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We present general analytical criteria for the design of lossless reciprocal two-port systems, which
exhibit prescribed scattering spectra S(ω) satisfying S22(ω) = eiϕS11(ω), including symmetric (S22 = S11)
or “antimetric” (S22 = −S11) responses, such as standard filters (Butterworth, Chebyshev, elliptic, etc.).
We show that the non-normalized resonant (quasinormal) modes (QNMs) of all such two-port systems
couple to the input and output ports with specific unitary ratios, whose relative signs determine the posi-
tion of the scattering zeros on the real frequency axis. This allows us to obtain design criteria assigning
values to the poles, background response, and QNM-to-port coupling coefficients. Filter devices can then
be designed via a well-conditioned nonlinear optimization (or root-finding) problem using a numerical
eigensolver. As an application, we design multiple microwave metasurfaces configured for polarization-
preserving transmission, reflective polarization conversion, or diffractive “perfect anomalous reflection”
to realize filters that precisely match standard bandpass or bandstop filters of various types, orders and
bandwidths, with focus on the best-performing elliptic filters.
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I. INTRODUCTION

High-order (multiresonance) filters—especially stan-
dard filters (SFs) of Butterworth, Chebyshev, or elliptic
spectral shape [1]—have been designed for many types
of wave physics (electromagnetic [2–12], mechanical
[13–17], etc.) by a variety of techniques, including brute-
force optimization of the scattering (e.g., transmission)
spectrum [18–23], circuit theory in the microwave regime
[24–30], and coupled-mode theory (CMT) [31–33] for cas-
caded optical resonators [2–8]. Circuit theory and CMT
provide attractive semianalytical frameworks for filter
design, but are restricted to systems composed of spa-
tially separable components (either discrete circuit ele-
ments or weakly coupled resonators, respectively), while
brute-force spectrum optimization faces several numer-
ical challenges [21,22]. To design ultracompact filters,
involving strongly coupled elements and spatially over-
lapping resonances, a precise, systematic, and computa-
tionally tractable methodology is missing. In this article,
we develop such a filter-design approach by deriving a
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minimal set of explicit analytical criteria on the system
resonances, applicable to all symmetric and “antimet-
ric” [34] filters, including SFs. To derive these condi-
tions, we use the unitary and symmetric quasinormal-
mode theory (QNMT) of the scattering matrix S from
Ref. [35] to derive the required coupling coefficients of
the resonances (QNMs) to the input and output ports
in conjunction with the net background response, in
order to achieve multiple configurations for the zeros
of the S coefficients (generalizing previous work [36,
37]) and thus realize any desired SF. We apply our
procedure to computationally design microwave meta-
surfaces with several two-port configurations, realizing
filters that precisely match SFs of various orders, band-
widths, and types—especially optimal elliptic filters,
which were demonstrated only approximately in the past
[23–25,38,39].

Large-scale optimization (including a variety of inverse-
design and machine-learning algorithms) is a powerful
approach to design complex structures by optimizing thou-
sands of degrees of freedom [40,41]. However, if a filter
optimization problem is formulated directly in terms of
constraints on the transmission spectrum, it can face severe
numerical challenges [21,22]: the highly oscillatory nature
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of the transmission spectrum can trap optimizers in poor
local optima, and stringent constraints (e.g., on stop- and
passband transmission) can lead to very “stiff” optimiza-
tion problems with slow convergence. For example, these
issues forced one such effort [21] to restrict the designs to
spatially distinct resonators, as in CMT. However, when
analytical solutions to parts of the problem exist, the
numerical side of the optimization can be rendered simpler
and more robust. In particular, for filter design with given
transmission-spectrum constraints, signal-processing the-
ory analytically defines many such “optimal” standard
filters, characterized by various rational transfer functions
with specified poles and zeros [1], the latter necessary to
achieve a steep transition between the “pass” and “stop”
frequency bands. Therefore, when designing physical fil-
ters, it is advantageous to exploit these analytical solu-
tions. An exact methodology, called network synthesis,
was developed to implement these SFs in the extreme
quasistatic (subwavelength) limit, where structures can
be modeled precisely by networks of discrete elements,
as in electronic circuits [1]. In the other limit of struc-
tures spanning multiple wavelengths, the simple mapping
between coupled resonators and transfer-function poles
has made temporal CMT [31–33] a popular design tool,
especially for (high-order) optical add-drop filters [2–7],
most of which are only Chebyshev or Butterworth filters
with no transmission zeros, using a symmetric topology.
However, in the intermediate limit of physical structures
with size of the order of the wavelength or only a few
times smaller (metamaterials), no complete filter-design
methodology exists. Equivalent circuits with elements cal-
culated from analytical expressions are not accurate and
usually serve only as initial guess for trial-and-error design
[24–28]. For better accuracy, the effective element val-
ues should be obtained by fitting to the actual spectral
response [24,26,28], which is not practical for optimiza-
tion (especially for sharp spectra). Moreover, these circuits
often become overly complicated [24,30], they change for
each different structural topology [29], or, worse, they
fail to provide any adequate model (as is typically the
case in dielectric photonic structures). Therefore, network
synthesis may be useful for the intuitive choice of an
appropriate system topology but not for the calculation of
its exact parameters. CMT, on the other hand, is typically
based on weakly coupled resonators and the knowledge
of the “uncoupled” modes of the system [33], but nei-
ther of these conditions usually hold for wavelength-scale
structures with multiple strongly intercoupled or overlap-
ping resonances [42]. Still missing has been a unified,
physics-independent, set of exact conditions for the pre-
cise design of filters with multiple zeros that can be fed as
a smooth objective to optimization algorithms. Using our
QNMT of Ref. [35] (whose main results are summarized
in Sec. II), in Sec. III we derive such simple and general
rules to design SFs using eigenmode solvers. In particular,

we show that the resonant QNM fields of all lossless
reciprocal two-port systems with symmetric (S22 = S11)
or “antimetric” (S22 = −S11) [34] response couple to the
input and output ports with specific unitary ratios, whose
relative signs determine the position of the scattering zeros.
Thus, for filter design, apart from the obvious matching
of system resonant frequencies to the desired filter’s com-
plex poles, we explain that, to also obtain the desired-filter
zeros, these ratios must be enforced for the critical filter
resonances and the remaining QNMs must add up to a
required overall background response.

As an application of our theory, we design microwave
frequency selective surfaces (FSSs), which are usually
used to implement spatial (wave) filters for communi-
cation antennas, radars, radomes [10–12], lenses [43,44]
etc. FSSs typically take the form of two-dimensional peri-
odic metal-dielectric arrays exhibiting specific frequency-
dependent transmission or reflection under plane-wave
excitation. While older designs were based on wavelength-
sized unit cells (as in typical antenna design), the use
of subwavelength dimensions to form metasurfaces has
attracted much attention in the past decade due to multi-
ple advantages, such as higher unit-cell density and smaller
angular sensitivity [27,28,45]. An important design chal-
lenge in frequency-selective metasurfaces is the ability
to obtain specific high-order frequency responses using
their strongly intercoupled subwavelength resonances,
attempted usually through multilayer FSSs. Most pre-
vious efforts have been based on effective-circuit mod-
els [24–29]. The basic FSS building blocks are metallic
patches with gaps (effective capacitors C) and apertures
or loops (effective inductors L) that can be combined to
make effective LC resonators. Then, the shape, size, and
arrangement of patches and apertures in the FSS dielec-
tric and metallic sheets are designed to accomplish the
necessary circuit topology and element values for the trans-
mission desired. While such circuit models can give a
good physical intuition about the expected response of a
FSS, they are too approximate and less flexible for a pre-
cise design method (as explained above). This is why,
although particular attention has been given to the design
of elliptic filters, most previous efforts have only achieved
an approximate “quasielliptic” response [23–25,38,39]. In
Sec. IV, we first discuss the relation between QNMT and
effective-circuit models to motivate appropriate structural-
topology choices for different filters and scattering-zero
placements. Then, following our systematic filter-design
procedure, we implement polarization-preserving trans-
missive microwave metasurfaces that exhibit, for a nor-
mally incident plane wave, transmission spectra matching
SF responses of various orders, bandwidths, and types.
Notably, we demonstrate second- and third-order elliptic
filters for both bandpass and bandstop behaviors. We show
that, in some cases, even though symmetric performance
is desired, structural asymmetry should be used, while
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conversely, in cases where the ideal performance is anti-
metric, we also present approximate symmetric solutions.
Lastly, to highlight the generality of our method, we also
design metasurface SFs for different two-port configura-
tions: a reflective polarization converter [46–50] and a
diffractive “perfect anomalous reflector” [51–55]. These
have been previously demonstrated mostly at single fre-
quencies, while here we match a desired spectral response.
The designed metasurfaces are compatible with fabrica-
tion by printed-circuit board technology, and also offer
potential electrical tunability.

Details regarding the optimization setup, including
objectives and algorithm, are provided in Sec. V. Therein,
we also demonstrate the superiority of our QNMT-based
design method compared to the common approach of
brute-forcing the desired spectrum at few key frequen-
cies: for three different initial structures, our optimization
method always converged to structures matching the tar-
get spectral response, while the direct frequency-domain
optimization always failed to find a good solution.

II. S-MATRIX OF LOSSLESS RECIPROCAL
TWO-PORT SYSTEMS

We consider a linear time-independent reciprocal sys-
tem, without material absorption or gain (although these
could easily be included perturbatively [35]), coupled to
radiation only via two ports. These are used as channels
for an incoming excitation at frequency ω and outgoing
scattered waves, described by a 2 × 2 scattering matrix S
(Fig. 1). Here, we summarize some key properties of S and
its QNMT model, derived in Ref. [35], that we need in later
sections.

