
For the past 50 years, semiconductor
physics has played a vital role in almost
every aspect of modern technology. Ad-
vances in this field have let scientists tai-

lor the conducting properties of certain materials
and initiate the transistor revolution in electron-
ics. New research suggests that we might now be
able to tailor the properties of light. The key in
achieving this goal lies in the use of a new class
of materials called photonic crystals,1 whose un-
derlying concept stems from Eli Yablonovitch’s2

and Sajeev John’s pioneering work.3 The basic
idea is to design materials that can affect photon
properties in much the same way that ordinary
semiconductor crystals affect electron properties.
You achieve this control by constructing a crystal
consisting of a periodic array of macroscopic uni-
form dielectric (or possibly metallic) “atoms.” In
this crystal, we can describe photons in terms of a
band structure, as in the case of electrons.

Of particular interest is a photonic crystal
whose band structure possesses a complete pho-
tonic band gap, a range of frequencies for which

light is forbidden to propagate inside the crys-
tal. Light is forbidden unless there is a defect in
the otherwise perfect crystal. A defect can lead
to localized photonic states in the gap, whose
shapes and properties would be dictated by the
defect’s nature. Moreover, a significant and at-
tractive difference between photonic crystals and
electronic semiconductor crystals is the former’s
inherent ability to provide complete tunability.
A defect in a photonic crystal could, in princi-
ple, be designed to be of any size, shape, or form
and could be chosen to have any of a wide variety
of dielectric constants. Thus, defect states in the
gap could be tuned to any frequency and spatial
extent of design interest. In addition to tuning
the frequency, we also control the localized pho-
tonic state’s symmetry.

All these capabilities provide a new dimension
in our ability to mold or control the properties of
light. In this sense, defects are good. And herein
lies the exciting potential of photonic crystals.
Photonic crystals let us manipulate light in ways
never before possible. This article’s purpose is to
highlight some of these novel possibilities. Here,
computation plays a particularly important role.
Indeed, unlike electronic structure in semicon-
ductors, photonic crystals are unique in that a
computer can calculate phenomena described
by Maxwell’s equations to any desired degree of
accuracy. Thus, computer calculations and de-
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sign play particularly important and comple-
mentary roles in experimental investigations of
photonic crystals.

Computational methods

We can cast Maxwell’s equations for the prop-
agation of light in mixed, loss-less dielectric me-
dia in a form reminiscent of Schrödinger’s equa-
tion. Consequently, we can use techniques for
studying electrons in solids to study photon
modes in photonic crystals.4,5 The main differ-
ences are that electrons are described by a com-
plex scalar field and strongly interact with each
other, whereas photons are described by a vector
field and do not interact with each other. For all
practical purposes, then, solution of photon
equations leads to an exact description of their
properties, which represents one of the few cases
in science where computer experiments can be
almost as accurate as laboratory experiments.

There are two types of numerical methods
that we employ to study photonic crystals: time
domain, a numerical experiment in which we
simulate the time evolution of Maxwell’s equa-
tions directly, and frequency domain, in which we
solve for time-harmonic eigenmodes (band
structures, for example, or dispersion relations)
of light in a structure. To solve Maxwell’s equa-
tions in 3D for periodic dielectric media in the
time domain, we employ Yee-lattice finite dif-
ference time domain (FDTD) methods, which
can include periodic as well as absorbing bound-
ary conditions.6

To solve Maxwell’s equations in 3D for peri-
odic dielectric media in the frequency domain,
we begin by expanding the fields in plane-waves.
As in the case of electrons, the use of a plane-
wave basis set has several desirable conse-
quences.5 First, the set is complete and ortho-
normal. Second, finite sets can be systematically
improved straightforwardly. Third, a priori
knowledge of field distribution is not required to
generate the set. Fourth, the constraint of diver-
gentless fields is easily maintained. Finally, there
are extremely reliable and efficient methods for
calculating eigenfields, such as preconditioned
conjugate gradients.

