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We present a semianalytical framework for computing the coupling of radiative and guided waves in slowly
varying (nearly uniform or nearly periodic) surfaces, which is especially relevant to the exploitation of nonlocal
effects in large-area metasurfaces. Our framework bridges a gap in the theory of slowly varying surfaces: aside
from brute-force numerical simulations, current approximate methods can model either guided or radiative
waves but cannot easily model their coupling. We solve this problem by combining two methods: the locally
periodic approximation, which approximates radiative scattering by composing a set of periodic scattering
problems, and spatial coupled-wave theory, which allows the perturbative modeling of guided waves using an
eigenmode expansion. We derive our framework for both nearly uniform and nearly periodic surfaces, and
we validate each case against brute-force finite-difference time-domain simulations, which show increasing
agreement as the surface varies more slowly.
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I. INTRODUCTION

Although many perturbative techniques are available to
study guided modes propagating through slowly varying
(nearly uniform or nearly periodic) media [1–4] and, con-
versely, a number of approximations have been devised for
radiative waves scattering off of slowly varying surfaces
[5–21], the coupling of guided and radiative modes by slowly
varying structures is relatively unstudied except by brute-force
numerical simulations [22–24]. This problem is especially
relevant to large-area optical metasurfaces (comprising thin
aperiodic subwavelength-scale patterns), which have been
widely used for free-space wave-front engineering [25]: the
large diameter of metasurface devices (often >1000 wave-
lengths λ) can make them impractical to design without
mathematical approximations [26–34]. Such surfaces are of-
ten modeled using a locally periodic approximation (LPA),
in which the far-field scattering of an incident wave from
each unit cell is computed assuming a periodic surface, which
works well when the unit cells are slowly varying [5–17,21].
A simplified limiting case of LPA is the locally uniform ap-
proximation (LUA), which corresponds to LPA in the limit
as the period goes to zero: LUA approximates the structure
at each point by a flat surface with a matching cross sec-
tion and is also found in the form of scalar-diffraction theory
[19] or the Kirchhoff tangent-plane approximation (for curved
surfaces) [20]. However, LPA and LUA cannot be applied
to the “nonlocal” problem of radiation coupling to and from
guided modes since in a periodic surface guided modes do
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not radiate by definition [35]. This is in contrast to previous
nonlocal metasurfaces employing leaky resonances [36–43]
which radiate even for purely periodic surfaces [44]. On the
other hand, guided-wave propagation can be treated by spa-
tial coupled-wave theories (CWTs)—eigenmode-expansion
methods resulting in a set of coupled ordinary differential
equations in the mode coefficients, which can be solved per-
turbatively for slowly varying media [1–4]. However, radiative
modes are difficult to treat with CWT techniques because
there is a continuous spectrum of radiative solutions, in con-
trast to a discrete, easily truncatable guided-mode basis. As a
consequence, large-area metasurface designs have thus far not
exploited the potential for nonlocal effects of guided modes,
e.g., for long-lifetime light trapping to enhance light-matter
interactions, metasurface lasers, or large-area grating cou-
plers.

In this paper, we bridge the gap between radiation and
guided modes in slowly varying (both locally periodic and
locally uniform) media by a semianalytical framework com-
bining both LPA or LUA and CWT, using LPA or LUA to
model the incident or scattered radiation and using perturba-
tively coupled CWT to model the guided waves. We begin
by deriving and validating our framework (against brute-force
numerics) for the easier case of locally uniform metasurfaces
[Fig. 1(a) and Sec. II], where the cross section of the surface
varies slowly with z. We then generalize and validate our
framework for the more complicated case of locally peri-
odic metasurfaces [Fig. 1(b) and Sec. III] where the unit cell
varies slowly with z, first for the case of unit cells with a
fixed period and later for a z-dependent period (see the Ap-
pendix). Unlike brute-force Maxwell solvers, which require
enormous resources for large-area metasurface modeling and
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FIG. 1. (a) An incident plane wave with propagation constant β0 impinges on a surface with locally uniform permittivity defined by
ε(z). The plane wave couples to guided waves propagating along the z direction. The guided waves are computed using the locally uniform
approximation and coupled-wave theory (CWT), techniques that employ a basis of completely uniform waveguides defined by the cross
sections of the locally uniform surface. (b) The same scattering problem as in (a), but the surface has locally periodic permittivity. The guided
waves are computed using the locally periodic approximation and a generalized CWT for nearly periodic media. These employ a basis of
periodic waveguides for each cross section defined by εz(z̃), with periods �(z). A new coordinate, z̃, is introduced to describe the unit cells of
the periodic waveguides.

optimization, our framework is computationally cheap: to
calculate the coupling between an incident wave and guided
mode, one computes the LPA solution and the guided-
mode fields for each unit cell (periodic Maxwell solves),
and then one simply evaluates an inexpensive integral
of the slowly varying overlap between the LPA solution
and guided-mode fields (Algorithm 1). Compared to brute-
force finite-difference time-domain (FDTD) simulations, our
framework shows increasing accuracy for more slowly vary-
ing structures (where FDTD becomes much more expensive)
and also exhibits high accuracy even for variation on a few-
wavelength scale (Figs. 2 and 3).

While brute-force numerical simulations capture effects
due to both guided and radiation modes, optical metasur-
faces are challenging to model in this way due to their
irregular subwavelength-scale features and large diameters
[25–34]. This is particularly the case for metasurface de-
sign by large-scale optimization (i.e., inverse design), which
requires surfaces to be simulated many times as the geo-
metric parameters evolve [14,17,45–52]. Ways to extend the
power of brute-force Maxwell solvers to the scale of metasur-
faces have been proposed, e.g., using GPU-accelerated FDTD
[53,54] or spatially truncated integral-equation methods (for
nontouching meta-atoms) [55]. However, these methods still
face severe challenges in reaching the 104-wavelength scale
required for inverse design of large metasurfaces. Moreover,
even when computational power reaches this scale, there will
always be a place for rapid-prototyping approximations that
take only a few minutes on a laptop. In fact, our framework
requires the periodic Maxwell solves to be performed only
once for a sequence of unit cells, and then they can be reused
(interpolated) to optimize or explore many different slowly
varying metasurfaces [4,56–60].