To begin with, for port modes whose transverse field
does not depend on frequency (such as plane waves or
dual-conductor TEM microwave modes), the scattering
matrix can typically be written as S = eiτωS′eiτω, where
S′ is a “proper” rational function corresponding to ports’
reference cross sections taken on the surface of the scat-
terer and τ is a constant diagonal matrix with real positive
elements corresponding to the propagation delay through

FIG. 1. A lossless reciprocal two-port scattering system
excited at frequency ω, with input and output amplitudes respec-
tively s±p , related to the S matrix through s− = Ss+. The system
supports high-Q quasinormal modes (QNMs) with frequencies
ωn and port-coupling ratios σn, while low-Q resonances create
an effective background response C.

the ports (see Appendix A and Sec. IV-C of Ref. [35]).
Hereafter, we always consider those unique reference cross
sections and drop the prime notation so that S is rational
and any propagation phase can be easily added in the end.

Moreover, recall (Ref. [35, Appendix E]) that (i) the
poles of S appear in pairs (ωn, −ω∗

n) due to realness
[S∗(iω) = S(−iω∗)]; (ii) the zeros of S21 = S12 can only
appear as complex quadruplets (ωo, ω∗

o , −ωo, −ω∗
o), real or

imaginary pairs (ωo, −ωo), or at ωo = 0; and (iii), for each
zero pair (ωo, −ω∗

o) of S11, (−ωo, ω∗
o) is a zero pair of S22.

These restrictions imply that Spq is a rational function of
iω with real coefficients and, in particular, that the numer-
ator of S21 is a polynomial of ω2 with real coefficients,
optionally with multiplicative iω factors.

The system poles correspond to resonant QNMs, which
can be obtained using a numerical eigensolver. The modes
with high “quality factor” Q have frequencies ωn and cou-
pling coefficients to the ports p = 1, 2 equal to Dpn, which
can be computed as an overlap surface integral between
the n-QNM field and the p-port mode at the boundary
of the scatterer, as explained in detail in Ref. [35]. Their
ratios σn = D2n/D1n do not depend on the normalization
of the QNMs (Ref. [35, Appendix D]). Moreover, any
system low-Q resonances {ωC

n , σ C
n } can admit a simplified

description in terms of an effective “background” response
between the two ports, quantified by a background scat-
tering matrix C [35]. When these background QNMs have
Q → 0, they give a frequency-independent unitary sym-
metric C. In this case, our formulation from Ref. [35]
shows that enforcing energy conservation (unitary S) gives

S(ω) = S̄(ω)C,

S̄{ωn,σn}(ω) = I +
N∑

n=1

S̄(n)

iω − iωn
,

S̄(n)
pq = σpn

N∑

l=1

M−1
nl σ ∗

ql,

Mnl = 1 + σlσ
∗
n

iωl − iω∗
n

,
(

σ1n = 1
σ2n = σn

)
, (1)

where σn are further fine-tuned from the computed values
using a simple constrained optimization, in order to also
satisfy the reciprocity condition (symmetric S)

[S̄(n)C]21 = [S̄(n)C]12. (2)

The matrix C itself can be computed as C = −S̄{ωC
n ,σC

n }.
In practice, the background Qs are small but nonzero, so
C(ω) is slowly varying but not constant; nevertheless, Eqs.
(1) provide a good approximation for S. The distinction
between high- and low-Q modes is, in fact, somewhat arbi-
trary and based mainly on computational convenience. In
the limit where one includes all modes in S̄, then C = −I .
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It can be easily shown [35] that Eqs. (1) define
a one-to-one mapping {ωn, σn} ↔ S̄(ω) and that, for a
constant γ = ±1 (extended to any complex γ = eiϕ in
Sec. III D),

S̄11{ωn,σn/γ } = S̄11{ωn,σn}, S̄12{ωn,σn/γ } = γ S̄12{ωn,σn},

S̄21{ωn,σn/γ } = S̄21{ωn,σn}/γ , S̄22{ωn,σn/γ } = S̄22{ωn,σn},
(3)

and, by swapping ports 1 ↔ 2,

S̄11{ωn,σn} = S̄22{ωn,1/σn}, S̄21{ωn,σn} = S̄12{ωn,1/σn}. (4)

III. QNMT-DERIVED ANALYTICAL CRITERIA
FOR FILTER DESIGN

Our goal is to design physical two-port systems with
multiresonance network-synthesis filter responses, specif-
ically, N th-order bandpass and bandstop filters of a finite
bandwidth, which are given as rational functions of fre-
quency H(ω) with specified 2N complex poles [appearing
as N pairs (ωn, −ω∗

n)], 2N zeros (abiding by the restric-
tions of the previous section), and an overall constant. In
the case of the standard-filter (SF) approximations, these
are given through “textbook” analytical expressions [1].

It is obvious that the complex resonant frequencies ωn of
the physical system must match the complex poles of the
desired filter. In this work, we show how to also enforce the
desired zeros in the system response, by deriving the cor-
responding σn coefficients and the matrix C. Specifically,
|C21| must match the desired filter background transmis-
sion and then, for exact SFs, we find that the ratios of
couplings of the QNMs’ fields to the two ports must be
σn = ±1 for N odd or σn = ±i for N even, with alter-
nating signs for consecutive modes. We also explain that
good approximate solutions can be obtained, if an over-
all common phase for all σn is allowed, according to Eqs.
(11)–(14) below.

A. Symmetric and antimetric filters

We explained that, for a general lossless reciprocal two-
port system, the zeros of S11 and S22 are conjugates of each
other, but they do not necessarily coincide. In this article,
we are interested in the special cases of filters where they
do coincide, so that these zeros can only appear as complex
quadruplets (ωo, ω∗

o , −ωo, −ω∗
o), real or imaginary pairs

(ωo, −ωo), or at ωo = 0. Their numerator is then also (as
is always true for S21) a polynomial of ω2 with real coef-
ficients, optionally with multiplicative iω factors. These
cases include, in particular, common practical amplitude
filters, for which all zeros of reflection (S11 and S22), corre-
sponding to full transmission, lie on the real frequency axis
or at infinity. To satisfy realness [S∗(iω) = S(−iω∗)], this
class of filters is collectively described by the condition
S22 = ±S11, namely they are either symmetric or “anti-
metric” [34,56]. Energy conservation and reciprocity then

force
√

γ S11S∗
21 to be purely imaginary for γ ≡ S22/S11 =

±1, corresponding to an odd (+) or even (−) number of iω
factors in the numerator of S11 or S21.

The most important subclass comprises the SF approxi-
mations of the ideal rectangular filter [1]: Butterworth (flat
passband and stopband), Chebyshev (equiripple passband,
flat stopband), inverse Chebyshev (equiripple stopband,
flat passband), and elliptic (equiripple passband and stop-
band) (see Fig. 4 in Sec. IV A 2). For an N th-order
Butterworth or Chebyshev transmission bandpass filter, S21
has N zeros at ω = 0 (N iω factors in the numerator) and
N zeros at ω → ∞ (2N zeros total). For N th-order inverse
Chebyshev or elliptic filters, which have zeros at finite
real frequencies, S21 still has one zero at ω = 0 and one
at ω → ∞ for N odd, while all 2N zeros are finite for N
even (no iω factors). For a transmission bandstop filter, the
same observations hold instead for S11. In all SF cases, we
conclude that S11S∗

21 is purely imaginary (γ = 1) if N is
odd, and purely real (γ = −1) if N is even.

B. Conditions on C and σn

A partial-fraction expansion of the desired network-
synthesis symmetric or antimetric filter expresses H(ω)

in terms of the complex poles, their residues, and a direct
term t (which gives the limiting response at high frequen-
cies according to the filter’s type). For an actual physical
system, the S = S̄C formulation of Eq. (1) assumes that
C is approximately constant over the finite bandwidth of
interest, where C can generally be complex. Far from the
high-Q resonances (ω 	 |ωn|), Eq. (1) then dictates that
S̄ → I and thus S → C. Therefore, for a transmission fil-
ter, one must design |C21| = t, and to also ensure that |C21|
is indeed fairly constant within the filter operational band-
width, it may often be useful to impose additional con-
straints (for example, dk|C21|/dωk ≈ 0 for k = 1, 2, . . . at
the filter center frequency ωc). The formula C = −S̄{ωC

n ,σC
n },

which is used to calculate C, can also provide design intu-
ition for the topology of the structure, where appropriate
low-Q modes are utilized to get the desired C, as we see in
practical examples later. [Note that, during structural opti-
mization, it may be difficult to find all the low-Q modes
contributing to C, when the relevant region of the com-
plex plane is polluted by other noncontributing modes,
such as diffraction branch cuts, perfectly matched layer
(PML) modes, etc. (see the examples later and Ref. [35,
Appendix F]). Thankfully, C can always also be calculated
as C = S̄−1S, where S̄ from Eq. (1) includes only the filter-
relevant high-Q modes and S is obtained via (additional)
direct simulation of the structure (with the ports referenced
at the scatterer boundary), but some numerical precautions
should be taken (see Sec. V A).]

For the class of filters of interest with S22 = γ S11 (γ =
±1), S(ω 	 |ωn|) → C means that the unitary symmetric
C also satisfies C22 = γ C11 and that

√
γ C11C∗

21 is purely
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imaginary. Now, since S̄ = SC−1, we can write

S̄ = 1
|C|

(
S11γ C11 − S21C21 −S11C21 + S21C11

S21γ C11 − γ S11C21 −S21C21 + γ S11C11

)
,

(5)

so that S̄11 = S̄22 and S̄21 = γ S̄12. Furthermore, for the
QNM parameters {ωn, σn} of this S̄, using Eqs. (3) and (4)
for the dependence of S̄ on σn,

S̄11{ωn,1/σn} = S̄22{ωn,σn} = S̄11{ωn,σn} = S̄11{ωn,σn/γ },

S̄21{ωn,1/σn} = S̄12{ωn,σn} = S̄21{ωn,σn}/γ = S̄21{ωn,σn/γ }.
(6)

The same result applies to S̄22 and S̄12, so we obtain
S̄{ωn,1/σn} = S̄{ωn,σn/γ }. From the one-to-one mapping men-
tioned earlier, we conclude that 1/σn = σn/γ . Therefore,
for a lossless reciprocal two-port system,

S22 = γ S11 ⇐⇒ σn = ±√
γ , (7)

so that all modes have σn = ±1 for a symmetric filter
(γ = 1), while σn = ±i for an antimetric filter (γ = −1).
(This generalizes the well-known CMT result for a sin-
gle resonance, where transmission reaches 1 only for equal
decay rates into the two ports [57].) Moreover, with this σn
choice, iσnC11C∗

21 is purely real.
When C is exactly constant over all frequencies (as it

is for exact SFs), it must be real, to satisfy the realness
condition. Consistently with iσnC11C∗

21 real, odd-order SFs
have σn = ±1 and C11C21 = 0, while even-order SFs have
σn = ±i.

