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Steven G. Johnson, J.D. Joannopoulos∗

Department of Physics and Center for Materials Science and Engineering, Room 12-116, Massachusetts Institute of Technology,
Cambridge, MA 02139-4307, USA

Accepted 31 August 2003

Abstract

A new class of materials, called photonic crystals, affect a photon’s properties in much the same way that a semicond-
uctor affects an electron’s properties. This represents an ability to mold and guide light that leads naturally to novel
applications in several fields, including optoelectronics and telecommunications. We present an introductory survey of
the basic concepts and ideas that underlie photonic crystals, and present results and devices that illustrate their potential
to circumvent limits of traditional optical systems.
 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last half-century, perhaps no basic
scientific development has so affected our lives as
the maturation of semiconductor physics and the
transistor electronics it enabled. The key to this
technology was the ability to design crystalline
materials that tailor the conduction properties of
electrons to suit diverse applications. The optical
communications revolution, however, has shifted
the frontier in high-speed, wide-bandwidth infor-
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mation processing from electrons tophotons, a
shift that demands a new kind of synthetic material
to mold the gigabits. To address this need, recent
research has suggested a way to tailor the propa-
gation of light much like that of electrons, via the
creation of periodic optical media dubbedphotonic
crystals [1,2]. These crystals, stemming from the
pioneering work of Yablonovitch and John[3,4],
consists of a periodic array of macroscopic
(wavelength-scale) dielectric and/or metallic
“atoms” through which light passes, altered but
still propagating, just as electrons filter without
scattering through an array of ions in a perfect
crystalline conductor. The photons are described
by a band structure, via the traditional mathematics
of solid-state physics, and of particular interest is
a photonic crystal whose band structure displays
a complete photonic band gap (PBG): a range of



5824 S.G. Johnson, J.D. Joannopoulos / Acta Materialia 51 (2003) 5823–5835

frequencies for which light cannot propagate in the
crystal. In this range, such a crystal forms a kind
of optical insulator, into which localized states can
be introduced by the creation of intentional defects
in the crystal, like dopant atoms in a semiconduc-
tor. Unlike atomic systems, however, at the pho-
ton’s micrometer scale, our control over the size,
shape, and symmetry of these defects is, in prin-
ciple, virtually unlimited. Correspondingly, defect
states can be tuned to lie at any frequency and
cover any spatial extent; morever, one also has
control over the symmetry of the localized photon
state. All these capabilities contribute new dimen-
sions to our ability to mold the properties of light.
In this sense, defects in photonic crystals are good
things: they promise the ability to manipulate light
in ways that may not have been possible before.
In this article, we will outline the theoretical frame-
work for understanding photonic crystals, and
highlight some of the novel possibilities they intro-
duce.

2. Band diagrams and gaps

The study of wave propagation in three-dimen-
sionally periodic media was pioneered by Felix
Bloch in 1928 [5], extending an 1883 theorem in
one dimension by Floquet [6]. Bloch proved that
waves in such a medium can propagate without
scattering, their behavior governed by a periodic
envelope function multiplied by a planewave [7].
Although Bloch studied quantum mechanics, lead-
ing to the surprising result that electrons in a con-
ductor scatter only from imperfections and not
from the periodic ions, the same techniques can be
applied to electromagnetism by casting Maxwell’s
equations as an eigenproblem in analogue with
Schrödinger’s equation. By combining the source-
free Faraday’s and Ampere’s laws at a fixed fre-
quency w(time dependence e�iwt), one can obtain
an equation in only the magnetic field H:

� �
1
e
� � H � �wc�2

H, (1)

where e is the dielectric function e(x) and c is the
speed of light. This is an eigenvalue equation, with

eigenvalue (w /c)2 and an eigenoperator � ×
1
e
� ×

that is Hermitian (acts the same to the left and right)
under the inner product �H∗·H� between two fields
H and H�. The two curls correspond roughly to the
“kinetic energy” , and 1/e to the “potential” , com-
pared to the Schrödinger Hamiltonian �2 + V(x).
An important difference compared to quantum
mechanics is that there is a transversality con-
straint: one typically excludes �·H � 0 (or �·eE
� 0) eigensolutions, which lie at w = 0; i.e. static-
field solutions with free magnetic (or electric)
charge are forbidden.