The chief difficulty in using plane waves ap-
pears to be that huge numbers of plane waves are
required to describe the rapid changes in the di-
electric constant of photonic crystals. But this is
not the case because we can easily overcome the
potential problem with a better treatment of the
boundaries between dielectric media. In partic-

ular, construction of a dielectric tensor to inter-
polate in the boundaries can lead to a rapid con-
vergence of all eigenmodes,4 improving by over
an order of magnitude on previous techniques.
Thus, a combination of this interpolation scheme
together with a conjugate gradient approach can
lead to an efficient method for frequency domain
calculations.

A simple model system

In this article, we introduce concepts and prop-
erties that are generally valid in 3D photonic
crystals, but for the sake of simplicity, our exam-
ples involve 2D photonic crystals. We begin by
considering a perfect array of infinitely long di-
electric rods located on a square lattice of lattice
constant a, and we investigate the propagation of
light in the plane that is normal to the rods. The
rods have a radius of 0.20a and
a refractive index of 3.4, which
corresponds to GaAs at a
wavelength of 1.55 microns.

Such a structure possesses a
complete gap between the first
and second transverse mag-
netic modes. For TM modes,
the electric field is parallel to
the rods. Once we have a band
gap, we can introduce a defect
inside the crystal to trap or lo-
calize light. In particular, we outline defects and
defect complexes that correspond to specific
components and devices such as wave guides,
wave guide bends, microcavities, and channel-
drop filters. 

Photonic crystal wave guides
By making a line defect, we can create an ex-

tended mode that we can use to guide light. Tra-
ditionally, you achieve wave guiding in dielectric
structures, such as optical fibers, by total internal
reflection. When the fibers are bent very tightly,
however, the angle of incidence becomes too
large for total internal reflection to occur, and
light escapes at the bend. Photonic crystals can
be designed to confine light even around tight
corners because they do not rely on the angle of
incidence for confinement.

To illustrate this point, we remove a row of di-
electric rods from the photonic crystal described
earlier. This introduces a single guided-mode
band inside the gap. The field associated with
the guided mode is strongly confined in the
vicinity of the defect and decays exponentially in
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the crystal. An intriguing aspect of photonic
crystal wave guides is that they provide a unique
way to guide optical light, tractably and effi-
ciently, through narrow channels of air. Once
light is introduced inside the wave guide, it has
nowhere else to go. The only source of loss is re-
flection from the wave guide input, which sug-
gests that we might use photonic crystals to
guide light around tight corners, as in Figure 1.

Although the bend’s radius of curvature is less
than the light’s wavelength, nearly all the light
is transmitted through the bend over a wide
range of frequencies through the gap. The small
fraction of light that is not transmitted is re-
flected. For specific frequencies, we can achieve
100 percent transmission.7 Note that a critical
and necessary condition for 100 percent trans-
mission efficiency is that the photonic crystal
wave guide be single-mode in the frequency
range of interest.

Figure 2 illustrates a recent experimental ver-
ification of 100 percent transmission efficiency
at sharp bends. These are results from Shawn-
Yu Lin and others8 who performed experiments
at microwave length scales for a series of wave
guide bends (similar to the configuration in Fig-
ure 1) using an appropriately scaled square lat-
tice of alumina rods in air. The red circles are
experimental measurements, and the blue circles
are theoretical prediction, illustrating good
agreement over a wide range of frequencies.

Photonic crystal microcavities
In addition to making line defects, we can also

create local imperfections that trap light at a
point within the crystal. As a simple example, we
can choose a single rod and form a defect by
changing its radius. Figure 3 shows the defect-
state frequencies for several values of the defect
radius. We begin with the perfect crystal—where
every rod has a radius of 0.20a—and gradually
reduce a single rod’s radius.

As the radius of the defect rod is reduced, a
singly degenerate symmetric localized state ap-
pears in the defect’s vicinity. Because the defect
involves removing dielectric material in the crys-
tal, the state appears at a frequency close to the
band gap’s lower edge. As the rod’s radius is fur-
ther reduced, the defect state’s frequency sweeps
upward across the gap.