As detailed in Appendix A, Eq. (7) can be also derived
using general arguments based on the transfer matrix.
However, the scattering-matrix QNMT we used here fur-
ther helps specify the choice of σ signs to enforce the
desired positions of S-coefficients’ zeros, as we show in
the remainder of this section.

C. Types of filters

For each mode n, the appropriate choice of sign for
σn in Eq. (7) depends on the specific filter type that
is being designed. We find the adequate choice analyti-
cally in the limit of large Q, or more specifically when
�n,l  |�n − �l| for ωn = �n − i�n. Under such a con-
dition, the matrix M is dominated by its diagonal terms
Mnn = (1 + |σn|2)/2�n, so Eq. (1) becomes

S̄pq ≈ δpq +
∑

n

�n

i(ω − �n) − �n

2σpnσ
∗
qn

1 + |σn|2 (8)

with σ1n = 1, σ2n = σn. Then, away from the resonances
(�n  |ω − �n|) and to lowest order in �n, further using
|σn| = 1 from Eq. (7), transmission is

S21 ≈ C21 − i
∑

n

�n

ω − �n
(σnC11 + C21). (9)

As the overall background transmission C21 ≈ S21(ω 	
�n) determines the filter type, we study its different cases
separately.

Case (a): C21 = 0 ⇔ |C11| = 1. This is a bandpass filter
with zero transmission at ω → ∞. From Eq. (9), we have
S21 ∝ ∑

n �nσn/(ω − �n), which, under condition Eq. (7),
is proportional to a real function that can be easily used to
determine the placement of its zeros. As an example, we
look at the simple scenario of two modes with �1 < �2
and calculate the zero at

ωo ≈ �2�1σ1 + �1�2σ2

�1σ1 + �2σ2
. (10)

One can easily confirm that, when σ1 = σ2, the zero
appears between the modes (�1 < ωo < �2), a feature
often observed in interference phenomena, such as elec-
tromagnetically induced transparency (EIT) [36,58]. When
σ1 = −σ2, it appears on the side of the mode with the
smallest loss rate (ωo < �1 if �1 < �2 and ωo > �2 if
�2 < �1), while there is no zero if �2 = �1 (explaining the
lack of transmission zeros predicted by traditional CMT
for two equal-loss coupled resonances [33] and in symmet-
ric “Fabry-Perot” systems where all the �s are the same
[31]). These points are illustrated in Fig. 2(a).

These conclusions can be extended to the scenario of
multiple high-Q modes: a real zero always occurs between
two consecutive modes with the same σn, there can only be
an even (or zero) number of real zeros between two con-
secutive modes with opposite σn, and, below the lowest
mode or above the highest mode, a zero can exist only if
there is at least one change in the σ signs. Examples of
such high-order filters are given in Appendix B.

For the SFs with no transmission at infinity, such as a
Butterworth, Chebyshev, odd-order inverse Chebyshev, or
odd-order elliptic, where the transmission zeros are always
outside the passband, it is necessary to design σn with
alternating signs, namely,

σn = ±√
γ (1, −1, 1, −1, . . .) = ±√

γ (−1)n−1. (11)

Case (b): 0 < |C21|  |C11| < 1. This is a bandpass filter
with finite small transmission at ω → ∞. From Eq. (9),
we have S21 ≈ C21 − iC11

∑
n �nσn/(ω − �n). If we let

β = C11C∗
21/|C11C21| then, from the previous discussion,

iσnβ = ±i
√

γβ = ±1. Therefore, S21 is proportional to a
real expression, whose zeros can be easily predicted, as in
the previous case. In particular, a real zero always occurs
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FIG. 2. Second-order filter responses, using QNM expansions
of the form S = S̄C, with two modes of frequencies ωn =
(0.98 − 0.01i, 1.02 − 0.005i) and coupling ratios (±σ , ±σ) in
S̄, and with unitary reciprocal C = (

iσ∗r t
t iσ r

)
, where r = √

1 − t2

and such that iσβ = −1 and C22 = σ 2C11(⇔ S22 = σ 2S11), for
different values of the real background transmission t indicated
in the plots. We use the RWA by ignoring negative-frequency
poles, so the amplitudes of S-matrix coefficients are exactly the
same for any complex σ = √

γ = eiϕ/2. A zero always occurs
between modes of the same coupling ratio (red), so filters with
no zeros between the poles require opposite signs of the ratios
(blue). Including negative-frequency poles would result in the
same qualitative behavior and only slightly change the response
away from the resonances.

between two consecutive modes of the same σn. More-
over, there is an odd number of real zeros below the lowest
mode, when iσ1β = −1, and an even (or zero) number
when iσ1β = 1, with a similar result above the highest
mode but for opposite signs of iσN β. This is simply illus-
trated in Figs. 2(b) and 2(c) for two high-Q modes and in
Appendix B for higher filter orders.

For SFs, in this case inverse Chebyshev or elliptic of
even order N (γ = −1 ⇔ β = ±1), with a total of N/2
positive-frequency transmission zeros on each side of the
passband, it is necessary to have

σn = 1
β

(−1)n−1iN−1, β = C11C∗
21

|C11C21| . (12)

Case (c): 0 < |C11|  |C21| < 1. This is a bandstop filter
with finite small reflection at ω → ∞. Similar analysis by
considering S11 dictates, for even-order inverse Chebyshev
or elliptic SFs,

σn = 1
β

(−1)n−1iN+1, β = C11C∗
21

|C11C21| . (13)

Case (d): C11 = 0 ⇔ |C21| = 1. This is a bandstop filter
with zero reflection at ω → ∞ and a SF implementation
requires again simply

σn = ±√
γ (−1)n−1. (14)

By designing σn to satisfy the appropriate condition from
Eqs. (11)–(14) according to the filter type, the pole residues
in the partial-fraction expansion of H(ω) are also matched
and thus the filter design is complete.

D. S22(ω) = eiϕS11(ω) filters

To exactly satisfy realness, we recall that negative-
frequency modes are necessary and only γ = ±1 is
allowed. However, for some systems, realness may not
be a strict condition. For example, for filters with high-Q
modes, the response can be well approximated (at positive
frequencies ω) by the well-known rotating-wave approxi-
mation (RWA) of including only positive-frequency modes
in QNMT. In this case, all previous results hold for any
complex phase factor γ = eiϕ . Therefore, in filter design,
Eqs. (11)–(14) permit σn to be tuned to the desired val-
ues up to an overall common phase factor (expressed via γ

or β = ±i/
√

γ ). Then, the resulting filters, even after also
including negative modes with their corresponding σ ∗

n to
satisfy realness, will be good approximations of SFs within
the bandwidth of interest.

As seen from Eq. (4), for σ = ±1 (γ = 1), S̄ is always a
symmetric matrix, so S = S̄C is also symmetric (reciprocal
system) if C22 = C11. Similarly, for σ = ±i (γ = −1), S
always satisfies reciprocity if C22 = −C11. However, when
γ is complex, reciprocity and realness of S = S̄C cannot be
satisfied with a constant C. Since an actual physical system
is obviously reciprocal, even when designed for complex
γ , this means that, in this case, C(ω) is necessarily non-
constant, but rather slowly varying due to other modes,
in a way that guarantees reciprocity. In other words, it is
not possible to obtain high-Q modes verifying Eq. (7) with
complex γ without additional modes proximal enough to
form a frequency dependent C(ω).

E. Geometrical symmetry

The expression σn = ±1 means that the radiative part
of the modes is even or odd, which can be easily obtained
using a structure with geometrical (e.g., mirror) symmetry
between the two ports [57]. This can explain the increase
in transmission previously observed in symmetric struc-
tures [59]. However, we will later see filter designs where
it is preferable for the structure to not be symmetric, so the
modes themselves are not even or odd, even though their
radiative far fields may in fact be (satisfying σn = ±1).

On the other hand, for γ �= 1, the mode and structure
have to be asymmetric anyway. In particular, even-order
antimetric SFs (γ = −1) can be made only from asym-
metric structures, as confirmed for example by their known
corresponding electric circuit topologies [1]. However, we
explained that good approximate filters can be obtained
with γ deviating from its optimal value by a phase fac-
tor [as long as the background C(ω) is slowly varying,
in contrast to being constant for exact SFs]. Therefore,
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approximate even-order SFs can also be designed with
γ = 1. To highlight this point, we later show implemen-
tations of such filters, using symmetric structures.

F. Summary

An N -order two-port filter, whose reflection is zero at
N real frequencies, obeys S22 = γ S11 (γ = ±1 for sym-
metric and antimetric filters) and consists only of modes
whose radiation couples to the two ports with the ratios
σn = ±√

γ . To design standard filters, these σn ratios must
alternate sign among consecutive resonances, with com-
plex frequencies matching the “textbook” filter poles [1],
and a roughly constant background scattering C, appropri-
ate for the desired filter type, must be established [Eqs.
(11)–(14)]. With other choices of complex pole values or
σn-sign orders, one can also design nonstandard filter spec-
tra (see the examples in Fig. 2 and Appendix B). Approx-
imate filters can also be designed with complex unitary γ .
Once the QNMT design objectives (constant background
transmission |C21|, eigenfrequencies ωn, and port-coupling
ratios σn) have been determined for the desired filter pro-
file, an implementing physical structure can be found using
adequate optimization or nonlinear-solver tools to force
the structure to satisfy these objectives. Details on this
optimization procedure are given in Sec. V. It is also
shown there that, for the same filter design objectives,
different optimal structures can be found with the same
desired spectral response, up to small errors arising from
other modes outside the bandwidth of interest, leading to a
nonconstant C(ω).