Thus, the same linear-algebraic theorems as
those in quantum mechanics can be applied to the
electromagnetic wave solutions. The fact that the
eigenoperator is Hermitian and positive-definite
(for real e � 0) implies that the eigenfrequencies
w are real, for example, and also leads to orthog-
onality, variational, and perturbation-theory
relations. Most importantly for photonic crystals,
however, it means that for the case of e with spatial
periodicity, Bloch’s theorem applies: the magnetic
field can be chosen of the form H(x) =
eik·xHn,k(x) with eigenvalues wn(k), where k is the
Bloch wavevector and Hn,k is a periodic envelope
function satisfying an eigenproblem similar to (1).

For each wavevector k, one computes the dis-
crete eigenvalues wn, which when plotted vs. wav-
evector form the familiar band diagrams from
solid-state physics. A corollary of Bloch’s theorem
states that these solutions (bands) are periodic in
k, so one need only consider a finite region of k-
space called the irreducible Brillouin zone, and in
many cases the interesting behavior occurs only on
the boundaries of this zone.

For comparison, in Fig. 1, we show the band
structures of analogous electronic and photonic
crystals, in both cases plotted along important
high-symmetry directions for the Brillouin zone of
an fcc/diamond lattice. In Fig. 1 (left) is the band
structure of the valence electrons for silicon atoms
(which naturally form a diamond structure with a
lattice constant of a few angstroms), which has a
band gap (a range of energies in which there are
no electronic states) that creates its semiconductor
properties. In Fig. 1 (right) is the band structure
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Fig. 1. Comparison of the band structures of (left) valence electrons in the diamond structure of atomic silicon and (right) photons
in a synthetic diamond structure of overlapping dielectric spheres (with e = 12, e.g. silicon at 1.55 µm). The band gap, the range of
energies/frequencies in which electrons/photons cannot propagate, is highlighted in yellow.

for a diamond lattice of overlapping dielectric (e.g.
silicon) spheres in air [8], which has a maximum
photonic band gap of about 11% (gap/midgap) for
silicon-like e, here with a lattice constant of about
half of the midgap wavelength, whatever that
wavelength is chosen to be—Maxwell’s equations,
unlike quantum mechanics, are scale-invariant and
the same solutions apply at any lengthscale. Also,
unlike quantum mechanics, the lowest bands drop
all the way to w = 0 at k = 0 in a characteristic
w � �k� shape, corresponding to constant-field sol-
utions; this is a consequence of the fact that the e
“potential” is mixed up with the �× “kinetic
energy” , rather than a separate additive term.

From a theoretical perspective, photonic crystals
possess a considerable advantage over their elec-

tronic counterparts, in that they can be simulated
efficiently to arbitrary accuracy on a computer,
without the draconian approximations forced by
the entanglements and strong interactions of fer-
mionic quantum systems. Many numerical
methods are available, but typically one simply
discretizes Maxwell’s equations [9] or expands the
solutions in a truncated basis such as planewaves
[10] and solves the resulting finite problem.

2.1. Photonic band gaps in three dimensions

In one dimension, any periodic structure exhibits
a band gap, a fact that was first observed by Lord
Rayleigh in 1887 [11], and which appears in nature
as the iridescent colors of butterfly wings, abalone
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shells, and certain crystalline minerals. Although
this can be seen as a consequence of coherent
reflections from interfaces spaced at half-wave-
length intervals, such an analysis is not easily gen-
eralized to higher dimensions, a difficulty that per-
haps explains the 100-year interval between the
identification of photonic band gaps in one dimen-
sion and those in two or three dimensions. A more
general perspective is that the eigenvalues of a
Hermitian operator minimize a variational prob-
lem, in this case:

w2
n,k � min

En,k

�|(� � ik) � En,k|2

�e|En,k|2
c2, (2)

in terms of the periodic electric field envelope En,k,
where the numerator minimizes the “kinetic
energy” and the denominator minimizes the
“potential energy” . Here, the higher (n � 1) bands
are additionally constrained to be orthogonal to the
lower bands:

�H∗
m,k·Hn,k � �eE∗

m,k·En,k � 0 (3)

for m 	 n. Thus, at each k, there will be a gap
between the lower “dielectric” bands concentrated
in the high dielectric (low potential) and the upper
“air” bands that are less concentrated in the high
dielectric: the air bands are forced out by the
orthogonality condition, or otherwise must have
fast oscillations that increase their kinetic energy.
These dielectric/air bands are analogous to the
valence/conduction bands in a semiconductor.

The challenge of opening a large gap in three
dimensions is increased, however, by the vectorial
nature of the fields and their continuity boundary
conditions, and turns out to require a structure with
high-index contrast (e.g. Si and air), an interwoven
network of thin dielectric “veins” along which field
lines can run, and (ideally) an fcc (e.g. diamond)
crystal structure to most closely approximate a uni-
form periodicity in all directions. The first example
that was identified was, in fact, the diamond lattice
of spheres from Fig. 1, by Ho et al. in 1990 [8].
Since then, however, the focus has been on finding

structures more amenable to fabrication, and one
popular strategy has been layer-by-layer fabri-
cation, in which 2D-patterned layers are etched and
stacked by microfabrication methods similar to
those developed for integrated circuits [12–15].
One such example is depicted in Fig. 2, comprising
an alternating sequence of 2D-periodic arrays of
dielectric rods and holes, connecting into a dia-
mond topology [14]; photographs of actual fabri-
cated structures in progress [16] are shown at right.
Many other 3D crystal fabrication strategies have
also been employed, from colloidal self-assembly
[17] to holography [18].

3. A simple model system: 3D to 2D to 1D to
0D

An interesting feature of the structure from Fig.
2 is that its layers mimic much simpler two-dimen-
sional photonic crystals, yet it retains a complete
band gap in three dimensions: the introduction of
a defect in a layer localizes a photon mode that
quantitatively resembles that of the corresponding
structure in two dimensions [19]. In particular, the
analogue of the “ rod” layers of the crystal from
Fig. 2 is a two-dimensional array of dielectric cyl-
inders arranged in a hexagonal lattice, which has
a large band gap for the TM polarization of light:
electric field perpendicular to the 2D plane. (In 2D,
one can divide photons into two decoupled polariz-
ations, TM and TE.) The resemblance between 3D
and 2D is illustrated in Fig. 3, where the modes of
equivalent point and line defects are compared in
the two systems. Line defects, as in the removed
column of rods in Fig. 3 (top), localize light to
a line-like “1D” region, forming a waveguide as
discussed below. Point defects, as in the single
missing rod of Fig. 3 (bottom), localize light in a
“0D” region to form a cavity as described below.
In both cases, the modes in 3D quantitatively
resemble those in 2D, including being over 95%
TM-polarized in the mid-plane, but are confined in
the vertical dimension as well (as seen by the
cross-section). Because of this capability to mimic
two dimensions in three, we will illustrate the
capabilities of photonic crystals in the context of
those simpler 2D systems. As a model system, we
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Fig. 2. A layer-by-layer photonic crystal with a complete gap (21% for Si/air), where the layers mimic simpler two-dimensional
crystals. (left) Rendered images, with two truncations to show the layers that resemble arrays of air holes and arrays of rods, respect-
ively. (right) SEM of fabricated structure for gap at l = 1.55 µm.

consider rods with a refractive index of around 3.4
(e.g. GaAs or Si at the telecommunications wave-
length l = 1.55µm), lattice constant (periodicity)
a, and radius 0.2a, arranged in a square lattice for
convenience (the essential physics is unchanged
from a hexagonal lattice, and the 3D structure can
be designed with a square lattice as well [15]).