Instead of reducing a rod’s size, we could make
it larger. Starting again with a perfect crystal, we
gradually increase the rod’s radius. When the ra-
dius reaches 0.25a, two doubly degenerate
modes appear at the top of the gap. Because the
defect involves adding material, the modes
sweep downward across the gap as we increase
the radius. They eventually disappear into the
continuum (below the gap) when the radius be-
comes larger than 0.40a. The electric fields of
these modes have two nodes in the plane and are
thus dipolar in symmetry. If we keep increasing
the radius, a large number of localized modes
can be created in the defect’s vicinity.

Several modes appear at the top of the gap:

Figure 1. An
electric field
pattern in the
vicinity of a
sharp 90-degree
bend. The 
electric field is
polarized along
the axis of the
dielectric rods.
The green
circles indicate
rod position.
Unlike the
mechanism of
total internal 
reflection, a
photonic crystal
allows light to
be guided in air.
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Figure 2. Transmission efficiency around a sharp
90-degree bend for a wave guide carved out of a
square lattice of alumina rods in air. The red circles
represent experimental measurements, and the
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first a quadrupole, then another nondegenerate
quadrupole, followed by a second-order mono-
pole and two doubly degenerate hexapoles. We
can tune the resonant mode’s frequency and
symmetry simply by adjusting the rod’s size. One
important aspect of a finite-sized microcavity is
its quality factor Q, roughly λ/δλ where δλ is the
width of the cavity resonance, a dimensionless
measure of the resonant state’s lifetime. 

Pete Villeneuve and others9 have studied a fi-
nite-sized crystal made of dielectric rods where a
single rod has been removed. They verified that
the value of Q increases exponentially with the
number of surrounding rods and found that it
reaches a value close to 104 with as little as four
rods on either side of the defect. Note also that
these cavities possess small modal volumes, on
the order of (λ/2n)3. The combination of large
quality factor with small modal volume offers a
unique capability of maximally enhancing spon-
taneous emission.

Channel-drop filters
One of the most prominent devices in the

telecommunications industry is the channel-
drop filter. This prominence is a consequence of
both its importance and its size (roughly 10 × 10
cm). Channel-dropping filters are necessary for
manipulating wavelength-division multiplexed
optical communications, where one channel is
dropped at one carrier wavelength, leaving all
other channels unaffected. Photonic crystals pre-

sent a unique opportunity to investigate the pos-
sibilities of miniaturizing devices to the scale of
the wavelength of interest, 1.55 microns.

We combined line defects and point defects to
make a novel photonic crystal channel-drop fil-
ter that gives access to one channel of a wave-
length-division multiplexed signal while leaving
other channels undisturbed. We created two
parallel wave guides—a main transmission line
and a secondary wave guide—inside a photonic
crystal by removing two rows of dielectric rods.
We introduced a resonant cavity between the
two wave guides by creating one or more local
defects. Resonant cavities are attractive candi-
dates for channel dropping because we can use
them to select a single channel with a very nar-
row line width.

The filter performance is determined by the
transfer efficiency between the two wave guides.
Perfect efficiency corresponds to complete
transfer of the selected channel—in either the
forward or backward direction in the secondary
wave guide—with no forward transmission or
backward reflection in the main transmission
line. All other channels remain unaffected by the
optical resonator’s presence.  Shanhui Fan and
others10–11 have proved that the coupling res-
onator must satisfy three conditions to achieve
optimal channel-dropping performance:

1.The resonator must possess at least two res-
onant modes, each of which must be even
and odd, respectively, with regard to the
mirror plane of symmetry perpendicular to
the wave guides.

2.The modes must be degenerate (or nearly
so). The system’s intrinsic symmetry does
not support degeneracies, so you must force
an accidental degeneracy.