IV. APPLICATION TO MICROWAVE
METASURFACE FILTERS

The analytical criteria we have presented in this arti-
cle give a direct pathway to precisely design high-order
two-port filters in all kinds of wave physics (acoustics,
photonics, quantum, etc.). As a demonstration, we apply
our method to microwave metasurface filters. It is impor-
tant to clarify up front that, in all examples presented
hereafter, we do not use any topology optimization algo-
rithms to determine the structures (although our method
can be combined with those, in principle). Instead, for
each desired filter response, we choose a fixed topology
expected to give roughly qualitatively the desired spectral
shape (bandpass versus bandstop, number of resonances,
etc.) by using physical intuition, which is based on circuit-
theory principles and sometimes also on QNMT itself to
devise low-Q pole configurations generating the required
background scattering C (see, e.g., Ref. [35, Sec. IV]). The
chosen topology for each metasurface has few unknown
physical parameters (geometric feature sizes and dielec-
tric permittivities), which are then optimally identified by
simply applying a multivariable solver to the nonlinear
system of equations for the filter conditions derived in

Sec. III to precisely quantitatively match the desired SF.
This rather “traditional” approach leads to rapid computa-
tional design, as physics and analytics have already been
used to facilitate the job of the optimizer.

For comparison, all filters designed in this article have
specifications: center frequency fc = ωc/2π = 10 GHz,
passband ripple of at most 0.25 dB, and stopband attenua-
tion of at least 25 dB; so only the filter type and bandwidth
may differ. For standard filters (all except for Sec. IV A 1),
we easily calculate the desired ideal “textbook” poles
ω

opt
n via the MATLAB® [60] “Signal Processing Toolbox”

functions “butter,” “cheby1,” “cheby2,” and “ellip,” while
their corresponding σ

opt
n are given by the appropriate

expressions from Eqs. (11)–(14). All ideal-filter spectra
in Figs. 3–8 (dashed lines) are computed using Eqs. (1)
with these ideal parameters {ωopt

n , σ opt
n , Copt} (including the

corresponding negative modes).
For all microwave metasurfaces: we use a square peri-

odic lattice of period a (with its principal axes along x̂, ŷ),
the metallic material is taken as perfect electric conduc-
tor (PEC) with thickness 18 μm, and the tiny volume of
any etched out metal (e.g., inside slits) is taken simply as
air. The thickness 18 μm corresponds to 0.5 oz copper,
whose finite conductivity has at these frequencies only a
small attenuation effect, which is known to get worse as
the filter bandwidth decreases [31], as also demonstrated
in the examples later. The COMSOL Multiphysics® [61]
finite-element software is used (with mesh resolution fine
enough to ensure accuracy for the desired spectral features)
to carry out the numerical computation of the eigenmodes
{ωn, σn} during our QNMT-based design, as well as of the
“exact” frequency-domain response S(ω) for plane-wave
excitation of the final optimized structures. Specifically, for
plane-wave ports (Ep , Hp), the QNM-to-port couplings are
evaluated from the COMSOL non-normalized eigenfields
(En, Hn) as

Dpn ∝
∫

p
(E∗

p × Hn + En × H∗
p) · dS (15)

at the two (p = 1, 2) external port boundaries of the
metasurface (dS points outwards), and then σn = D2n/D1n
(independent of the QNM scaling amplitude). More
details regarding the finite-element computations (espe-
cially regarding low-Q-modes) can be found in Ref. [35,
Appendix F]. In the Supplemental Material [62], we pro-
vide tables with the calculated QNMs for every metasur-
face presented.

A. Polarization-preserving transmissive metasurfaces

In this section, the two-port metasurface filters we
design are for transmission of a normally incident plane
wave through the metasurface. We choose the period
a small enough for filter operation (centered around fc)
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below the first diffraction cutoff (fcut = c/a at normal inci-
dence), so only transmission and reflection need be con-
sidered. The metasurface topologies have planar p4mm
(90◦-rotational plus 4-mirror) symmetry, so the response
for normal incidence is independent of the polarization
ê, no cross-polarization coupling occurs, and thus indeed
only two ports are needed. In this scenario, Eq. (15) sim-
plifies to Dpn ∝ ∫

p EnedS, where Ene is the ê component
of the n-QNM electric field. To demonstrate the general-
ity of our design method, we obtain all types of bandpass
and bandstop transmission SFs with different orders and
bandwidths. In particular, we show SFs with different |C21|
values corresponding to all four cases (a)–(d) discussed
earlier, as it is instructive for the reader to understand in
each case the physical intuition for choosing the appropri-
ate metasurface topology and the required phase relation
between σn and C [Eqs. (12) and (13)].

Normal incidence is chosen here for simplicity. The
angle dependence of the designed filters’ response is
beyond the scope of this paper, which solely aims to
demonstrate the two-port design method. In principle, one
can add further constraints to also minimize the perfor-
mance drop-off away from normal incidence to achieve
angle independence or one can apply this method directly
for a nonzero angle to design a precise filter at non-normal
incidence (in which case, fixed-angle QNMs should be
used [35,63]). Still, for the sake of completeness, in
Appendix C, we show some comparative results, which
reinforce the intuition that, among different parameter sets
giving the same normal-incidence filter, metasurfaces with
smaller period a (by using high permittivities) tend to
maintain their performance at an angle better.

1. Second-order bandpass filter—circuit model

We start by studying a simple symmetric second-order
metasurface, in order to build some physical intuition on
how a particular structural topology can be modeled by an
effective circuit, to relate this circuit to the QNMT, and
to derive design guidelines for transmission-zero place-
ment. The metasurface, shown in Fig. 3(a), is formed by
two planar metallic sheets sandwiched between three uni-
form dielectric layers. A square array (with period a) of
narrow crosslike apertures is etched in each metallic sheet,
so that the centers of the crosses are the same for all pat-
terned sheets. Each aperture array creates a resonance,
which can be modeled in the subwavelength limit (a  λ)
as an effective shunt parallel LaCa (≡ 1/ω2

a) to a plane
wave incoming from free space with impedance Z. The
inductance La originates from the current flowing around
the edge of the aperture, while the capacitance Ca comes
from the opposite-charge accumulation across facing sides
of this narrow gap [see Fig. 3(a)]. The connected topology
of the metallic sheets represents a short circuit to an inci-
dent plane wave at long wavelengths (shunt La), leading to

(a)

(b)

(c)

f/10 (GHz)

FIG. 3. (a) Symmetric metasurface for a second-order band-
pass filter centered at 10 GHz with a single transmission zero,
designed for 0.25 dB passband ripple and 25 dB stopband atten-
uation (black dashed lines). (b) Equivalent circuit model. The
coupling LbCb gives the transmission zero. (c) Transmission
spectrum of two optimized symmetric structures with a zero
respectively on the left and on the right of their transmission
peaks. Parameters for left zero are a = 6 mm, w1,2/a = 0.0479,
l1,2/a = 0.846, t1,3/a = 0.493, t2/a = 0.257, ε1,3 = 1.43, ε2 =
14.51. Parameters for right zero are a = 9.34 mm, w1,2/a =
0.008 77, l1,2/a = 0.905, t1,3/a = 0.0237, t2/a = 0.0966, ε1,3 =
4.12, ε2 = 3.80.

no transmission at zero frequency. Moreover, a longitudi-
nal inductance Lb couples the apertures on the two metallic
sheets, corresponding both to first-order transmission-line
effects of the thin dielectric layer and to the direct mutual
inductance between the apertures. Finally, capacitance Cb
builds up between the two metallic sheets [see Fig. 3(a)],
which is an interesting feature that has an important con-
sequence: it leads to the emergence, in series with the
path of incident-wave propagation (longitudinally), of a
parallel-resonant LbCb, which becomes an open circuit at
the frequency ωb = 1/

√
LbCb, thus leading to a zero in the

transmission function. The final equivalent-circuit model is
given in Fig. 3(b), corresponding to a passband filter with
a finite-frequency zero.

The transmission spectrum can be computed through
S21 = 2Vout/Vin [1], and with yj = Z(1/ωLj − ωCj ) for
j = a, b we obtain

S21(ω) = 2iyb

(1 + iya)[1 + i(ya + 2yb)]
. (16)

This clearly shows transmission zeros at ±ωb, and also
at ω = 0, ω → ∞ (bandpass behavior). Denoting the loss
rates �j = 1/(2ZCj ), the denominator shows the system
poles at ±�1 − i�1 and ±�2 − i�2, where �1 = �a, �1 ≈
ωa, �2 = 1/(1/�a + 2/�b), �2 ≈ �2(ωa/�a + 2ωb/�b).
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One system resonance is identical to the single-sheet res-
onance, while the second is also affected by the intersheet
couplings: it is always narrower (�2 < �1), and �2 ≷ �1
if ωb ≷ ωa.

When ω is close to the positive resonances, the RWA
yj ≈ (ωj − ω)/�j effectively drops the negative reso-
nances. Then, a partial-fraction expansion of Eq. (16) can
be obtained:

S21(ω) ≈ i�1

ω − (�1 − i�1)
− i�2

ω − (�2 − i�2)
. (17)

This is identical to the QNMT result in Eqs. (1) with
σ = (1, −1) and C = −I .