By making a linear defect as above, we can sup-
port a single photon mode in the band gap whose
field is extended along the defect but decays expo-
nentially in the transverse direction (away from the
defect). In fact, this mode propagates along the
defect, which therefore forms a waveguide. Such
a waveguide, however, has many unusual charac-
teristics compared to a conventional dielectric wav-
eguide based on total internal reflection (e.g.
optical fiber). For one thing, the light need not be

confined in a higher dielectric region, and can even
be confined primarily in air, a property that is being
exploited to circumvent intrinsic absorption losses
of existing materials [20]. Moreover, the band gap
forbids light from scattering laterally no matter
what happens in the waveguide, so that the photon
is effectively trapped in a one-dimensional system.
This means, for example, that a sharp (l-scale!)
bend in a photonic-crystal waveguide, if it is sym-
metric and single-mode, can exhibit broad reson-
ances where the transmission approaches 100%, as
illustrated in Fig. 4 [21]. This property has been
directly observed in experiment [22], and a com-
parison of measured and simulated transmission (at
microwave frequencies) is shown in Fig. 5. The
gap’s suppression of scattering may even reduce
the susceptibility to disorder-induced losses com-
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Fig. 3. Comparison of defect modes in a rod layer of the 3D crystal of Fig. 2 and a matching cross-section 2D crystal. (top) Line-
defect waveguide (removed column of rods). (bottom) Point defect cavity (removed rod). The Ez field component (perpendicular to
the 2D plane) is shown in horizontal and vertical cross-sections, with blue/white/red indicating negative/zero/positive.

pared to a comparable conventional waveguide,
eliminating channels of radiation loss without
worsening reflection [23]. Finally, at the edge of
the Brillouin zone, the group velocity of the wav-
eguided mode drops to zero; this “slow light” capa-
bility is also absent in non-periodic index-guided
waveguides, and can be used to enhance material
properties such as gain or nonlinearity [24].

The second basic defect type is the point-like
defect, which can trap a single photon state in the
gap whose field decays exponentially in all direc-
tions away from the defect (a “zero-dimensional”
photon). By changing the defect parameters, one
can tune both the frequency and the symmetry of
the mode [25], as shown in Fig. 6. For example,
by reducing the radius of a single rod (eventually
removing it entirely), one can “push up” a single
monopole-like state from the lower edge of the
gap. Conversely, by increasing the radius of a sin-
gle rod, one “pulls down” a double-degenerate
dipole-like state from the upper edge of the gap.

Further increasing the radius will pull down quad-
rupole, hexapole, and other higher-order modes.
Besides the frequency and symmetry, another criti-
cal characteristic of such a cavity mode is the rate
at which it leaks out of the cavity, characterized by
a dimensionless quality factor Q (roughly, lifetime
times frequency). In a photonic crystal, the only
mechanism for such leakage is the finite size of the
crystal: Q increases exponentially with the number
of crystal periods that surround the defect (often
by a factor of 10 per period). A unique feature of
photonic-crystal cavities, moreover, is that Q is
independent of the modal size, which approaches
the optimal half-wavelength diameter (l /2n).
Dielectric microcavities without band gaps, in con-
trast, are typified by ring resonators (a waveguide
bent into a circle), whose radiative losses increase
rapidly as the ring diameter is decreased. This
combination of high Q and small volume makes
photonic-crystal cavities ideal for integrated optical
devices: high Q allows narrow-bandwidth filters
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Fig. 4. Resonant 100% transmission of an air-guided, line-
defect waveguide mode around a 90° bend; such resonances
occur whenever one has a complete band gap, single-mode
defects, and mirror symmetry in the bend.