Many approximate techniques to model metasurfaces have
already been developed. One such technique is LPA, which
composes a set of periodic scattering problems for each unit
cell and has been used for optimization-based inverse de-
sign [14,17,50–52] as well as selecting the phase profile of
the surface a priori [5–11,13,16,21]. However, as mentioned
above, LPA does not calculate any radiative coupling to and
from guided modes by construction. Reference [15] derived
a convergent series of perturbative corrections to the LUA,
the limit of LPA as the period goes to zero, and used higher-
order terms to compute coupling to guided modes in nearly
uniform structures. However, that work has not been extended
to handle locally periodic surfaces, requires the implemen-
tation of complicated integral-equation operators (far more
expensive than the overlap integrals in this work), and does
not exploit an explicit decomposition of the fields into guided
and radiative modes. Other methods of domain decomposition
besides LUA and LPA have been proposed to handle strong
near-field intercell coupling, such as overlapping domains that
model the overlapping regions from neighboring unit cells
[61], combined with absorbing-wall domains that model each
unit cell with perfectly matched layer boundary conditions
[62]; however, these methods explicitly discard long-range
interactions and hence omit guided-mode propagation. We
also note that many techniques have been developed to design
large-scale metasurface antennas, filters, and other devices at
optical and microwave frequencies, but these make use of
leaky waves rather than completely guided waves and thus
solve a fundamentally different problem [36–44].

Our framework builds on previous work that derived
a CWT for locally periodic surfaces using a continuously
varying basis of Bloch modes, derived by “lifting” into
a higher-dimensional space of phase-shifted surfaces and
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projecting back down to the physical result at the end [4].
The end result was a set of coupled ordinary differential equa-
tions in the mode coefficients that is straightforward to apply:
the coupling coefficients are given by simple modal-overlap
integrals proportional to the rate of change of the unit cells, us-
ing modes computed from small periodic Maxwell solves, and
the equations can be solved to any order in the rate of change.
(One does not even need to solve for every unit cell in a long
taper but instead can interpolate the overlaps from a sample of
intermediate cells [4,56–60], achieving better than linear scal-
ing in the system diameter.) However, that framework cannot
be directly applied to a metasurface system in which the inci-
dent wave is a radiative mode illuminating the whole surface
from the side (as opposed to incident guided modes from the
ends), and moreover, a discrete modal-expansion framework
is difficult to use with a continuum of radiative modes. To
address these limitations, the key feature we introduce here
is that the LPA (radiative) solution appears as a zeroth-order
source term in CWT involving an overlap integral between
the LPA and guided-mode fields. As a consequence, we can
solve for the guided-mode coefficients to first order in the
rate of change by simple modal-overlap integrals involving
the LPA source term (Algorithm 1). Our framework handles
plane waves with arbitrary incident angles, which affect the
LPA solution and introduce a phase velocity into the over-
lap integral. Moreover, one can calculate the coupling from
non-plane-wave sources by a plane-wave expansion (Fourier
transform) of the source. Our derivation and validation in
this paper are for metasurfaces in two spatial dimensions that
vary only in one direction (z), but in the concluding remarks
(Sec. IV) we discuss extension to surfaces in three spatial
dimensions that vary in two directions: the key idea is that
the variations in each direction decouple at first order and
therefore can be treated separately.

II. LOCALLY UNIFORM FRAMEWORK

The problem setup is depicted in Fig. 1(a). We consider a
surface and surrounding medium in two spatial dimensions
that are characterized by the dielectric function ε(x, z) and
the magnetic permeability function μ(x, z). The medium sur-
rounding the surface is homogeneous. We choose the surface
to be locally uniform along the z direction; that is, the cross
section along the x direction varies continuously and slowly
with z. A plane wave of frequency ω from the surrounding
medium is incident upon the surface with wave vector β =
(βx, β0) (propagation constant β0). Here, the goal is to solve
for the coupling of the incident plane wave to guided waves in
the surface.

A. Coupled-wave theory for locally uniform surfaces

To solve this problem, we apply the well-known spatial
coupled-wave theory for locally uniform surfaces, following
the approach and notation found in Secs. II and III of [4]. This
section serves as a review of coupled-wave theory, for which
more details can be found in [4].

By isolating the longitudinal (z) from the transverse (xy)
derivatives, the fully vectorial source-free Maxwell’s equa-

tions can be rewritten at a fixed frequency ω as

Â|ψ〉 = −i
∂

∂z
B̂|ψ〉, (1)

where |ψ〉 is the four-component column vector

|ψ〉 ≡
(

Exy(x, y, z)
Hxy(x, y, z)

)
e−iωt (2)

involving the transverse (xy) electric and magnetic fields
{Exy, Hxy} and Â and B̂ are the matrices

Â ≡
(

ωε/c − c
ω
∇xy × 1

μ
∇xy× 0

0 ωμ/c − c
ω
∇xy × 1

ε
∇xy×

)
,

(3)

B̂ ≡
(

0 −ẑ×
ẑ× 0

)
=

⎛
⎜⎝

1
−1

−1
1

⎞
⎟⎠, (4)

where ∇xy = ∂
∂x x̂ + ∂

∂y ŷ. The inner product of two column
vectors |ψ〉 and |ψ ′〉 is given by

〈ψ |ψ ′〉 ≡
∫

E∗
xy · E′

xy + H∗
xy · H′

xy, (5)

where the integral is over the cross section along x at a fixed
z. Under this inner product, Â and B̂ are Hermitian operators
for real and lossless ε and μ.

Equation (1) can be solved using spatial coupled-wave
theory, which employs an expansion basis of “instantaneous”
uniform waveguides defined by the cross sections of the
surface [see Fig. 1(a)]. The fields at each cross section are
expanded in terms of the instantaneous-waveguide modes,
resulting in a set of coupled differential equations in the
mode coefficients. The instantaneous-waveguide modes are
found by solving Maxwell’s equations [Eq. (1)] for an infinite
uniform waveguide. Since there is translational symmetry in
the z direction, |ψ〉 can be chosen to satisfy |ψ〉 = |β〉eiβz,
where β is the propagation constant and |β〉 is a z-independent
function. Equation (1) becomes

Â|β〉 = βB̂|β〉. (6)

Assuming real ε and μ, (6) is a generalized Hermitian
eigenproblem with eigenvalue β. It follows that there is an
orthogonality relation between the eigenstates: 〈β|B̂|β ′〉 = 0
when β �= β ′, where it is assumed that β and β ′ are real
(corresponding to propagating modes). If the eigenstates are
guided modes, one can label the modes by an integer n =
0, 1, 2, . . . since the eigenvalues are discrete, taking the state
with eigenvalue βn to be |n〉. The labeling can be extended to
the continuum of nonguided modes as well since in practice
the eigenvalues of such modes become discrete in a finite-size
computational cell. Then, the propagating (real-β) modes can
be normalized such that

〈m|B̂|n〉 = δm,nηn, (7)

where ηn = ±1 for forward and backward propagating modes.
In coupled-wave theory, Eq. (6) must be solved for each cross
section (z) of the locally uniform surface. The eigenproblem
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is therefore labeled with z:

Â|n〉z = βn(z)B̂|n〉z, (8)

where |n〉z and βn(z) are the instantaneous eigenmodes and
eigenvalues and the z dependence of Â is implicit.