As mentioned earlier, it is the two different values for the
decay rates �1,2 (of these two opposite-symmetry modes
with fully reflective background) that lead to a transmis-
sion zero outside the resonant peaks, which is usually
not pointed out in typical CMT models for lossless sys-
tems [33,36,64]. We saw from Eq. (10) that this zero ωb
appears on the side of the resonance with the smallest loss
rate, which is �2 in this case, so ωb < �2 < �1 = ωa ⇔
LaCa < LbCb or the opposite order. Therefore, we have a
recipe to design the zero for this metasurface, based on the
equivalent circuit elements. To translate those to physical
structural parameters, we observe that, in the quasistatic
limit, Lb ∝ t2 (see Appendix D) and Cb ∝ ε2/t2, where t2
is the small separation between the two metallic sheets and
ε2 is the dielectric constant of the separating layer. This
means that LbCb ∝ ε2, which does not depend on t2 to first
order. On the other hand, LaCa does not depend on t2 also,
but it has a weighted dependence on ε1 and ε2. The location
of the transmission zero relative to the poles then mainly
depends on the ratio of permittivities of the two dielectric
materials. In particular, a zero at a frequency below the
poles is obtained using a large ε2/ε1 > 1.

We can also use Eq. (17) to compute the full-
transmission frequencies (|S21(ωt)| = 1):

ωt = �1 + �2

2
±

√(
�1 − �2

2

)2

− �1�2. (18)

We see that there are two full-transmission maxima
between �1 and �2, as long as the eigenfrequencies are
well separated (|�1 − �2| > 2

√
�1�2).

We can now use the QNMT to design second-order
bandpass filters with a transmission zero either on the right
or on the left of the transmission peaks. These are non-
standard spectra and, in both cases, we numerically find
the two complex eigenfrequencies ω

opt
n for which Eq. (17)

gives the filter specifications stated at this section’s intro-
duction (0.25 dB passband, 25 dB stopband ripples) and a
3 dB bandwidth of 6% centered around 10 GHz. Then, we
use the multivariable nonlinear-equation solver to find the
structural parameters that will make the eigenmodes ωn of

the metasurface of Fig. 3(a) match those desired eigenfre-
quencies ω

opt
n and with port-coupling ratios σ = ±(1, −1).

Results for optimized structures are shown in Fig. 3(c). We
note that, as expected, the structure with a transmission
zero at smaller frequencies has a larger dielectric constant
for the inside layer. We also see that the shapes of the
transmission spectra deviate somewhat from the ideal fil-
ters. This is mainly due to higher-frequency resonances
that affect the scattering matrix (acting as a background C)
and make it different from the two-poles approximation of
Eq. (17), leading to slight reduction of transmission at low
frequencies and increase at higher ones.

Finally, if we wanted to design the structure using
directly the circuit model, we would need to compute the
circuit elements La,b, Ca,b corresponding to the physical
metasurface. This typically requires fitting Eq. (16) to the
actual spectral response, which is not efficient for design
optimization due to the large number of direct simula-
tions required to locate and accurately fit the sharp spectral
features. This is exacerbated by errors introduced by the
aforementioned higher-order resonances not encompassed
by the circuit model.

2. Third-order bandpass [case (a)] filters

Using the QNMT design method, as well as guidance
from the previous two-pole bandpass structure, we now
design all four SF types mentioned in Sec. III for third-
order bandpass filters. We saw that all odd-order bandpass
SFs have C21 = 0 [case (a)], so Eq. (11) requires port-
coupling coefficients with ratios σ opt ∝ (1, −1, 1) for the
three modes.

To implement these filters, we use a structure with the
same unit-cell topology as in Fig. 3(a), but with three
metallic sheets and four dielectric layers. Based on the
insight gained in Sec. IV A 1 from the effective circuit
model, we realize that each of the inside layers will cre-
ate a longitudinal parallel Lj Cj ∝ εj resonance, which will
cause a transmission zero ∝ 1/

√
εj . For the inverse Cheby-

shev and elliptic filters, two distinct zeros are required.
Therefore, we need different dielectric constants εj for the
inside layers. This means that the physical structure for
these filter types must not be symmetric, so their modes
are not even or odd, even if their radiative tails are [σ =
±(1, −1, 1)]. On the other hand, Butterworth and Cheby-
shev filters do not have real zeros, so there we can choose
a symmetric structure, which simplifies the optimization
problem, as only eigenfrequencies need to be matched (in
the correct order of modal symmetry). However, for these
“zeroless” SFs, the challenge with the chosen metasurface
topology is to push away from our bandwidth the unavoid-
able zero that will arise from the inside layers. The simplest
way to accomplish this is to look for solutions where these
layers are thick enough that the higher-order dependence
of the longitudinal parallel Lj Cj on tj moves the zero to
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sufficiently high frequencies. Different topologies could
also be devised that eliminate either the mutual inductance
or capacitance between sheets.

Again, for each filter, by optimizing the structural topol-
ogy, we force its three complex resonant frequencies ωn
and their corresponding σn to match the desired values
{ωopt

n , σ opt
n }. Transmissions of the optimized metasurfaces

that implement the four filter types with approximately
5%–6% 3 dB bandwidth are shown in Fig. 4(a), while

(a)

(b)

f/10 (GHz)

Ideal filter
Metasurface (perfect metal)
Metasurface (copper)

Butterworth
Chebyshev
Inv. Chebyshev
Elliptic

0.0

FIG. 4. Optimized third-order bandpass filters (a) of different
types with the same bandwidth and (b) elliptic only for differ-
ent bandwidths. We use the same structure as in Fig. 3 but with
three metallic sheets and four dielectric layers. Physical parame-
ters and 3 dB bandwidths are provided in Table I. We note good
agreement of lossless structures (solid lines) with ideal filters
(dashed lines), except for small deviations mainly due to effects
from high-order modes. Copper losses (dotted line) reduce peak
transmission while preserving the filter’s shape.

in Fig. 4(b) only for elliptic filters with varying band-
width (approximately 2%–10%). We note good agree-
ment with the ideal filters, except for small discrepancies
again due to effects from higher-order modes and to small
errors in the values of optimized resonances. Note that,
indeed, Butterworth and Chebyshev filters require thick
inside dielectric layers to move the zero away and that
smaller bandwidths need higher εj to increase the modal
Qs. Moreover, we test the effect of metal (here, cop-
per) losses on the 6%-bandwidth elliptic filter and find
that it mainly just reduces the values of the transmis-
sion peaks (only by approximately 0.5 dB at 10 GHz
operation).

3. Third-order elliptic bandstop [case (d)] filter

In order to design a third-order bandstop filter, we now
need to achieve a full-transmission background |C21| =
1 [case (d)], and then Eq. (14) dictates again three
QNMs with σ opt ∝ (1, −1, 1). As reviewed in Sec. II, the
background-C design can generally be understood using
the system low-Q modes and, in particular, a fully trans-
missive C can be achieved by a mode with infinite radiative
rate, which effectively models free space [35]. Thus, as
expected, we need a physical structure with a very small
effective index (about 1), while still able to support the
required high-Q resonances. Moreover, since we want full
transmission at zero frequency, the metallic components
should now not have a fully connected topology. There-
fore, relying on the principle of duality, we choose, in place
of each metallic sheet with cross apertures, an array of
nonconnected thin metallic crosses. These are supported
by dielectric crosses, also nonconnected to minimize the
total effective index. The structure is shown as an inset in
Fig. 5(a). Its effective circuit model now sees each array
of crosses as a shunt series-LC resonance, where L is the
inductance of the cross wires and C is the capacitance
across adjacent crosses within each array [see Fig. 5(a)].
Then, the couplings between arrays are effectively longitu-
dinal parallel LC, where C is the capacitance across facing
(concentric) crosses and L is the first-order transmission-
line model of propagation through free space, but also
includes the small contribution (a large in-parallel value;
see Appendix D) of the mutual inductance between fac-
ing crosses. This circuit can implement the desired SF,
where each shunt series LC or longitudinal parallel LC
can directly impose one of the required three distinct
transmission zeros.

An example of an optimized structure with a third-order
elliptic bandstop response of 11.7% 3 dB bandwidth is
shown in Fig. 5(a). We note again the very good agree-
ment compared to the ideal filter. Note that, in duality to
the passband filter, the permittivity of one inside dielectric
turns out to be smaller than the outside layers.
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(a) (b) (c)

f/10 (GHz) f/10 (GHz) f/10 (GHz)

Ideal filter

Metasurface (PEC)

Metasurface (copper)

C background

0.90

FIG. 5. (a) Third-order elliptic bandstop filter. The structure has three metallic-cross arrays and four dielectric layers
with parameters: a = 17.05 mm, h/a = 0.03, d/a = 0.619, w/a = (1.53, 3.73, 1.61) × 10−3, l/a = (0.558, 0.589, 0.524), t/a =
(0.166, 0.358, 0.441, 0.183), ε = (4.76, 3.22, 4.05, 4.50). (b) Second-order elliptic bandpass filter. The symmetric structure has two
metallic sheets and three dielectric layers with parameters: a = 17.571 mm, h/a = 0.456, w1,2/a = 6.08 × 10−3, l1,2/a = 0.4355,
t1,3/a = 0.3072, t2/a = 0.3169, ε1,3 = 3.82, ε2 = 1.893. (c) Second-order elliptic bandstop filter. The symmetric structure has two
metallic-cross arrays and three dielectric layers with parameters: a = 18.66 mm, h/a = 0.181, w1,2/a = 2.74 × 10−3, l1,2/a = 0.514,
t1,3/a = 0.204, t2/a = 0.332, ε1,3 = 1.60, ε2 = 3.10. All filters satisfy quite well the marked requirements (black dashed lines) and
agree with the ideal filters.