Fig. 5. Experimental vs. theoretical (simulation) transmission
around the bend of Fig. 4, constructed with long alumina rods
and operated at microwave frequencies.

and strong sensitivity to external tuning, while
small volumes increase integration density and
heighten the strength of nonlinear effects.

Fig. 6. Frequencies of point defect states, as a function of
defect rod radius, as the radius of a single rod is varied up or
down from the bulk value of 0.2a. Solid lines are singly
degenerate and dashed lines are doubly degenerate modes.

4. Devices by symmetry

Photonic-crystal waveguides and microcavities
are building blocks that can be composed, within
the impenetrable surroundings of the photonic
band gap, to create a wide variety of different pass-
ive and active optical components with potentially
near-optimal performance characteristics. Morever,
the one-dimensional nature of the waveguides, the
arbitrary lifetimes and tunability of the cavities,
and the band gap’s prohibition of extraneous scat-
tering, enables the analytical design of many
devices by a priori principles of symmetry and res-
onance, with minimal numerical tuning. The bend
of Fig. 4 was an example of this: the existence of
100% transmission resonances is guaranteed by the
single-mode and symmetric nature of the bend,
which is thereby mathematically equivalent to the
simple 1D resonant tunneling problem well known
from quantum mechanics [21]. Another way of
looking at the bend is to model it as a pair of ident-
ical waveguides coupled by a resonant cavity,
which is known from coupled-mode theory (based
on general principles of energy conservation and
time-reversal symmetry) to have 100% trans-
mission on resonance. This coupled-mode model
is only a rough description of the bend, because
the bend location is at best a very low-Q res-
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onantor, but this picture is ideally suited to the
study of high-Q filters.

In particular, one of the most prominent devices
in the telecommunications industry is the “channel-
drop” fi lter, e.g. for use in wavelength-division
multiplexing: this device “drops” a single carrier
wavelength from one waveguide to another waveg-
uide while other frequencies propagate unaffected
in the original guide. Photonic crystals create the
opportunity to design such a filter with minimal
size and maximal tunability while retaining high
Q (narrow bandwidth). An example channel-drop
design in our model system is shown in Fig. 7,
where it exhibits 100% dropping efficiency for a
single frequency. This design illustrates the basic
elements of any channel-drop device: two
(typically parallel) waveguides coupled by a res-
onant cavity, so that the only coupling (dropping)
occurs at the resonant frequency of the microcav-
ity. These elements are not sufficient for perfect
efficiency, however, because in general the res-
onant cavity will couple light into four directions:
forward and backward in the drop waveguide and
some transmission and reflection in the original
waveguide. Fan et al. [26], however, have shown
that 100% dropping into a single direction of the
drop waveguide, along with zero reflection and
transmission in the original waveguide, can be ach-
ieved by imposing three simple symmetry con-
ditions on the resonant cavity:

Fig. 7. Channel-drop filter coupling two line-defect waveguides at a single resonant frequency, via a doubly degenerate hexapole
defect (center) that obeys the necessary symmetry conditions for 100% transfer efficiency.

1. The resonator must possess (at least) two res-
onant modes at (nearly) the same frequency.
This condition must be forced by slight design
tuning, because the intrinsic symmetry does not
support such a degeneracy.

2. There must be two mirror symmetry planes
bisecting the cavity, one perpendicular and one
parallel to the waveguides. The two resonant
modes must be even and odd, respectively,
under the mirror plane perpendicular to the wav-
eguides (this parity can occur intrinsically and
need not be forced).

3. The modes must have (nearly) equal Q.

The design of Fig. 7 satisfies all these con-
ditions, which are both necessary and sufficient (if
the waveguides are single-mode), where the two
resonant modes come from the doubly degenerate
hexapole modes of an isolated enlarged-radius
point defect—these modes satisfy the requisite
symmetries, and the degeneracy is broken by the
waveguides but is restored (forced) by tuning an
adjacent rod radius. The general design principles
can be understood as follows. Because the modes
have equal Q and frequency, the input waveguide
couples equally to both (at resonance). When the
modes decay back into the waveguides, however,
their opposite parity from condition (2) means that
the exiting fields cancel in the reflected direction
and in one of the drop directions. The only remain-
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ing decay channels are the transmitted and drop
directions, from which follows the 100% resonant
transmission that is always obtained in two-chan-
nel coupled-mode problems.

