical tool.
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