4. Second-order elliptic bandpass [case (b)] and
bandstop [case (c)] filters

To complete our set of design examples, we now demon-
strate second-order elliptic bandpass and bandstop meta-
surface filters. In this case, we need to design a specific
nontrivial background C, in particular, C21 must be roughly
constant within the bandwidth of interest and its amplitude
set respectively to the desired stopband minimum atten-
uation value (−25 dB) [case (b)] or passband maximum
ripple value (−0.25 dB) [case (c)]. Furthermore, the coef-
ficients σn should respectively satisfy Eq. (12) or (13). As
discussed in Sec. III, for even-order SFs, γ = −1 and C
is a real constant matrix, so β ≡ C11C∗

21/|C11C21| = ±1
and σ

opt
n = ±i, which corresponds to asymmetric struc-

tures, such as the standard circuit topologies of even-order
SFs. However, we explained that approximate solutions
with a different unitary γ are possible (using the RWA) and
here we present symmetric structures (γ = 1) exhibiting a
second-order elliptic filter response within the bandwidth
of interest. Since symmetry guarantees σn = ±1, Eqs. (12)
and (13) become design objectives for β, which must
respectively match βopt = ±i/σ1.

For the bandpass filter (with two transmission zeros),
we use as a starting point for the structural topology that
from Fig. 3(a) corresponding to a second-order bandpass
filter with only one zero. There, the large metallic sheets

led to C21 = 0. In order to increase |C21| to the small
required −25 dB around the filter center frequency ωc,
we open holes through the entire metasurface, as shown in
Fig. 5(b), so that some of the incident wave will directly go
through without coupling to the high-Q resonances of the
crosses. Excluding those two high-Q modes, using QNMT,
we calculate C = −S̄{ωC

n ,σC
n }, and it turns out that even-odd

pairs of almost degenerate low-Q modes below ωc together
with higher-order modes lead to a background with a flat
small |C21| and constant β over a fairly large frequency
range (see the modes in the Supplemental Material [62]).
[Traditionally, one would approximate C by simulating an
effective background structure (e.g., where the cross aper-
tures that cause the high-Q resonances are closed), but the
result is inaccurate (−19 dB instead of −25 dB).] The opti-
mization then consists of enforcing the values of the two
complex eigenfrequencies, |C21(ωc)| = −25 dB and, from
Eq. (12), β(ωc) = i/σ1. The transmission of the designed
structure is shown in Fig. 5(b) and agrees very well with
the SF spectrum of 1.1% 3 dB bandwidth. It turns out that
the modal symmetry is σ = (−1, 1), so β(ωc) = −i. Note
that, since each metallic sheet is still connected (in a topo-
logical sense), the transmission at very long wavelengths
will still go to zero.

For the second-order bandstop elliptic filter, we use as
a starting point the structural topology from Fig. 5(a) for
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the third-order bandstop filter, but with two metallic-cross
arrays sandwiched between three dielectric layers. There,
the effective refractive index of the entire metasurface is
designed small to get |C21(ωc)| ≈ 1. In order to decrease
|C21| to the required −0.25 dB, we connect the dielec-
tric crosses, as shown in Fig. 5(c), to reflect back some
of the incident wave. In QNMT terms, an averaging over
the metasurface leads to an effective slab of low refractive
index, which supports equispaced “Fabry-Perot” low-Q
modes ωC

n = n�C − i�C [31]; the “Fabry-Perot” transmis-
sion hits |C21| = 1 at �C

n , but is less than 1 and flat between
modes [n�C, (n + 1)�C], with roughly constant β ≈ i if
n is even (and β ≈ −i if n is odd). For this structure,
it turns out that these modes ωC

n have such a large �C
n

(see the modes in the Supplemental Material [62]) that
it is difficult to accurately find all higher-n modes still
contributing to C(ωc), as the relevant region of the com-
plex plane is polluted by the branch cut associated with a
higher-order diffraction port. Therefore, we instead calcu-
late it indirectly from C(ωc) = S̄−1(ωc)S(ωc), as explained
in Sec. III B. [Again, the traditional method of an effective
background structure (removing the metallic crosses) gives
a noticeably inaccurate estimate of C (−0.11 dB instead
of −0.25 dB).] The two high-Q modes have symmetry
σ = (−1, 1), consistent with β(ωc) = i from Eq. (13), and
the optimized final structure has transmission shown in
Fig. 5(c), matching precisely an elliptic bandstop SF of
10.3% 3 dB bandwidth.

B. Polarization-converting reflective metasurfaces

To demonstrate different port configurations, we now
examine plane-wave normal incidence on microwave
metasurfaces without planar p4mm symmetry, so the two
polarizations couple. To maintain the number of ports at
two, which is the scenario of applicability of our design
criteria, we consider metasurfaces that still have small
enough period a to avoid diffraction (fc < fcut = c/a), but
now also have a full metallic backing. In this way, a plane
wave of one polarization (port x̂) can only be reflected,
either onto its own polarization or onto the other polariza-
tion (port ŷ). Note that, although a full x̂ → ŷ polarization
conversion may seem like a 90◦ rotation, this is in fact
merely a “polarization reflection” across a diagonal x̂ ± ŷ
plane, since reciprocity prevents having an actual 90◦ rota-
tor of any incident polarization, which would require Syx =
−Sxy . For example, when |Sxy | = 1, an incident wave lin-
early polarized along x̂ ± ŷ keeps the same polarization
upon reflection from the metasurface. Such metasurfaces
are called “reflective polarization converters” [46–50] and,
since they are one-sided, they have planar “wallpaper
symmetry groups” [65].

For brevity, we only consider a third-order bandpass
Chebyshev filter in polarization conversion Syx. Namely,
an incident plane-wave wide-spectrum pulse will be

PEC

Ideal filter
Metasurface (PEC)
Metasurface (copper)

f/10 (GHz)

FIG. 6. Polarization-converting reflective metasurface with
third-order Chebyshev filter response. The symmetric (across
the x̂ ± ŷ planes) structure has two metallic sheets and two
dielectric layers, on top of a back reflector, with parame-
ters: a = 8.138 mm, w1,3/a = 0.1024, w2/a = 6.035 × 10−3,
l1,3/a = 0.7807, l2/a = 0.6783, t1/a = 0.5142, t2/a = 0.0556,
ε1 = 7.492, ε2 = 7.789.

reflected from the metasurface, keeping the same polariza-
tion in the stopband, but having its polarization “reflected”
with respect to the x̂ + ŷ axis in the passband. For third-
order bandpass, we need |Cyx| = 0 and three resonances,
while the Chebyshev shape can be implemented most
simply with a symmetric structure with an x̂ + ŷ symme-
try plane [so σ = ±(1, −1, 1) automatically, where σn =
Dyn/Dxn = ∫

EnydS/
∫

EnxdS, calculated at the front face
of the metasurface]. Using intuition from our transmis-
sive third-order bandpass topologies of Fig. 4, we need
slit apertures on metallic sheets, where ports (polariza-
tions) x̂ and ŷ couple respectively only to the resonances
of the first and third slits, which are only cross-coupled via
the second slit. This is accomplished by the metasurface
shown at the inset of Fig. 6, respecting both x̂ ± ŷ symme-
try planes: a symmetric-cross aperture on a front metallic
sheet provides two resonances without mixing the polar-
izations and an additional diagonal slit on a second metallic
sheet (between the front sheet and the perfect metal reflec-
tor) is the only element that breaks the wallpaper symmetry
group p4mm (90◦ rotational plus 4 mirrors) down to a
c2mm (180◦, including rotation centers off 2 mirrors) [65],
so it couples the two front slit resonances.

By optimizing over the structural parameters, we find
a set of slit dimensions and dielectric layers’ thicknesses
and permittivities that forces the QNMs of the structure to
match the poles of a 6.3% 3-dB-bandwidth Chebyshev SF.
As seen in Fig. 6, the exact frequency domain simulation
gives a spectral response for polarization conversion upon
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reflection that matches remarkably the desired Chebyshev
shape.

C. Diffractive reflective metasurfaces

As our last application, we consider yet another meta-
surface two-port configuration. A metal back reflector is
again present, but the plane wave now has a frequency
c/2a < f < c/a and is incident (with the wave vector in
the �Xx direction of the kxky Brillouin zone) at an angle
θ > arcsin(c/af − 1), so that the −1 diffracted beam
appears at the angle θ−1 = arcsin(sinθ − c/af ), while all
other diffraction orders (spatial harmonics) are evanescent
(i.e., outside the light cone). With excitation along �Xx,
a system with y-mirror symmetry still decouples the two
polarizations; therefore, for one of them incident, only
two ports are again present (the 0, −1 beams). When full
conversion from the 0 to the −1 order is achieved, this phe-
nomenon has been called “perfect anomalous reflection”
[51–55].

