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ABSTRACT
A new micro-cavity design is proposed and structures are realized using a 2D photonic-crystal slab. The cavity consists
of seven defect holes that encompass a hexagon and is designed to reduce vertical light leakage. From a direct
transmission measurement, a Q-value of 816±30 is achieved at X=1.55jtm. This high-Q cavity will enable realistic
realization of spontaneous emission modification and on-off optical switches.
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1. INTRODUCTION

The realization of high quality (Q) micro-cavity at optical wavelength (A) has many important technological
consequences. According to the Purcell effect [1], spontaneous emission rate can be greatly altered inside a high-Q
cavity [2-4]. A high-Q cavity also operates as a bandpass filter for on-off optical switching application [5]. A photonic
crystal, a periodically arranged dielectric sub-X structure, offers a unique optical environment for creating such a cavity.
Its ability to confine light strongly will lead to the creation of high-Q cavities at optical X with a small size (—X3).
Moreover, its sub-X feature permits great geometrical flexibility in designing micro-cavities. By using different types
and combinations of local defects, cavity resonant frequency and mode symmetry can both be varied [4].

While a three-dimensional (3D) photonic-crystal is most ideal for creating high-Q cavities [6,7], 1D or 2D photonic-
crystal is advantageous in their fabrication simplicity [8-13]. Recently, Foresi et. al. realized a micro-cavity with Q=265
using a four-period (N=4) 1D photonic-crystal [14]. For 2D photonic-crystal cavities, there are several reports on the
analysis of Q-factors; mostly estimated from top-emitting photoluminescence data [1 1-13, 15] One exception is the work
by Labilloy et. al. who use guided luminescence to probe a horizontal cavity and obtain a Q-value of 200 for N=9 [10].
A top-scattering geometry was also suggested for add-drop-filter application [16]. Although, top emitting is a result of
light leakage in the vertical direction, which limits cavity-Q. A direct transmission measurement of 2D crystal cavities
at optical A. is currently lacking, due mainly to difficulties of precise lateral waveguide coupling. In this paper, we report
direct measurements of Q-factor of 2D photonic-crystal micro-cavities at X— 1.55tm. Using a new cavity design that
minimizes vertical leakage, cavity-Q is shown to increased exponentially with N and a Q=8 14 is achieved for N=4.

2. CAVITY DESIGN
Our photonic crystal consists of 2D triangular array of holes, etched through a GaAs slab. The 2D hole-array has a
lattice constant a=440nm. The hole-diameter is d=0.6a=264nm and the etched-depth —0.6jim. The GaAs slab is 220nm
thick (t=0.5a) and sandwiched between a 2pm thick A1O layer and a 0. ljtm Si02 layer. Previous measurement has
shown that the photonic-crystal has a large TE-like (transverse electric) photonic band gap, from 0.255 < w(a/X) <
0.325 [17. Within the gap, light is guided inside and near the proximity of GaAs slab through index guiding [17-19].
The field thus decays exponentially in the air and substrate, and vertical radiation losses are only possible when
translation symmetry is broken, e.g., by a defect-cavity. Our micro-cavity consists of seven smaller holes, hole-diameter
d'=0.4a=176nm, that encompass a hexagon and is called a "super-defect". A SEM image of the 2D hole-array and
micro-cavity is shown in Fig. 1 . A cavity may also be introduced by changing the radius of a single hole, however our
calculation predicts that its Q-factor is low. In this case, the radiation Q (QT), which describes the rate of decay of the
cavity mode into the air, is always under 500 and usually under 250 [20]. The super-defect design, on the other hand, is
expected to have a much higher Qr (Qr > 1,0002,000) and its resonant frequency near the middle of the TE gap (mid-
gap). One drawback of this design is that cavity-size is slightly increased to —0. 1 im3 (or a volume of 1 .5 time (X/n)3),
cavity-mode slightly de-localized and doubly degenerate. Here, n is refractive index of GaAs.
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and Lorentzian-like. Thirdly, background transmission away from the peak, i.e. A<1545 and X>1555nm, is
near zero. The line-width narrowing, the improvement in line-shape as N is increased and the fact that peak
position is within the TB gap, all suggest that the observed transmission peak originate from cavity
resonance.
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Fig.2 Transmission spectrum for N=2 (left) and N=4 (right) microcavity sample . (a) and (c) The raw data of spectrum
shows a transmission peak at Iv-1547nm and X—1551nm respectively with short period oscillations &v-O.55nm. (b) and
(d) Smoothed data fitted to a Lorentzian ( gray curve); the deduced FWHM are 4.4nm and 1.9mn for N=2 and N=4
respectively. Inset in Fig. 2c shows the infrared image of transmitted light has a well-defined Gaussian-like profile.