3. The modes must have equal Q (or nearly so).

All three conditions are necessary to achieve
complete transfer. The reflected amplitude in
the transmission line originates solely from the
decay of the localized states. The reflection
therefore will not be canceled if the optical res-
onator supports only a single mode. To ensure
the reflected signal’s cancellation, the structure
must possess a plane of mirror symmetry per-
pendicular to both wave guides, and must sup-
port two localized states with different symmetry
with respect to the mirror plane, one even and
one odd.

Because the states have different symmetries,
tunneling through each one constitutes an inde-
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Figure 3. Defect states introduced in the gap by
changing a single rod’s radius in an otherwise 
perfect square lattice of dielectric rods in air.
When the radius is 0.2a, there is no defect; when
the radius is 0, the rod is completely removed. The
shaded regions indicate the band gap’s edges.
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pendent process. The even state decays with the
same phase along both the forward and back-
ward directions while the odd state decays with
opposite phase. When the two tunneling
processes are combined—because of the phase
difference—the decaying amplitudes cancel
along the backward direction of the transmission
line. For cancellation to occur, the line shapes of
the two resonances must overlap. Because each
resonance possesses a Lorentzian line shape,
both resonances must have the same center fre-
quency and the same width. When such degen-
eracy occurs, the incoming wave interferes de-
structively with the decaying amplitude along
the forward direction in the transmission line,
leaving all the power to be transferred into the
secondary wave guide at the resonant frequency.

A photonic crystal system provides precisely
the control necessary to satisfy all three condi-
tions. Figure 4 shows an example of a photonic
crystal channel-drop filter. The cavity consists
of a single point defect with a radius of 0.60a. As
we already saw in Figure 3, this defect supports a
doubly degenerate hexapole state near w0 = 0.39
(2πc/a) with the required symmetry. However,
the presence of the wave guides next to the cav-
ity breaks the degeneracy of the hexapoles. To
restore the degeneracy, we change the dielectric
constant (or the size) of two rods adjacent to the
defect. By properly changing the rods, we can
affect the modes in different ways and force an
accidental degeneracy in frequency.

An approximate degeneracy in width exists be-
tween the states because the hexapoles possess
large enough orbital angular momentum to en-
sure roughly equal decay of the even and odd
modes in the wave guides. We simulate the
structure’s filter response by sending a pulse
through the upper wave guide. The transmission

in the main line is close to 100 percent for every
channel, except at the resonant frequency, where
the transmission drops to 0 percent and the
transfer efficiency approaches 100 percent. The
quality factor is larger than 6,000. Because the
even state (with respect to the mirror plane per-
pendicular to the wave guides) is odd with re-
spect to the mirror plane parallel to the wave
guides, the transfer occurs along the backward
direction in the secondary wave guide. Finally,
although the line shape of the current resonant
modes is Lorentzian, we can modify it to the
preferred square wave shape by introducing
complexes of coupled resonant modes.12

Photonic crystal slabs

Photonic crystal slabs have attracted much in-
terest13–25 because of their relative ease of fabri-
cation at micron-length scales compared to 3D
photonic crystal structures. They are a hybrid
system combining photonic crystal guiding in
the plane and conventional index guiding (total
internal reflection) vertically. Because they do
not exhibit a complete photonic band gap, it is
impossible to prevent radiation losses (vertical
scattering) whenever translational symmetry is
entirely broken—for example, by a resonant cav-
ity or a wave guide bend.

In some cases, you might want radiation,16 but
for planar optical devices, vertical scattering will
generally be a loss mechanism that you want to
minimize.