Other passive optical devices can be similarly
designed. For example, two waveguides can be
crossed with arbitrarily low crosstalk by mediating
the crossing with a doubly degenerate cavity whose
symmetry only permits coupling to opposite and
not adjacent waveguide ports [27]; this idea is
exploited in Fig. 8 (top). A two-way Y-junction
splitter (50% transmission to each output
waveguide) can be designed by realizing that it is
equivalent to the reflection-free two-port coupling
problem when the total coupling (decay rate of
junction resonance) to the two output ports is equal
to the coupling back to the input [28]. A conse-
quence of this is the theorem, well-known from
microwave scattering, that a junction coupling equ-
ally to all three outputs will necessarily have

Fig. 8. Devices designed with simple symmetry and resonance principles. (top) Intersection of two photonic-crystal waveguides
with only 10–4 (40 dB) crosstalk, mediated by a doubly degenerate dipole-like mode at the intersection. (bottom) Perfect 3 dB Y-
splitter, with reflections prevented by two small rods partially blocking the outputs in order to satisfy the resonance condition.

reflections—to eliminate reflection, one must para-
doxically introduce obstructions that reduce coup-
ling to the output ports; this has been done in Fig.
8 (bottom) by adding small rods partially blocking
the two outputs.

Such design principles, moreover, are not lim-
ited to passive devices, but extend also to active
and nonlinear components. For example, consider
the case of an input line-defect waveguide coupled
to an output waveguide via a resonant cavity,
which will have a resonance of 100% transmission
by the general principles above (thanks to the pho-
tonic crystals’ prohibition of radiative loss), as
shown in Fig. 9 (top). Now, recall that the
materials of the cavity will probably have some
Kerr nonlinearity, giving a field-dependent index
shift 
n � |E|2. If we operate this device at a fre-
quency w0 below the resonance, we will initially
have low transmission, but as we increase the
power the resonant frequency will be shifted down
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Fig. 9. (top) Resonant 100% transmission between two waveguides coupled by a resonant cavity. (bottom-left) Lorentzian trans-
mission spectrum, shifted (dashed line) to lower frequency by a Kerr nonlinearity as power increases. (bottom-right) Output vs. input
power (arbitrary units) of nonlinear resonant cavity, showing bistable hysteresis response. Dots are full simulations, line is semi-
analytical perturbation-theory prediction [29] (dashed line is unstable solution).

until transmission shoots up to 100%. Moreover,
there is a nonlinear feedback: as we shift into the
resonance, more power couples into the cavity and
the nonlinear shift increases (Fig. 9, bottom-left);
conversely, as we further increase the power and
shift out of the resonance, less power couples into
the cavity and the nonlinear shift decreases. This
feedback produces a hysteresis curve in the output
vs. input power, as shown in Fig. 9 (bottom-right).
Such behavior, called optical bistability, creates a
kind of optical transistor, with a correspondingly
wide range of applications from optical logic to
rectification to amplification to switching.
Although the bistability effect is well-known, pho-
tonic crystals promise its most optimal implemen-
tation: the threshold power for the onset of bistab-
ility is proportional to V /Q 2, where V is the modal

volume, so the ability of photonic band gaps to
combine small V with high Q is critical. Thresholds
of a few milliwatts are predicted for Si photonic
crystals [29].

5. Going without a complete gap

Although photonic crystals with complete
(omnidirectional) band gaps are the most ideal and
simple from a theoretical point of view, and great
progress has been made in their experimental
realization, the fabrication of three-dimensionally
periodic structures remains challenging. As a
nearer-term alternative, researchers have explored
alternative, “hybrid” structures that combine
incomplete photonic band gaps with either conven-
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tional index guiding (photonic-crystal slabs) or
translational/axial symmetry (photonic band-gap
fibers).