Further transmission measurements, with a TM (transverse magnetic) polarized light, were carried out for the
same samples. As there is no TM gap in this wavelength range, X=1510-1590nm, no transmission peak is
observed. Nonetheless, the Fabry-Perot oscillations persist for TM polarization. This measurement further
confirms that the observed peak is due to the presence of a TE photonic band gap.

To obtain a more accurate Q-value, we first perform a Fourier transform for the raw data and remove the part
of Fourier component due to Fabry-Perot oscillations. We then apply an inverse Fourier transform to obtain
the data, which is plotted as circles shown in Fig. 2(b) and 2(d), respectively. The data is then fitted to a
Lorentzian function and the red curve represents the fit. The experimental Q-factor is given by Q—X/iXXrwM,
where X is the peak wavelength and &FWHM the full-width-at-half-maximum (FWHM). For N=2, the
experimental w and Q-values are u=O.2846 and Q=351±2O, respectively. For N=4, w=O.2837 and
Qt=816±30, which is 3 times higher than that for the 1D crystal microcavity of N=4 [14}. This is expected as
light in a 1D cavity leaks both vertically and laterally to the sides. The measured w also agrees with the
theoretical value of w=O.2933 within 4% [23]. For our N=4 cavity, a large spontaneous emission
enhancement rate, TQ/(AVIX3)=5l4, can be achieved. Additionally, for a cavity-Q of 816, an index
modulation (&i/n) as small as 1 .3 x iO is sufficient for tuning cavity-w for on-off optical switching
application [5].
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4. SUMMARY
In Fig.4, we plot cavity Q-factor (solid circles) in a logarithmic scale and cavity-w (red squares) as a function
of number-of-periods (N=2, 3, 4). While the observed w varies by less than 1%, the Q-value increases
sharply as N is increased from 2 to 4. The observed Q-factors are then fitted to an exponential function,
Qt=Qo exp (K N a), with K as a fitting parameter. The fit is good and the deduced K is 0.90±0.05 (tm) .
Here, K is a measure of light trapping strength of the two photonic tunnel barriers that bound the cavity
mode. A similar exponential dependence has also been reported in microwave range for an ideal 2D photonic
crystal [9, 24]. This exponential dependence suggests that the observed increase in Q is due to an increase in
photonic crystal mirror reflectivity. It further suggests that Qr5 significantly larger than Q and a higher Q-
value is achievable by increasing N. The small variation in cavity-w may be due to the uncertainty in defect
hole-size.
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Fig. 4. Summary of resonant frequency (filled squares) and cavity Q-factors (filled circles) as a function of N. The
observed resonant frequency (w) is at the TE midgap and varies less than 1% for all samples. The cavity Q factors are
fitted to an exponential function (dashed line), and the deduced slope is K = 0.9 (Lm)1.

In summary, a new micro-cavity design is proposed and structures realized using a 2D photonic-crystal slab.
The cavity Q-factor is measured to be 8 16±30 for an N=4 cavity. Such a high-Q cavity will enable realistic
realization of spontaneous emission modification and optical on-off switches.
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