The radiation Q⊥
As discussed earlier, a resonant cavity of

Lorentzian line shape is described by a quality
factor, Q, which we can also define as the num-
ber of cycles for its energy to decay by e–2p. The

Figure 4. Steady-state field 
distribution of the photonic
crystal channel-drop filter at 
resonance. This device’s size is
on the order of the light’s 
wavelength in air.
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decay rate 1/Q is thus the bandwidth at half max-
imum of any filter or other device based on the
cavity. A typical cavity has several decay mecha-
nisms, each of which is described by its own life-
time. First, there are the radiation losses, char-
acterized by Q⊥ (perpendicular to the slab)—
which is the same as the total Q in an infinite,
perfect crystal. Then, there are in-plane losses,
Q||, due to the crystal’s finite size. These losses
decrease exponentially as the crystal size in-
creases. There are also losses due to absorption
and disorder, which we do not consider in this
article. Finally, there is the rate at which the light
decays where you want it to go—in an adjacent
wave guide for a filter, for example, described by
some Qd (device). The total Q is then26

. (1)

Because we can make Q|| effectively infinite,
Q⊥ determines an upper bound on the achiev-
able total Q of the device. Moreover, the frac-
tion of energy lost to radiation is given by22,26

. (2)

So, as long as Q⊥ is much larger than Qd , the
radiation losses will be small. As a corollary, if Qd
is small, then Q⊥ need not be high to achieve low
losses. Because light decays quickly in a wave
guide from a bend, small Q⊥ can be tolerated
there. Large Q⊥, however, is required for the
case of high Q devices or cavities we consider
here. Thus, our goal is to maximize Q⊥.

The model slab system
The model system that we consider is a square

lattice of finite-height dielectric rods in air (with
lattice constant a, radius 0.2a, height 2a, and a di-
electric constant ε of 12, which corresponds to Si
at 1.55 microns). This structure is depicted along
with its band diagram in Figure 5. The computa-
tion (using the frequency domain method) and
analysis of this band structure is described else-
where25 and exhibits several important features.

The shaded region—the light cone—is the pro-
jection of all possible modes propagating in the
air above and below the slab. The bands below
the light cone cannot couple to it and are guided.
They are extended in the plane but decay expo-
nentially above and below it and never scatter per-
fectly. These guided bands are divided according
to whether they are even or odd with respect to
the horizontal mirror plane bisecting the slab. In

this article, we concentrate on the modes of odd
symmetry, which possess a band gap—a range of
frequencies in which no guided modes exist—and
are strongly analogous to the TM modes in the
corresponding 2D system. In the mirror plane it-
self, the even and odd modes are purely TE/TM
polarized. The slab’s height is critical to achieve
a large band gap and to prevent higher-order
modes from impinging on the gap.

To analyze resonant cavities formed by point
defects in the crystal, we used FDTD calcula-
tions with absorbing boundary conditions. The
computational cell was an 11 × 11 lattice of rods,
with the defects at the center surrounded by a
margin of 4a above and below the rods and 2a
on the sides. Around the sides of the crystal, we
included a dielectric slab the same height as the
rods and extending to the cell’s boundaries, sep-
arated from the edge of the crystal by 0.5a. This
slab’s purpose is to leech off whispering-gallery
modes associated with the entire crystal, which
otherwise have long lifetimes. It does not appre-
ciably affect the radiation Q⊥ of the cavities and
only affects the in-plane Q||.
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Figure 5. A projected band diagram for a square lattice (lattice 
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The FDTD grid resolution is 10 pixels per a.
At this resolution, the cylinders are blocky but
are nevertheless periodic, and the basic photonic
band gap and guiding phenomena are not al-
tered. We also tried some cases at 15 pixels per a
and obtained consistent results. There is a fre-
quency shift, however, relative to the higher-res-
olution calculations in Figure 5, so we recom-
puted the odd-mode band gap using a single-rod
FDTD calculation with Bloch-periodic bound-
ary conditions at the sides (analyzing the spec-
trum excited by point sources as below), and
found it to lie from 0.320 to 0.391 c/a. 

We excite the cavity’s defect modes with one
or more dipole sources arranged in the same
symmetry as the mode of interest. From the field
amplitude as a function of time at a point in the
cavity, we extract the mode frequencies and de-
cay constants by the filter diagonalization
method using a Fourier basis.27 To determine Q⊥
and Q||, we run the simulation again with Gauss-
ian sources narrowly peaked around the desired
mode’s frequency. With only this mode excited,
we measure the vertical flux through planes
above and below the rods and the horizontal flux
through planes at the cell’s edges (extending to a
height 0.5a above and below the rods). The life-
times in each direction are then given by28

. (3)

Here, ω is the angular frequency, U is the total
electromagnetic energy, and P is the radiated
power; U and P are time-averaged. We verified
the results to be consistent with Equation 1.