In this demonstration example, we choose the inci-
dence angle θ(f ) = arcsin(c/2af ), so that the metasur-
face operation is exactly at the Brillouin-zone edge (Xx

f/10 (GHz)

FIG. 7. Diffractive reflective metasurface with second-order
elliptic filter response. The bottom center inset illustrates the
structure unit cell (a = 21.2 mm), which is stacked (from top
to bottom) as follows: square-loop metallic stripe of width
d = 0.1354a and chamfered corners to get interloop gap w =
0.004 406a; dielectric layer ε = 9.8, t = 0.068 04a; metallic
sheet with etched center cross of w1 = 0.009 184a, l1 = 0.2731a,
and corner crosses of w2 = 0.0301a, l2 = 0.259a; dielectric layer
ε = 2, t = 0.1455a; back (PEC) reflector. Within the filter band-
width, the ŷ-polarized incoming “0” (black) wave at angle θ

is “anomalously” reflected back in the same direction −θ , cor-
responding to the “−1” (red) diffracted beam. Top right inset:
among all Bloch wave vectors (black dots), only the incident “0”
wave at the Brillouin-zone X edge (kx,0 = ωsinθ/c = π/a) and
the “−1” diffracted order (at kx,−1 = −π/a) are inside the light
cone (ω/c circle in kxky plane) and are thus propagating ports.

point) at all frequencies. Choosing a fixed Bloch wave
vector k0,xy = (π/a, 0) (instead of a fixed angle) makes
the simulations much simpler and also highlights the
“anomalous” reflection in that, within the filter passband,
the obliquely incident wave is reflected back to where
it came from [θ−1(f ) = −θ(f ), called “retroreflection”].
We target θ(fc = 10 GHz) = 45◦, so we need a = 21.2
mm. The configuration of the ports and of the propagat-
ing spatial harmonics are shown as insets of Fig. 7. For
the two-port regarding the ŷ polarization, we now wish
to design for S−1,0 a second-order elliptic bandpass fil-
ter of 1.6% 3 dB bandwidth. Namely, only for a very
narrow range of frequencies does anomalous reflection
occur (back at −θ ); otherwise (in the stopband), the wave
is regularly reflected (at θ ). Here, Eq. (15) gives σn =
D−1n/D0n = ∫

Enye−iπx/adS/
∫

Enyeiπx/adS. The x̂-mirror
symmetry ensures that σ = ±(1, −1) for the two high-Q
resonances, so we have to achieve the necessary |C−1,0| =
−25 dB with βopt = ∓i, from Eq. (12). We first design this
slowly varying (softly diffracting) C with a lattice of metal-
lic stripes, disconnected at the corners by narrow slits to
form square loops with chamfered corners and placed on
top of a metal-backed dielectric layer. We roughly optimize
parameters to get a quite flat |C−1,0| ≈ −25 dB around fc
and β = +i (so we need σ1 = −1). Then, on the second
metallic sheet, we open two coplanar arrays of dissim-
ilar slits and add a final PEC-backed dielectric layer to
form the final (p4mm-wallpaper-symmetry) metasurface
(see the inset of Fig. 7). The parameters are then optimized
(using C = S̄−1S, since the diffraction branch cuts pollute
the low-Q region of the complex plane) to give resonances
at {ωn, σn = (−1, 1)}. We get a diffraction spectrum, which
once again matches the desired filter response (Fig. 7). We
also show the response of the designed structure at a fixed
angle θ = 45◦ (green curve) and we see that it is almost
identical to that at fixed kx.

It should be clear that one can also design such “perfect
anomalous reflection” filters away from Xx for a different
pair of incidence and diffraction angles.

D. Fabrication and tunability

All the metasurface filters that we have presented are
based on a layered topology with metallic sheets sand-
wiched between dielectric layers. This layered form is
chosen because it has the great advantage of allowing easy
fabrication. Especially in the cases where patterning is only
on the metallic sheets, these metasurfaces can be manu-
factured even with widespread printed-circuit board (PCB)
techniques. In fact, all designed SFs presented in this arti-
cle use dielectrics with permittivities less than 11.2, which
is roughly the upper limit for low-loss (typically Al2O3-
based, tanδ � 0.0025) materials compatible with PCBs.
Furthermore, the clear separation between metallic sheets
allows them to be connected to separate electrodes, where
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voltage can be applied to potentially tune the permittivity
of the intermediate dielectrics, if those are chosen to be
tunable materials (liquid crystals, ferroelectrics, etc.) [66].
Previous attempts at elliptic filters have usually employed
topologies with shunt metal paths connecting different
metal sections within the metasurface, which hinders both
these benefits [25,38,39].

V. DESIGN OPTIMIZATION

Device inverse design via optimization is widely
accepted to be a challenging task. All possible meth-
ods face difficulties, such as objective functions with a
plethora of local optima or with bad behavior (e.g., non-
analyticity), slow convergence, violation of constraints,
etc. Therefore, to find an appropriate structural topol-
ogy and a “good” optimal solution, it may often take a
few attempts, including trying different optimization algo-
rithms and settings, several (random or intuition-guided)
initial structures, etc. Similarly, the QNMT-based design
method we introduced in this article does not lead to triv-
ial optimization problems. To accelerate the solution of our
microwave metasurface SF designs in the previous section,
we employed physical intuition (e.g., from circuit theory)
to choose the topology and we performed few prelimi-
nary computations to determine an arbitrary but reasonable
initial structural-parameter set for optimization (e.g., to
ensure that the lowest-order slit resonances were used).
Here, we present more details regarding our optimization
(root-finding) procedure and demonstrate with compara-
tive examples that, for strongly coupled wavelength-sized
systems, our QNMT analytical design criteria can be more
effective than a direct approach of brute-force optimizing
the desired spectral response at a finite set of key fre-
quencies. In particular, we show an example where, using
different initial structural-parameter sets for the same fil-
ter design objective, our method leads to different optimal
structures with the same (up to small deviations) desired
spectral response within the bandwidth of interest, while
the brute-force approach fails to converge to the desired
response.

A. Optimization objectives and settings

The analytical design criteria derived in Sec. III can
be enforced using a root-finding problem to set the QNM
parameters ωn ≡ �n − i�n, σn, and background C (if
needed) to the required values ω

opt
n ≡ �

opt
n − i�opt

n , σ
opt
n

[from Eqs. (7) with necessary sign order], and Copt. To pre-
cisely match the desired spectrum, the resonant frequencies
must converge to their target values in the complex plane
with an accuracy of the order of their linewidths, so
we rescale our complex-frequency errors as δω = {(ωn −
ω

opt
n )/�

opt
n } → 0. (Note, however, that often the rates �n

have a slower dependence on structural parameters than
the real frequencies �n, so, in the first optimization steps,

it might be appropriate to use smaller error weights for
the δ�.) When a geometric scaling law can be used (e.g.,
for Maxwell’s equations) and no dimension must be fixed
to a specific value, one can eliminate one real-frequency
objective �o → �

opt
o by multiplying, after each iteration,

all dimensions with �o/�
opt
o or the average < �n/�

opt
n >.

For an N th-order system, this leads to a system of 2N − 1
real equations for {�n, �n}.

When the structure is symmetric with respect to the two
ports, so that σn = ±1 automatically, it is often advan-
tageous to order the modes according to their desired
symmetry order before computing the frequency errors.
When there is no symmetry, since an overall phase fac-
tor is allowed for all σ

opt
n , we extract the phase σl/|σl| ≡

eiχl for some l and enforce only σn,l ≡ σne−iχl → σ
opt
n,l ≡

σ
opt
n /σ

opt
l = ±1 (for n = l, this is simply |σl| → 1). Dur-

ing optimization, potential modal-frequency crossings can
be problematic, especially when numerically calculating
derivatives, so the modes should be tracked, for example,
using their σn,l values. The errors δσ → 0 can be formed
in many different ways, but |δσ | should ideally be invariant
under port swaps σ → 1/σ ; for example, one can choose
δσ = (σn,l + 1/σn,l)/2 − σ

opt
n,l [which one could optionally

further multiply by a factor (σn,l − σ
opt
n,l )/(σn,l + σ

opt
n,l ) to

maximize the error for the wrong σn,l sign]. Note that,
due to the reciprocity condition, Eq. (2), the real and
imaginary parts of σn are not completely independent,
so there may be ways to reduce the number of target
equations.

In the cases where a nonzero |Copt
21 | or |Copt

11 | is required
[e.g., Eq. (12) or (13)], a phase condition of the form
iσlβ = ±1 must also be satisfied. Since phase χl was
removed from all σn, the C requirements can be written as a
combined directive δC = ieiχlC11(ωc)C∗

21(ωc)/|Copt
11 Copt

21 | ±
1 → 0. Note that, when the structure is symmetric (χl = 0,
C11 = C22), unitarity of C immediately leads to Im{δC} =
0, so one needs to design only Re{δC} → 0. Moreover,
since C must be fairly slowly varying around the filter
center frequency ωc, one may need to impose additional
constraints. This can be done, for example, by minimizing
δC also at other frequencies in the bandwidth of interest or
some derivatives dkC(ωc)/dωk for k = 1, 2, . . .. (Note that,
when the convenient fitting formula C = S̄−1S is used,
approximation errors may lead to small oscillations of C
around the high-Q resonances close to ωc, in which case
it is better to use this formula at a few frequencies out-
side the filter bandwidth, and interpolate for the C value
and derivatives at ωc if needed. In contrast, when calcu-
lated directly from QNMT, C = −S̄{ωC

n ,σC
n } does not have

these issues and may be preferable if accurate enough.) In
some sense, our method effectively isolates the fast spec-
tral oscillations due to high-Q resonances and applies the
common brute-force method only for the slowly varying
background C.
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Our analytical QNMT formulation also allows for alter-
native objectives instead of σn and C. Equations (1) can be
used to write Spq as a rational function and then directly
compute its zeros zpq

m and an overall multiplicative factor
Apq. Those can then be used as alternative variables to be
directly set by optimization to the required values for the
ideal filter. As mentioned earlier, realness and reciprocity
require the zeros z21

m to be either real (z, −z) pairs or com-
plex (z, −z∗, −z, z∗) quadruplets (and z = 0 is matched
with a z → ∞). Therefore, for an N th-order system with
total 2N zeros, targeting only the independent degrees of
freedom gives at most N equations for Re{z21

m }, Im{z21
m }.

For example, for a third-order bandpass elliptic filter, this
means directly setting (Re{z21

1 }, Re{z21
2 }) to the two posi-

tive real elliptic zeros (while the structural topology can
often be chosen to ensure that z21

0 = 0).
To optimize the structure, we pass the error vector

(δω, δσ , δC) [or alternatively (δω, δz, δA)] into a numerical
root-finding routine. We simply use the “fsolve” function
in MATLAB [60], mostly with the Levenberg-Marquardt
algorithm, with or without a Jacobian scaling, typically
with numerical derivatives based on central differences.
The “fsolve” function does not support parameter bounds,
but we implement them using a hyperbolic-tangent map-
ping. (To speed up the initial iterations, one can also
use a coarser spatial-discretization mesh, larger numerical-
derivative step sizes, and/or different weights on the error
vector.)