The fields of the locally uniform surface are then expanded
in terms of the instantaneous eigenmodes by considering the
following ansatz for |ψ〉 in Eq. (1):

|ψ (z)〉 =
∑

n

cn(z)|n〉z exp

(
i
∫ z

βn(z′) dz′
)

, (9)

where cn(z) are eigenmode coefficients describing the inter-
modal scattering along z and the phase of each mode is given
by an integral over βn(z). Next, one substitutes the ansatz into
Eq. (1) and solves for the mode evolution in z. The result is a
linear differential equation in the mode coefficients

dcm

dz
= −ηm

∑
n �=m

〈m| ∂Â
∂z |n〉z

βn(z) − βm(z)

× exp

(
i
∫ z

[βn(z′) − βm(z′)]dz′
)

cn

− ηm〈m|B̂∂|m〉z

∂z
cm (10)

that relates the mode evolution to the rate of change of the
eigenoperator ∂Â/∂z and the eigenmode fields and propa-
gation constants. Note that the right-hand side of Eq. (10)
includes a “self-interaction” term given by −ηm〈m|B̂ ∂|m〉z

∂z cm.
Appendix B of [4] shows that by imposing a simple phase
choice on |m〉z, corresponding to a Berry phase [63], this
term can be exactly eliminated. If the instantaneous eigen-
modes are chosen to be purely real, the condition reduces to
choosing the overall sign of the modes consistently. Moving
forward, we will thus omit the self-interaction term. Equa-
tion (10) is the “coupled-wave equations” of CWT and has
been derived in a variety of notations by many authors [1–4];
its historical roots trace back to the “telegrapher’s equations”
for transmission lines.

Equation (10) can be solved approximately by perturba-
tively expanding in the rate of change of the surface cross
section. One assumes that ∂Â/∂z is small, i.e., the surface
cross section varies slowly, and expands the mode coefficients
in powers of ∂Â/∂z:

cm(z) = c(0)
m (z) + c(1)

m (z) + c(2)
m (z) + · · · . (11)

Substituting the expansion into Eq. (10) and solving to first
order in ∂Â/∂z yield

dc(1)
m

dz
= −ηm

∑
n �=m

〈m| ∂Â
∂z |n〉z

βn(z) − βm(z)

× exp

(
i
∫ z

[βn(z′) − βm(z′)]dz′
)

c(0)
n , (12)

which gives the first-order mode coefficients in terms of those
at zeroth order.

B. Combining CWT with LUA

Physically, we can think of the zeroth-order terms as those
that do not result from any intermodal scattering and instead
couple directly to the incident wave. Those at first order are
the result of zeroth-order terms that have undergone a single-
scattering process from the nonzero rate of change. Let us
therefore consider the zeroth-order terms in the context of
an incident plane wave from the side [Fig. 1(a)]. A zeroth-
order solution to the scattering problem neglects the rate of
change of the surface, and hence, it conserves the propagation
constant of the incident plane wave. Therefore, the zeroth-
order modes consist only of radiation modes with propagation
constant β0 and no guided modes. We thus set βn(z) = β0 in
Eq. (12). In principle, we can calculate the guided-mode cou-
plings to first order in ∂Âz/∂z by computing the zeroth-order
radiation-mode fields and propagation constants (as well as
the guided mode of interest). However, this procedure is not
entirely convenient, as it requires normalizing radiation modes
that lie in a continuous spectrum.

To simplify the approach, we employ LUA [15,18–20],
which is equivalent to LPA in the limit of zero period. In
LUA, the fields scattered from a locally uniform structure
are approximated by a composition of scattering problems
from uniform waveguides. That is, the fields at each cross
section are obtained by scattering off of the completely uni-
form waveguide defined by the cross section [see Fig. 1(a)].
While LUA yields a z-dependent solution that captures the
surface variation, it is a zeroth-order approximation because
the incident field interacts only with z-independent structures.
For an incident plane wave with propagation constant β0, the
LUA solution is given by

|ψLUA〉 =
∑

n

c(0)
n (z)|n〉z, (13)

where conservation of the wave vector implies that n sums
over radiation modes of a fixed frequency and propagation
constant (β0) and the mode coefficients c(0)

n (z) are zeroth order
in the rate of change. For convenience, we are factoring out
the phase eiβ0z; that is, the full zeroth-order fields are given by
|ψLUA〉eiβ0z.

It is clear from Eq. (13) that the LUA solution contains the
zeroth-order solution to coupled-wave theory for an incident
plane wave. After setting βn(z) = β0 in Eq. (12), pulling out
the sum over n, and collecting the n-dependent terms, we can
then insert the LUA solution:

c(1)
m (L) = −ηm

∫ L

0
dz

〈m| ∂Â
∂z |ψLUA〉

β0 − βm(z)

× exp

(
i
∫ z

[β0 − βm(z′)]dz′
)

, (14)

where we have integrated both sides of Eq. (12) to solve
explicitly for the guided-mode coefficients. We can further
simplify our result by writing the inner-product integral in
terms of the guided-mode and LUA fields (Eq. (17) of [4]).
For instance, for a locally uniform surface with constant μ
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FIG. 2. (a) Top: locally uniform surface with thickness a under consideration, with permittivity indicated by the shading. Bottom: Plot
of the permittivity ε(z) as a function of z. Here εi = 1.25, and �ε = 0.5. (b) Transmitted power of the fundamental TM guided mode at
ω = 0.6 (2πc/a), or λ ≈ 1.67(a), as a function of taper length L. Results from brute-force FDTD simulations are shown in green, and results
from our semianalytic framework [Eq. (15)] are shown in orange.

and z-varying ε, Eq. (14) becomes

c(1)
m (L) = −ηmω

c

∫ L

0
dz

exp
(
i
∫ z[β0 − βm(z′)]dz′)
β0 − βm(z)

× dε

dz

∫
z

dx E∗
m · ELUA, (15)

where Em and ELUA are the three-component electric fields
of the guided-mode and LUA solutions, respectively, and the
integral over the cross section includes only the region where
dε/dz �= 0, i.e., between the boundaries of the waveguide.