Mode delocalization
Spatial delocalization of a cavity mode gener-

ally leads to increased Q⊥. Because the mode be-
comes more delocalized as it approaches the
band gap’s edges (the unperturbed states), we ex-
pect that Q⊥ will not peak at mid-gap but might
increase toward one or both band edges.

You can see the relationship between Q⊥ and
localization in several ways. The more spatially
delocalized the mode is, the more localized it
will be in wave vector space. That is, a definite
wave vector and translational symmetry are ap-
proximately regained, and we can prevent cou-
pling to the light cone by momentum conserva-
tion just as in the bulk slab or in linear wave
guides. We can make a more rigorous argument
in the Green’s function formalism, in which the
radiated field can be obtained from the field at
the defect:

. (4)

Here,  ̂Gω is the Green’s function operator of the
unperturbed crystal, ∆ε is the defect’s change in
the dielectric function, and ω is the mode fre-
quency. This equation suggests two ways to de-
crease the radiated field: Either delocalize the
mode to decrease the field at the defect or re-
duce the perturbation ∆ε (which delocalizes the
field, too).

To illustrate this effect, we create a monopole-
like point defect in the photonic crystal slab by
changing a single rod’s ε. Figure 6 shows the re-
sulting Q as a function of ω. As expected, Q⊥ di-
verges toward the lower band edge (the source
of the defect mode), while Q|| peaks toward mid-
gap (where the field is most localized and does
not see the crystal edges), with the total Q dom-
inated by the smallest of the two.

Another way to delocalize the mode, achiev-
ing greater delocalization for the same fre-
quency, is to enlarge the defect’s size. In this case,
we change ε in a five-rod super-defect. The re-
sults, also shown in Figure 6, display the same
general behavior as a single defect but with dra-
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matically increased Q. A total Q of over 104 is
obtained for a defect ε of 9, five percent above
the gap bottom, testifying to the localization of
the state in Figure 7.

To completely understand the super-defect, we
must consider coherent scattering. In effect, the
super-defect forms a tiny photonic crystal slab
whose guided modes only scatter from the bound-
aries. As the number of rods in the super-defect is
increased, it will eventually become multimode,
but in this case the cavity is single-mode.

A disadvantage of the delocalization method is
that it increases the modal volume V. For exam-
ple, increasing the modal volume could reduce
the enhancement factor η of spontaneous emis-
sion in a cavity, which goes like Q/V. We can es-
timate Q and η from the last equation by assum-
ing that  Ĝω and are approximately constant
inside the defect and neglecting coherence, in
which case we find with the help of Equation 3
that

.

(5) 

Here, ∆ω is the frequency above the gap edge
and d is the number of dimensions we are delo-
calizing. The decay length is proportional to
∆ω–1/2. It follows that η is proportional to ∆ε–2

and thus the increase in Q outpaces the increase
in V for small perturbations.

We can apply this inverse relationship be-
tween localization and Q to other systems. Other
research addresses a 2D analog29 and applies it
to cavities in a photonic crystal slab of holes
rather than rods.22 Alternatively, the state can be
delocalized vertically using a low-contrast slab
and operating above the light line. In this case,
we can make a similar argument using the
Green’s function of the 2D photonic crystal.30

The relevant band edge there is that of the mode
propagating vertically along the 2D defect,
which might lie in the 2D band gap’s interior
since horizontal localization is not sacrificed. In
such conventional structures as ring resonators,
Q again grows with increasing size in a phenom-
enon conceptually similar to that of the super-
defect.

In principle, the same effect could occur at
both band edges, but several things can prevent
it from being observable, especially at the upper
band edge. For example, there can be a finite
threshold required in ∆ε before a mode is local-
ized. Or the upper boundary of the gap can be
other than the perturbed mode’s band edge.