Photonic-crystal slabs are two-dimensionally
periodic dielectric structures with (typically) con-
stant cross-section and finite thickness, which com-
bine an in-plane band gap with vertical confine-
ment via index guiding (the analogue of traditional
total internal reflection) [2]. These slabs can come
in two basic topologies, shown in Fig. 10: (a)
dielectric rods in air and (b) air cylinders/holes in
dielectric. The materials above and below the slab
have a much lower average index to facilitate index
guiding; typically, the slab is Si or GaAs and rests
on oxide, or can even be a suspended air membrane
(in the case of the hole slab). Such structures can
still support leakage-free waveguides confined in
the plane by the band gap, although they cannot
guide light primarily in air because of the con-
straint of vertical index guiding. Because these
structures do not have a complete photonic band
gap, however, radiation losses are inevitable when
translational symmetry is broken (e.g. by a cavity
or a waveguide bend), complicating the design of
efficient devices. Nevertheless, if vertical leakage
from a cavity can be made sufficiently small (many
times smaller than the leakage into desired outlets

Fig. 10. Schematics of hybrid structures, which combine an
incomplete 1D/2D gap with: (a, b) vertical index guiding
(photonic-crystal slabs), via a high-index 2D periodic structure
of finite height; (c, d) axial symmetry (photonic band-gap
fibers).

such as adjacent waveguides), losses can be
acceptable; several strategies for minimizing this
vertical leakage exist [2], and experimental slab
cavities have been fabricated with lifetimes of
thousands of optical periods [30,31].

Another promising hybrid structure is that of
photonic band-gap fibers, which have a trans-
lational symmetry along the fiber axis that allows
light to be confined within the fiber by the band
gap of a 1D- or 2D-periodic crystal. The 1D-per-
iodic case, formed by periodic concentric rings as
in Fig. 10(c), is called a Bragg fiber and dates back
to work by Yeh et al. in 1978 [32], with a more
recent twist, called an Omniguide fiber [20,33], of
using omnidirectional reflectors [34] for the mir-
rors. The other alternative is a 2D-periodic crystal
as in Fig. 10(d), typically formed by air veins in
silica, called a photonic-crystal fiber and intro-
duced by Knight et al. in 1998 [35]. In both cases,
the translational symmetry means that there is a
conserved wavenumber k (a special case of the
Bloch wavevector) along the fiber axis, and at a
given k there is a range of band-gap frequencies
where light cannot propagate in the crystal. This
can be used to trap light in a central cavity/defect,
like those in Fig. 10, and can even guide light
primarily in air like a complete band gap. Such air-
guidance has the potential to circumvent the intrin-
sic material absorption and nonlinearity that cur-
rently limits fiber performance, and waveguided
modes have been experimentally demonstrated
with 4–5 orders of magnitude lower losses than
those of the constituent solid materials [20].

6. Concluding remarks

Ever-increasing bandwidth demands have driven
more and more applications to ride on optical car-
rier frequency, with a corresponding demand for
maximally miniaturized, solid-state optical
devices. This has been especially true in the world
of digital telecommunications, where the goal is to
eventually integrate many such processing devices
on a single chip. To achieve such localization,
however, it will be necessary to exploit mech-
anisms that go beyond index guidance (total
internal reflection), and photonic crystals thus pro-
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vide a new and promising foundation upon which
to build future optical devices. The building blocks
of such devices are waveguides and microcavities,
and in both cases photonic crystals promise
important advantages in localization, tunability,
and efficiency. Moreover, the ability of photonic
crystals to control light in new ways, to alter both
its localization and its propagation characteristics,
has the potential to transform many other fields of
optical technology. Perhaps chief among these
fields is that of the optical fiber, where band-gap
fibers have the ability to dramatically alter the
landscape of material-limited loss, nonlinearity,
and other properties.
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