C. Validation

Here, we validate our framework for locally uniform sur-
faces against brute-force FDTD simulations carried out in a
freely available software package [64]. We consider a surface
with locally uniform (slowly varying) permittivity ε(z) de-
picted in Fig. 2: a triangular taper in ε(z) joining two uniform
waveguides. In this example, the uniform waveguides have
permittivity εi = 1.25; the taper has an amplitude �ε = 0.5
and a variable length L. The surface has a thickness a and
is surrounded on either side by air (ε = 1). We consider a
normally incident plane wave (β0 = 0) with TM polarization
(such that E = E ŷ is perpendicular to the xz plane) coupling
to the fundamental TM guided mode. The operating frequency
is 0.6 (2πc/a), or λ ≈ 1.67(a).

The choice of basis for CWT and LPA in this case is
straightforward; we simply choose a set of uniform waveg-
uides defined by the cross sections of the taper (see Fig 2). For
a particular waveguide in the basis, we compute the guided-
mode fields and propagation constant using a freely available
eigensolver of Maxwell’s equations [65], and we compute the
LPA fields (given the same normally incident plane wave)
using a one-dimensional (1D) FDTD simulation for each cross
section. We then use the guided mode and LPA solutions
to compute the overlap integrals over the cross sections and
the phase terms in Eq. (15). In principle, one needs to do

this for each cross section along the taper; however, because
the overlap integral and propagation constants are continuous
functions of z, it is sufficient to compute these quantities for
only a few points and interpolate. Moreover, the interpolation
can be reused for any taper length L by rescaling with the
rate of change. We note that one must be careful to choose
the phase of the guided-mode fields consistently across differ-
ent points, which eliminates a “self-coupling” term from the
derivation ([4], Appendix B).

Figure 2 shows the validation results: for a range of ta-
per lengths L, we compute the transmitted power of the
guided mode using both our framework (orange) and a brute-
force FDTD simulation (green). The plot shows excellent
agreement in the large-L (small rate of change) limit and rel-
atively good agreement even for smaller L comparable to the
wavelength. As expected from the slope discontinuity of �ε,
the coupled power decreases as 1/L2, which one can show
analytically by Fourier analysis via a change of variables in
CWT [57].

III. LOCALLY PERIODIC FRAMEWORK

In this section, we derive the coupling of an incident plane
wave to guided waves on a locally periodic surface. The
problem setup is depicted in Fig. 1(b). The setup is the same as
in Sec. II, except that the surface is now locally periodic in the
z direction rather than locally uniform; that is, the unit cells
that compose the surface vary slowly with z. Since a locally
periodic surface becomes locally uniform in the limit of zero
period, the results of this section are a strict generalization of
Sec. II. As is also discussed in [4], the framework developed in
Sec. II would be a poor approximation for a photonic-crystal
structure in which the periodic unit cell is rapidly varying on
a subwavelength scale—it is critical to take the local period-
icity into account analytically to obtain an accurate first-order
approximation.
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A. CWT for locally periodic surfaces

To solve this problem, we apply spatial coupled-wave the-
ory for locally periodic surfaces, which was developed in
Sec. IV of [4]. This section will largely review the coupled-
wave theory developed in [4]; however, some modifications
will be made due to the nature of the incident wave, which
is then incorporated into the LPA+CWT formulation in the
following section. As in Sec. II, one describes the fields scat-
tered from the locally periodic surface by writing Maxwell’s
equations at a fixed frequency ω [Eqs. (1)–(5)]. However, in
this case, one considers an expansion basis of eigenmodes of
instantaneous periodic waveguides at each cross section. In
order to describe the waveguides and their eigenstates, one
needs to introduce a “virtual” coordinate z̃, to be distinguished
from z, that describes the variation within the unit cell of each
waveguide [see Fig. 1(b)].

One may be interested in modeling a surface where the
periods of the unit cells vary with z. If the periods of the unit
cells are given by �(z), one can define dimensionless coor-
dinates scaled by �(z) so that the instantaneous waveguides
all have unit period. One can define ζ ≡ ∫ z dz′/�(z′), which
effectively counts the number of periods in the locally periodic
surface up to some point z, and ζ̃ ≡ z̃/�(z). In the following,
we will consider the case of a fixed period �(z) = � for sim-
plicity, in which case ζ = z/� and ζ̃ ≡ z̃/�. In the Appendix,
we generalize to the case of a z-dependent period. For further
simplicity, we assume herein that the locally periodic surface
has z-dependent ε but constant μ.

At each z, one defines an instantaneous periodic waveguide
by εz(ζ̃ ), where εz(ζ̃ ) = εz(ζ̃ + 1); that is, the waveguide is
unit periodic in ζ̃ space. To connect the instantaneous waveg-
uides to the physical locally periodic surface, one demands
that

εz(ζ̃ = ζ ) = ε(z). (16)

That is, the instantaneous waveguide matches the physical
surface at a single cross section, where ζ̃ = ζ (or z̃ = z since
the period here is fixed).

Given each εz(ζ̃ ), one can solve for the corresponding
waveguide modes. For an infinite periodic waveguide with no
current sources, Maxwell’s equations at a fixed frequency ω

are given by

Â(ζ̃ )|ψ〉 = − i

�

∂

∂ζ̃
B̂|ψ〉, (17)

where Â(ζ̃ ) is Â from Eq. (3) with ε = εz(ζ̃ ) (where the z
dependence of the equation is suppressed for now). There is
discrete translational symmetry in the z̃/ζ̃ direction, so by
Bloch’s theorem one can choose |ψ〉 = |β〉eiβ z̃ = |β〉eiβ�ζ̃ ,
where |β〉 is a unit-periodic function in ζ̃ space. Equation (17)
becomes

Ĉ(ζ̃ )|β〉 = βB̂|β〉, (18)

where Ĉ(ζ̃ ) ≡ Â(ζ̃ ) + i
�

∂

∂ζ̃
B̂. As in Sec. II, this is a general-

ized Hermitian eigenproblem for real ε and μ, which implies
an orthogonality relation between the eigenstates: 〈β|B̂|β ′〉 =
0 when β �= β ′ (assuming β and β ′ are real, corresponding to
propagating and nonevanescent modes). By Bloch’s theorem,
eigenstates separated by reciprocal lattice vectors are equiv-
alent up to a phase, i.e., |β + 2π

�
�〉 = e(−2π i/�)�z̃|β〉 for any

integer �. This implies an extended orthogonality relation:

〈β|B̂e(−2π i �)�z̃|β ′〉 = 0 (19)

when β �= β ′ + (2π/�)�. Below, we choose the modes to lie
within the first Brillouin zone, i.e., β ∈ (−π/�, π/�], and
label the modes |n〉 corresponding to discrete eigenvalues βn,
normalized as in Eq. (7). Finally, since a different waveguide
is defined for each cross section of the locally periodic surface,
one labels the eigenequation with z. Equation (18) becomes