Far-field cancellation
There is also a conceptually different mecha-

nism for minimizing a cavity’s radiation losses,
one that does not require state delocalization and
that can peak anywhere in the gap’s interior
rather than only at a band edge.29 If the field os-
cillates in sign, especially for a higher-order
mode in which the differing signs have equal
magnitude, it might be possible to force cancel-
lations in the far-field radiation pattern (of Equa-
tion 4) by varying ∆ε. You would thus be left
with higher-order multipole far-field radiation
components, which are expected to radiate less
power than the lowest-order multipole far-field
component of a highly localized source.

We can illustrate this effect in the photonic
crystal slab of rods by first creating a near-field
quadrupole point-like defect by increasing the
radius of a rod to 0.45a and increasing its ε to 13.
To achieve the far-field quadrupole-component
cancellation, we need an extra tuning parameter
for ∆ε, which can be achieved by increasing the
radii of the four adjacent rods to 0.25a and vary-
ing their dielectric constants to adjust the mode
frequency. In principle, we can vary radii alone,
but this is limited in our case by the finite com-
putational resolution. Figure 8 shows the results
of this exercise.

Note that Q and Q⊥ are essentially the same
due to the in-plane localization. Q peaks at 1,925
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in the gap’s interior, so the underlying phenom-
enon must differ from the delocalization mech-
anism discussed previously. To verify that the
peak is due to the postulated far-field cancella-
tion, in Figure 9 we plot the fields for ω below,
at, and above the peak. In Figure 9a, the TM
electric field at midplane shows that all the near-
field patterns remain quadrupole and are almost
identical, independent of the far-field multipole
symmetry. However, Figure 9b shows that the
radiated energy density 2a above the rods ex-
hibits two clear nodal planes that are introduced
precisely at the peak, as expected. The introduc-
tion of these nodal planes reveals a cancellation
of the lowest-order far-field quadrupole compo-
nent, leaving only higher-order far-field multi-
pole components that radiate less power. In con-

trast, if the dielectric constants or radii of all five
defect rods are increased together, Q increases
monotonically toward the lower band edge just
as in Figure 6 without far-field nodal planes.

This particular cavity is a proof of concept.
We expect that significant refinements (in-
creased Q, for example) are possible. A similar
peaking of Q in the gap’s interior (with a peak
value of more than 104) was reported in a pho-
tonic crystal slab of holes, and we suspect that
the explanation is that there must also be a far-
field cancellation.28

Presently in telecommunications and op-
toelectronics there is a great drive to-
ward miniaturizing optical devices to
the point where we are approaching the

scale of the wavelength itself. The goal is even-
tually to integrate such devices onto a single
chip. To achieve such localization, however, it
might be necessary to exploit mechanisms that
go beyond index guidance (total internal reflec-
tion). Photonic crystals provide a new and
promising foundation on which to build future
optical systems.

A key problem in the design of future integrated
optical devices is how to balance ease of fabrica-
tion with the reduction of radiation losses. Pho-
tonic crystal structures with 3D periodicity pro-
vide the ultimate in radiation control but currently
pose substantial fabrication challenges. Conse-
quently, 2D periodic photonic crystal structures,
which are much easier to fabricate, are an attrac-
tive alternative if they can be designed to achieve
acceptable losses. In addition to the intrinsic radi-
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Figure 9. Far-field patterns for
Figure 8’s quadrupole mode, for
points (a) just before (Q = 426,
ω = 0.346), (b) at (Q = 1925, ω =
0.349), and (c) just beyond (Q =
408, ω = 0.352) the peak. The
electric field energy density is
plotted in a plane 2a above the
rods. Note the appearance of
nodal planes at the peak. In
contrast, the near-field pattern
(as shown in Figure 8) is
indistinguishable for all these
points.
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ation losses of any localized optical component in
a slab structure, an important concern for future
research is the characterization and control of
losses due to fabrication-related disorder.
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