Ĉz(ζ̃ )|n(ζ̃ )〉z = βn(z)B̂|n(ζ̃ )〉z, (20)

where Ĉz(ζ̃ ) = Âz(ζ̃ ) + i
�

∂

∂ζ̃
B̂ and the ζ̃ dependence of the

eigenstates is explicitly denoted.
To employ coupled-wave theory, one needs to turn the

instantaneous eigenmodes |n(ζ̃ )〉z into an expansion basis for
|ψ (z)〉. However, the eigenmodes are defined over a unit cell,
whereas one needs to expand in a single cross section. One
might try to expand in the |n(ζ̃ = ζ )〉z modal cross section,
but the ζ̃ dependence must be retained in order to employ the
orthogonality relation between the eigenmodes [Eq. (7)]. To
resolve this, the approach of [4] is to simultaneously solve a
family of scattering problems involving different surfaces. In
particular, consider the surface in z space defined by εz(ζ ). By
the matching condition in Eq. (16), εz(ζ ) = ε(z); that is, this
defines the locally periodic surface in the physical scattering
problem. Now instead, consider the entirely different surface
in z space defined by εz(ζ + �ζ̃ ), which shifts the argument
away from ζ by an amount �ζ̃ . One can imagine constructing
this surface by doing the following: at each z, take the periodic
waveguide defined by εz(ζ̃ ), and insert the cross section at
ζ̃ = ζ + �ζ̃ . This defines an entire family of surfaces param-
eterized by �ζ̃ , where �ζ̃ = 0 corresponds to the physical
surface of interest. Since the instantaneous waveguides are
unit periodic in �ζ̃ , so too is the family of surfaces; that is, �ζ̃

and �ζ̃ + 1 define the same surface. Note that the notation
here differs slightly from [4], in that we are referring to the
shift from ζ as �ζ̃ rather than ζ̃ .

In order to apply this framework to a scattering problem
with an incident plane wave in free space, our approach will
differ from that of [4]. In particular, just as a family of dif-
ferent surfaces is defined, we also define different incident
waves—that is, we solve a family of problems with differ-
ent surfaces and incident waves. To generate the family of
incident waves, our technique will mirror that of the surfaces
described above.

Let us suppose that the electric field of the incident plane
wave is given by E(z) = E0ei(β0z+βxx), where E0 is a con-
stant three-component vector and the x dependence of E(z)
is implicit. Now suppose that for each instantaneous periodic
waveguide in z̃ space, we imagine sending in an instantaneous
incident plane wave with the same wave vector. We will label
the electric fields of such incident waves by Ez(ζ̃ ), where
the z subscript denotes that there is a different incident wave
for each instantaneous periodic waveguide [just as εz(ζ̃ ) was
defined]. In analogy to the εz(ζ̃ ), we impose a constraint on
Ez(ζ̃ ) to connect them to the physical incident wave:

Ez(ζ̃ = ζ ) = E(z); (21)
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that is, the instantaneous incident waves match the physical
incident wave at the ζ̃ = ζ (or z̃ = z) cross section. We also
demand that Ez(ζ̃ ) are themselves plane waves with the same
wave vector as the physical incident wave. Given these con-
straints, there is only one possible choice of instantaneous
incident waves:

Ez(ζ̃ ) = E0ei(β0�ζ̃+βx x̃) = E0ei(β0 z̃+βx x̃), (22)

i.e., plane waves with the same phase as the physical plane
wave. Since all of the instantaneous incident waves are the
same, we no longer need the z subscript, but we will keep
it in order to make the analogy to εz(ζ̃ ) clear. (For the case
of variable-period structures in the Appendix, the analogous
approach leads to an incident wave that is effectively no longer
a plane wave in the unit-cell problems but which is then
expanded in plane waves.)

We can now generate the family of incident waves just as
[4] did for the family of surfaces. For instance, consider the
incident wave in z space defined by Ez(ζ )—by the match-
ing condition in Eq. (21), this defines the incident wave
in the physical scattering problem. Now, consider the inci-
dent wave in “shifted” z space, defined by Ez(ζ + �ζ̃ ) =
E0eiβ0��ζ̃ ei(β0z+βxx). This defines a family of incident waves
parameterized by �ζ̃ that have the same wave vector but
phase-shifted amplitudes given by eiβ0��ζ̃ . The physical inci-
dent wave of interest corresponds to �ζ̃ = 0, i.e., an unshifted
incident wave.

One can now rewrite Maxwell’s equations [Eq. (1)] to solve
the family of systems parameterized by �ζ̃ :

Âz(ζ + �ζ̃ )|ψ〉�ζ̃ = −i
∂

∂z
B̂|ψ〉�ζ̃ , (23)

where εz(ζ + �ζ̃ ) has been inserted into Eq. (1) through
Âz(ζ + �ζ̃ ) and the fields have been labeled with �ζ̃ . The
family of incident waves described above are taken as bound-
ary conditions. For each system, one expands |ψ〉�ζ̃ in
the basis of |n(ζ + �ζ̃ )〉z, i.e., the instantaneous-waveguide
modes evaluated at the ζ + �ζ̃ cross section:

|ψ (z)〉�ζ̃ =
∑

n

cn(z,�ζ̃ )|n(ζ + �ζ̃ )〉z

× exp

(
i
∫ z

βn(z′)dz′
)

, (24)

where the mode coefficients cn have both z and �ζ̃ depen-
dence. One now considers what happens to the system when
�ζ̃ is increased by 1, i.e., �ζ̃ → �ζ̃ + 1. Since εz(ζ̃ ) is unit
periodic, the surface remains the same, while the incident
wave remains the same up to a phase eiβ0�. Therefore, the
fields |ψ (z)〉�ζ̃ pick up the same phase. This is in contrast to
[4], where the fields remained the same under �ζ̃ → �ζ̃ + 1
(due to the incident wave being guided rather than a plane
wave). Here, we choose to absorb this phase within the mode
coefficients, such that cn(z,�ζ̃ + 1) = cn(z,�ζ̃ )eiβ0�. Since
the coefficients are therefore Bloch periodic, we can write
them as the product of a periodic function and a �ζ̃ -dependent
phase:

cn(z,�ζ̃ ) = eiβ0��ζ̃ c̃n(z,�ζ̃ ), (25)

where c̃n(z,�ζ̃ + 1) = c̃n(z,�ζ̃ ). Following [4], since
c̃n(z,�ζ̃ ) are periodic in �ζ̃ , one can expand c̃n as a Fourier
series:

c̃n(z,�ζ̃ ) =
∑

�

c̃n,�(z)e2π i��ζ̃ . (26)

Using this expression, we will formulate the coupled-wave
equations in c̃n,� rather than c̃n or cn. After solving explicitly
for c̃n,�, one can always recover the physical mode coefficients
by the relation

cn(z) = c̃n(z) =
∑

�

c̃n,�(z), (27)

i.e., by setting �ζ̃ = 0.
Next, one substitutes the ansatz for |ψ (z)〉�ζ̃ into

Maxwell’s equations for εz(ζ + �ζ̃ ) [Eq. (23)]. The result is a
set of differential equations in c̃n,� that is identical to Eq. (25)
of [4]:

dc̃m,k

dz
= −ηm

∑
n,� �=m,k

〈m|e2π ikζ̃ ∂Ĉz

∂z e−2π i�ζ̃ |n〉z

�βn,l;m,k (z)

× exp

(
i
∫ z

�βn,l;m,k (z′)dz′
)

c̃n,�

− η∗
m〈m|B̂∂|m〉z

∂z
c̃m,k, (28)

where the phase mismatch �β is given by

�βn,�;m,k (z) ≡ βn(z) − βm(z) + 2π

�
(� − k). (29)

As in Sec. II, the self-interaction term −η∗
m〈m|B̂ ∂|m〉z

∂z cm,k can
be exactly eliminated by a straightforward “Berry” phase
choice for |m〉z ([4], Appendix B). This involves evaluating
simple overlap integrals between instantaneous eigenmodes
at nearby points z. We thus omit this term below. One can
approximately solve Eq. (28) by perturbatively expanding the
mode coefficients in the rate of change. That is, one assumes
that ∂Ĉz(ζ̃ )/∂z is small, i.e., the instantaneous unit cell varies
slowly with z, and expands c̃m,k in powers of ∂Ĉz(ζ̃ )/∂z:

c̃m,k (z) = c̃(0)
m,k (z) + c̃(1)

m,k (z) + c̃(2)
m,k (z) + · · · . (30)

Substituting the expansion into Eq. (28) and solving to first
order, one finds

dc̃(1)
m,k

dz
= −ηm

∑
n,� �=m,k

〈m|e2π ikζ̃ ∂Ĉz

∂z e−2π i�ζ̃ |n〉z

�βn,l;m,k (z)

× exp

(
i
∫ z

�βn,l;m,k (z′)dz′
)

c̃(0)
n,�, (31)

which gives the first-order mode coefficients in terms of those
at zeroth order (obtained below from the LPA solution).

B. Combining CWT with LPA

Here, we can make a similar argument to that in Sec. II
regarding the zeroth-order modes. Since the zeroth-order so-
lution necessarily neglects the rate of change of the unit cell,
it must conserve the wave vector of the incident plane wave
up to 2π/�. Therefore, the zeroth-order modes are radiation
modes with βn(z) = β0 (since we have arbitrarily restricted
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the modes to lie within the first Brillouin zone). Then Eq. (31)
becomes

dc̃(1)
m,k

dz
= −ηm

∑
n,� �=m,k

〈m|e2π ikζ̃ ∂Ĉz

∂z e−2π i�ζ̃ |n〉z

�βl;m,k (z)

× exp

(
i
∫ z

�βl;m,k (z′)dz′
)

c̃(0)
n,�, (32)

where the phase mismatch �β is now given by

�βl;m,k (z) ≡ β0 − βm(z) + 2π

�
(� − k). (33)

We have found an expression for guided-mode coefficients to
first order in ∂Ĉz(ζ̃ )/∂z. However, in its current form, we must
solve explicitly for and normalize the zeroth-order radiation
modes. To avoid this, we will express Eq. (32) in terms of
the fields given by LPA, which is a generalization of LUA in
Sec. II B to structures with nonzero periods.

In LPA, the fields scattered from a locally periodic surface
are approximated by a composition of scattering problems
from periodic waveguides [5–17,21]. In this case, it is nat-
ural to apply LPA alongside coupled-wave theory since we
have already defined instantaneous periodic waveguides and
incident waves corresponding to each cross section.

Suppose we want to apply LPA to the physical surface
of interest. For a given cross section, we simply take the
instantaneous waveguide defined by εz(ζ̃ ) and send in the
instantaneous incident wave with electric field Ez(ζ̃ ). For
each z, this produces a solution that is defined over a unit
period in ζ̃ space. Since the incident wave is a plane wave
with propagation constant β0, conservation of the wave vector
implies that we can write the solution in ζ̃ space as a sum
over radiation modes with fixed frequency and propagation
constant (β0):

|ψLPA(ζ̃ )〉z =
∑

n

b(0)
n (z)|n(ζ̃ )〉z, (34)

where the radiation modes are weighted by coefficients b(0)
n (z)

that depend on z but not ζ̃ . As denoted by the super-
script, the coefficients are zeroth order in ∂Ĉz(ζ̃ )/∂z because
the incident waves scatter off of completely periodic struc-
tures. For convenience, we are factoring out the phase eiβ0z

from the LPA fields; that is, the full fields are given by
|ψLPA(ζ̃ )〉eiβ0 z̃. Hence, when we phase shift the unit cells by
�ζ̃ , the corresponding LPA fields for the shifted problem are
|ψLPA(ζ + �ζ̃ )〉zeiβ0�(ζ+�ζ̃ ).

Next, we need to understand how b(0)
n in (34) relate to

the Fourier coefficients c̃(0)
n,� so that we can insert |ψLPA〉 into

Eq. (32). First, if we compare the expression for the full
LPA fields (including the �ζ̃ -dependent phase) to the modal
expansion of Eq. (24) assuming that βn(z) = β0, we find that
b(0)

n are equivalent to c̃(0)
n ; that is, they are periodic in �ζ̃ .

Moreover, by Eq. (34), b(0)
n are independent of ζ̃ and there-

fore of �ζ̃ . Hence, by Eq. (26), b(0)
n (z) are equivalent to the

� = 0 Fourier coefficients c̃(0)
n,0. Since the LPA solution is the

zeroth-order solution to coupled-wave theory for an incident
plane wave, we can drop the sum over � in Eq. (32), leaving
only the � = 0 term. Then, after pulling out the sum over n
and collecting the n-dependent terms, we can insert the LPA

solution into Eq. (32):

c̃(1)
m (L) = −ηm

∫ L

0
dz

∑
k

〈m|e2π ikζ̃ ∂Ĉz

∂z |ψLPA〉z

�β0;m,k (z)

× exp

(
i
∫ z

�β0;m,k (z′)dz′
)

, (35)

where we have integrated both sides over z and summed over k
to solve explicitly for c̃(1)

m [Eq. (27)]. Finally, we can simplify
this result by expressing the inner-product integral in terms of
the guided-mode and LPA fields (Eq. (30) of [4]). Assuming
that the locally periodic surface has z-independent μ, Eq. (35)
becomes

c̃(1)
m (L) = −ηmω

c

∫ L

0
dz

∑
k

exp
(
i
∫ z

�β0;m,k (z′)dz′)
�β0;m,k (z)

×
∫

z
dx̃dz̃e(2π i/�)kz̃ ∂εz(ζ̃ )

∂z
E∗

m · ELPA, (36)

where Em and ELPA are the three-component electric fields
of the guided-mode and LPA solutions, respectively. Equa-
tion (36) also assumes that ∂εz(ζ̃ )/∂z has no moving
boundary—to handle such cases, the integral must be written
in terms of the field components that are continuous across the
boundary, E‖ and D⊥ ([66], Eq. (12)).

C. Validation

Here, we validate our framework for locally periodic sur-
faces against brute-force FDTD simulations. We also provide
Algorithm 1, which describes how to efficiently apply our
framework to compute the coupling to guided waves in such
surfaces. We consider a surface that is analogous to the exam-
ple in Sec. II C: the permittivity is described by a sine wave
with a fixed period and a triangular taper in the amplitude,
with uniform waveguides on either side of the taper. That is,
the permittivity is given by ε(z) = εi + �εA(z) sin (2πz/�),
where A(z) describes a triangular taper with unit amplitude
and width L (see Fig. 3). In this case, we choose εi = 2 (larger
than in Sec. II C in order to ensure a strongly localized guided
mode), �ε = 0.2, and � = 0.25a. The surface has a thickness
of a and is surrounded on either side by air. We consider a
normally incident plane wave (β0 = 0) with TM polarization
coupling to a fundamental TM guided mode, operating at a
frequency of 1.1 (2πc/a).

In order to choose a basis of waveguides, we must obey
the matching condition of Eq. (16). While there are many
choices that satisfy this condition, the most straightforward
one is as follows: for each z, the permittivity is given by a sine
wave (with period �) whose amplitude matches that of the
physical taper at z. That is, the instantaneous waveguides are
described by εz(z̃) = εi + �εA(z) sin (2π z̃/�). As described
in Sec. VI of [4], one must be careful to choose a taper where
the guided mode remains guided throughout the taper, e.g.,
where the operating frequency does not fall into a band gap
at some intermediate points—in such cases, the theory breaks
down, and the transmission of the mode becomes poor. As
in Sec. II C, for a particular instantaneous waveguide, we
compute the guided mode and LPA solutions, then use these
to compute the overlap integrals and phase terms in Eq. (36).
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FIG. 3. (a) Top: locally periodic surface with thickness a under consideration. Bottom: Plot of the permittivity ε(z) as a function of z, a
sine wave with fixed period and a triangular taper in the amplitude. Here εi = 2, �ε = 0.2, and � = 0.25(a). (b) Transmitted power of the
fundamental TM guided mode at ω = 1.1 (2πc/a), or λ ≈ 0.91(a), as a function of taper length L. Results from brute-force FDTD simulations
are shown in green, and results from our semianalytic framework [Eq. (36)] are shown in orange.

While Eq. (36) sums over infinitely many integer values of k,
in practice one can drop most of these terms. This is because
the largest contributions come from terms where �β0;m,k (z)
is smallest due to the integral over the phase in Eq. (36). In
this case, �β0;m,k (z) may be smallest when k = −1, 0, or 1
depending on the propagation directions of the incident wave
and guided mode (if both propagate in the same direction, it
is when k = 0). We found that it is sufficient to sum over the
five terms centered around the smallest �β0;m,k (z); thus, using
the seven terms from k = −3 to 3 should always be more than
enough. (In this particular example, the average relative error
between five and seven terms was 0.0037%.) As in Sec. II C,
rather than computing the overlap integrals and propagation
constants for each point along the taper, we do so only for
a few points and interpolate the remainder; in this case, we
perform separate interpolations of the overlap integral for each
value of k. After doing so, the interpolations can be applied
to any taper length L by rescaling with the rate of change.
As before, one must consistently choose the phase of the
guided-mode fields in order to disregard the self-interaction
term omitted in the derivation.

Figure 3 shows the validation results: for each taper length
L, we compute the transmitted power of the guided mode
using both our framework (orange) and an FDTD simulation
(green), which show agreement in the large-L limit. In the
following, we provide an algorithm that summarizes the steps

involved in computing the coupling to a guided mode using
our framework, assuming a surface whose unit cells have a
fixed period, �(z) = �. In order to do so, we will rewrite
Eq. (35) in a form that is more convenient to apply. First,
we define a dimensionless coordinate u = z/L such that the
surface varies only from u = 0 to u = 1. Next, following
[56,57,59], we define a dimensionless parameter s ∈ [0, 1]
that characterizes the instantaneous unit cells of the surface.
For instance, for a dielectric waveguide composed of a se-
quence of periodic flanges, s could be proportional to the
flange height (see Fig. 1 of [57]). Then, a given surface taper
is described by the continuous function s(u), which defines
a sequence of instantaneous unit cells for each point of the
taper. In general, the taper may be described by multiple
independent parameters sn(u); however, we assume only one
parameter for simplicity. Then, Eq. (35) can be rewritten as

c̃(1)
m (L) = −ηm

∫ 1

0
du s′(u)

∑
k

Mk[s(u)]

�βk[s(u)]

× exp

(
i
∫ u

�βk[s(u′)]du′
)

, (37)

where Mk[s(u)] = 〈m|e2π ikζ̃ ∂Ĉz

∂z |ψLPA〉z and �βk[s(u)] =
�β0;m,k (z) are the k-dependent matrix elements and phase
mismatches, respectively. Using this notation, the algorithm

Algorithm 1. Semianalytical radiative- and guided-mode coupling for slowly varying periodic surfaces.

1: for a set of points s ∈ [0, 1]
2: Compute the LPA solution |ψLPA〉s: periodic scattering solve
3: Compute the phase-corrected, normalized eigenmode |m〉s and βm(s): periodic eigensolve
4: for k = −3 to 3
5: Compute overlap integrals Mk[s(u)] and phase mismatches �βk[s(u)] [Eq. (37)]
6: end for
7: end for
8: for each k: Form interpolating polynomials or splines for Mk[s(u)] and �βk[s(u)] to obtain values at any s
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for computing the coupling to a guided wave in a nearly
periodic surface with fixed period, �(z) = �, is described in
Algorithm 1.

Step 1 could employ a variety of interpolation algorithms,
such as cubic splines or Chebyshev polynomials, to obtain
high accuracy from a small number of samples. Once one has
carried out the algorithm for a particular taper with length L
and rate profile s(u), computing the coupling for additional
tapers requires minimal effort. In particular, one simply re-
defines s(u) ∈ [0, 1] and L and executes steps 8 since the
calculations used to sample the interpolating points in steps
1–7 can be reused. This method was used in [56,57] to op-
timize a taper profile for guided-mode transmission, which
requires evaluating CWT for many different s(u). Finally,
as described in the Appendix, this algorithm can applied to
structures with z-dependent periods by Fourier transforming
the incident wave in ζ and applying the algorithm to each
plane-wave component.

IV. CONCLUDING REMARKS

We have developed a semianalytical framework combining
LPA and CWT that solves the scattering problem of incident
radiation coupling to guided waves in large-area, slowly vary-
ing surfaces. Our framework is particularly relevant to optical
metasurfaces, where solving this problem by brute-force sim-
ulation is formidable due to their large diameters and where
existing analytical approximations have largely focused on the
problem of incident radiation coupling to outgoing radiation
or leaky modes. A possible application of this work is to meta-
surface design through numerical optimization, building on
previous optimization of metasurfaces by LPA [14,17,50–52]
and guided-mode couplers using CWT [56,57,59,60], such as
for large-area grating couplers, for nonlinear processes and
lasing via long-lifetime trapping in guided modes, and for
other devices exploiting nonlocal effects due to transport by
guided waves in large surfaces.

Our derivation could be straightforwardly generalized in a
variety of ways, for example, to other linear materials, such
as anisotropic, magnetic, absorptive (complex β), or even
magneto-optic or chiral media. Arbitrary incident waves can
be treated by expanding them in plane waves, applying our
framework to each plane-wave component. Coupling radiative
modes to guided modes, as in the examples above, is exactly
equivalent to coupling guided modes to radiation under a
reciprocity or time-reversal transformation [67]. Surfaces with
a z-varying periodicity can be handled by a coordinate trans-
formation as in [4] (Appendix. A). Although the examples in
this paper were for 1D patterned surfaces in two dimensions,
exactly the same equations are applicable in three dimensions
for structures that are nearly periodic along one direction, such
as waveguide tapers [59].

A more subtle generalization would be to two-dimensional
patterned surfaces in three dimensions that are nearly periodic
along two directions (xy), as in most practical metasurface
devices. One promising approach is to perturbatively decouple
the two directions: for variation in two directions, one can
Taylor expand the mode coefficients in both ∂Ĉx(ζ̃ )/∂x and
∂Ĉy(ζ̃ )/∂y (the slow rates of change in x and y). To first

order in these rates, the variations in each direction decouple:
the mode coefficient is given by a term that is first order in
∂Ĉx(ζ̃ )/∂x plus another term that is first order in ∂Ĉy(ζ̃ )/∂y.
These terms could be computed independently by applying
Eq. (35) to the variation in each direction (while approximat-
ing the surface as completely periodic in the perpendicular
direction for each “line” of unit cells). (A practical obsta-
cle to research on similar semianalytical methods in three
dimensions is simply that brute-force validation becomes
vastly more expensive. This can be combated by carefully
choosing the three-dimensional test problem, such as an array
of disconnected high-symmetry scatterers amenable to fast
multipole or integral-equation methods [68–70], with appro-
priate absorbing-boundary techniques for the guided modes
[71–73].)

Moreover, our work could serve as the starting point to
compute next-order scattering processes, such as the second-
order coupling of incident to outgoing radiation involving
an intermediate scattering to guided modes (e.g., to capture
nonlinear effects experienced by the guided modes), or simply
as a validation check for the first-order calculation.
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APPENDIX: EXTENSION TO SURFACES WITH
z-DEPENDENT PERIOD �(z)

In Sec. III, we considered only surfaces where the period
of the instantaneous unit cell is z independent, i.e., �(z) =
�. Here, we extend our framework to handle a z-dependent
period, which will reduce to solving multiple problems with
z-independent periods. Recall that, in anticipation of this case,
we introduced dimensionless coordinates scaled by �(z). In
particular, we defined ζ ≡ ∫ z dz′/�(z′), which counts the
number of periods in the locally periodic surface up to some
point z, and ζ̃ ≡ z̃/�(z), which scales all of the instantaneous
gratings to have unit period. Using these coordinate systems
and assuming a z-dependent period, all of the analysis car-
ried out in Eqs. (16)–(20) still holds. However, a problem
arises when we try to define the instantaneous incident waves
[Eqs. (21) and (22)]. That is, for general �(z) we cannot
define Ez(ζ̃ ) that are plane waves while satisfying the con-
straint of Eq. (21). As a result, the family of incident waves
parameterized by �ζ̃ will no longer be plane waves phase
shifted by eiβ0��ζ̃ and, in general, will not be plane waves
at all. Thus, the approach requires some modification.

Intuitively, the problem stems from trying to express the
incident plane wave in terms of the scaled coordinates. In par-
ticular, the physical incident wave [with electric field E(ζ )] is
no longer a plane wave in ζ space since it has effectively been
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rescaled by �(z) into an arbitrary incident wave. Using scaled
coordinates transforms the original scattering problem with an
incident plane wave and z-dependent period into one with an
arbitrary incident wave and z-independent period since εz(ζ̃ )
are all unit periodic in ζ̃ . Therefore, we can treat this problem
using the framework that we developed for surfaces with a
z-independent period. In particular, our solution is to Fourier
transform the incident wave in ζ space into a plane-wave basis
and apply Eq. (35) to each plane-wave component. To get the
total coupling to guided modes, the couplings from each plane
wave can simply be added together due to the linearity of
Maxwell’s equations. For instance, suppose the electric fields

of the physical incident wave are given by

E(ζ ) =
∫

dβ̄0dβ̄xα(β̄0, β̄x )ei(β̄0ζ+β̄xx), (A1)

where α(β̄0, β̄x ) is given by the Fourier transform of E(ζ ).
Then, for each nonzero α(β̄0, β̄x ) such that β̄x < 0, i.e., the
plane wave is traveling towards the surface rather than away
from it, one computes the coupling from the plane wave by
applying Eq. (35) assuming β0 = β̄0 and using the set of
scaled instantaneous periodic waveguides with unit period
[�(z) = 1].
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