As a final remark, this optimization setup assumes a
rather small number of structural parameters. However,
our QNMT design criteria can, in principle, be combined
with a full topology-optimization setup with a large num-
ber of unknown parameters. Such a formulation requires
further research to maximize computational efficiency and
is beyond the scope of this paper.

B. Dependence on initial parameter sets and
comparison to brute-force optimization

In order to demonstrate the effectiveness of our
QNMT analytical criteria for optimization, we design the
third-order bandpass 6%-bandwidth elliptic response of
Fig. 4 (dashed red curve), using the same metasurface
topology of Fig. 4 (inset), but starting with three differ-
ent sets of initial parameters. The corresponding spectral
responses of the initial structures are shown with blue
curves in Fig. 8 and can be seen to deviate substantially
from the target response. Using dimensional scaling (the
fixed 18 μm  λ, a metal thickness has minimal effects,
which may only need to be addressed at the very end
of optimizations) and |C21| ≈ 0 automatically from the
connected-metal metasurface topology, we have 11 real
optimization objectives (2 δ�, 3 δ� , 3 Re{δσ }, 3 Im{δσ }).
We are indeed able in all cases to find different struc-
tural parameters (Fig. 8, red curves) with a transmission

Initial structure
QNMT optimization

Direct optimization
Ideal filter

f/10 (GHz)

FIG. 8. Different optimization solutions for a desired third-
order bandpass elliptic SF (black dashed lines). Starting with
three different initial structures (blue lines), the solutions
obtained with our QNMT method (red lines; structural param-
eters in Table I) match the SF, while local optima obtained
by directly optimizing the transmission spectrum at few key
frequencies (green lines) fail.

spectrum very close to the ideal response. The small
stopband discrepancies are due to a slowly varying C,
whose variations differ for each structure according to
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each one’s resonant content outside this range. Basically,
there are many metasurfaces with the same topology that
have almost the same spectral response at normal inci-
dence, where each one of those structures can be an
optimization solution for some initial point and optimiza-
tion settings. However, these metasurfaces have different
angular responses. In particular, structures with smaller
periods tend to be less angle dependent (Appendix C).
The optimization time is obviously highly dependent on
the initial structures, the number P of optimized structural
parameters, the optimization settings used (e.g., central-
difference derivatives lead to 2P + 1 error-vector evalu-
ations per algorithmic iteration), and the termination cri-
teria, but, to give a sense of its order of magnitude, the
three designed systems of Fig. 8 took respectively about
150, 260 (P = 12), and 300 (P = 9) evaluations (Maxwell
eigenvalue solves).

We now compare to a direct optimization approach
based on directly computing the transmission using a
frequency-domain solver. To design structures, we min-
imize the mean-square transmission error compared to
the ideal third-order bandpass elliptic response at 9 key
frequencies (3 transmission peaks, 2 passband frequen-
cies with −0.25 dB transmission, 2 transmission zeros,
and 2 stopband frequencies with −25 dB transmission).
After trying a variety of error-vector formulations and opti-
mization settings, the best obtained local optima for the
three initial structures are shown in Fig. 8 (green curves).
We see that they substantially fail to match the desired
response.

There are initial parameter sets for which neither design
method manages to converge to a solution. However, the
above comparison supports our original claim that, for
highly resonant spectra, our QNMT method achieves good
solutions for more initial parameter sets compared to brute-
force transmission optimization, which tends to converge
to poor local optima.

VI. CONCLUSIONS

We have presented a systematic method using
eigensolvers for designing symmetric or antimetric fil-
ters [such as standard filters or other useful transmis-
sion and reflection spectra (e.g., Appendix B)], especially
those with multiple finite real zeros, allowing ultracompact
two-port devices with spatially overlapping resonances
(unlike previous circuit-theory or CMT approaches). It is
based on a non-normalized QNM expansion of the system
scattering matrix S and entails identifying the necessary
background response C, the exact complex eigenfrequen-
cies ωn of these modes, and the values of the ratios
σn with which these modes must couple to the system
ports, to achieve the desired scattering frequency pro-
file. An efficient optimization procedure is then applied to

determine the structural parameters (geometry and mate-
rials) that meet these criteria. We have demonstrated
the method for microwave planar metasurface filters,
with two-port configurations involving same-polarization
transmission, cross-polarization reflection, or diffractive
reflection, for all standard amplitude-filter types (espe-
cially the most challenging, elliptic), for both bandpass
and bandstop behaviors, and for a variety of frequency
bandwidths.

Our design method is demonstrated for microwave
metasurfaces, but it can also be used for resonant sys-
tems with any qualitatively similar wave physics, such
as mechanical, acoustic, photonic, or quantum-scattering
filters. In our examples, we use fixed topologies, guided
by general physical intuition, and then apply a simple
multivariable equation solver to obtain a small set of struc-
tural parameters. In principle, our conditions can also be
combined with various large-scale topology-optimization
algorithms (where every “point” in space is a degree of
freedom) and solver methods [40]. While we provide ana-
lytical criteria for two-port scattering systems satisfying
S22(ω) = eiϕS11(ω) and we focus our examples on the sub-
set of amplitude standard filters, our design process can be
used for any desired scattering spectrum, by fitting it to
QNMT to extract the corresponding optimization objec-
tives {ωopt

n , σ opt
n , Copt}. Moreover, it should be clear that

the accurate QNMT prediction of the time delay [35] also
makes the theory applicable to design phase filters, such
as all-pass delay filters [67] (useful also for metalenses
[68]). Our approach is likely most suited to and advanta-
geous for fast-varying spectra related to sharp resonances,
but nothing really prevents its applicability to broadband
systems. This design method assumes lossless two-ports,
so it is best done ignoring all losses and is thus limited
to systems with only small absorption and weak addi-
tional radiation channels. Extension to more than two ports
should be possible, since a spectral response Spn(ω) for any
number of ports could be reduced via QNMT to a set of
required {ωopt

n , Dopt
pn , Copt}. For example, in a multiport sce-

nario where full conversion between only two ports, 1, 2, is
required, additional conditions Dpn ≈ 0 for all other ports
p �= 1, 2 might suffice. Our QNMT is more accurate for
port modes with frequency-independent transverse profiles
(our metasurfaces used plane-wave ports); however, the
design method could also be extended to most other com-
mon ports (e.g., wave guides, Gaussian beams, fixed-angle
diffracted waves), when their modal profiles have a slower
frequency variation than the desired spectral response,
potentially by approximating Dpn(ω) ≈ Dpn(�n).

ACKNOWLEDGMENTS

This work is supported in part by the U.S. Army
Research Office through the Institute for Soldier Nanotech-
nologies at MIT under Grant No. W911NF-18-2-0048, by

034018-16



FILTER DESIGN VIA QNMT. . . PHYS. REV. APPLIED 17, 034018 (2022)

the Simons Foundation collaboration on Extreme Wave
Phenomena, and by Lockheed Martin Corporation under
Grant No. RPP2016-005.

APPENDIX A: TRANSFER-MATRIX FORMALISM

For a two-port system as in Fig. 1, the (forward) transfer
T matrix is defined as

(
s+1
s−1

)
=

(
T11 T12
T21 T22

) (
s−2
s+2

)
, (A1)

and is related to the S matrix via the transformation

T = 1
S21

(
1 −S22

S11 − det(S)

)
. (A2)

In terms of the T matrix, on the real-ω axis, realness is
expressed as T∗(iω) = T(−iω) and energy conservation
as |T11|2 − |T21|2 = |T22|2 − |T12|2 = 1, T∗

11T12 = T∗
21T22,

while reciprocity holds anywhere on the complex-ω plane
and is written as det(T) = 1.

At a system complex pole ωn, there are nonzero outgo-
ing fields (s−1, s−2 �= 0) without an input (s+1 = s+2 = 0),
so T11(ωn) = 0. Since then D1n ∝ s−1 and D2n ∝ s−2, the
port-coupling ratio of the mode is σn = 1/T21(ωn) and
reciprocity further mandates T12(ωn) = −1/T21(ωn) =
−σn.

The types of filters we are interested in satisfy S22 =
γ S11, namely T12 = −γ T21. Therefore, for reciprocal such
filters, we get σ 2

n = −T12(ωn)/T21(ωn) = γ , as in Eq. (7)
of the main text. (Recall that if realness must hold then
γ = ±1.)

Inversely, consider a unitary reciprocal system where
all the modes satisfy σ 2

n = γ . We write Spq(ω) =
Apq(ω)/P(ω), where P(ω) = ∏

n(ω − ωn) includes all
the 2N poles ωn and Apq(ω) is a polynomial of
degree at most 2N , so Eq. (A2) implies that T12(ω) =
−A22(ω)/A21(ω) and T21(ω) = A11(ω)/A21(ω). At a pole,
we have T12(ωn) = −σ 2

n T21(ωn) = −γ T21(ωn), and thus
A22(ωn) − γ A11(ωn) = 0 [because A21(ωn) �= 0]. Since the
degree of A22 − γ A11 is at most 2N , we then have
A22(ω) − γ A11(ω) = αP(ω) ⇔ S22 = γ S11 + α, where α

is a constant. Now, since S is unitary, we have |S22|2 =
|γ S11 + α|2 = |S11|2 ⇔ |α|2 + 2Re[α∗γ S11(ω)] = 0 at all
real frequencies ω, leading to α = 0 and thus S22 = γ S11.

APPENDIX B: NONSTANDARD TWO-PORT
SPECTRA

While standard filters are associated with alternating σn
signs and specific “textbook” poles, other choices can still
give interesting spectra to design. QNMT allows for a
quick computation of such spectra by simply substituting
values for ωn, σn, and C. In Fig. 2, we showed possible
nonstandard S21(ω) spectra for N = 2, and we provide

(b)(a)

(d)(c)

FIG. 9. Nonstandard S21 spectra of symmetric two
ports with C = (

ir t
t ir

)
and resonances: (a) ωn =

(0.968 − 0.02i, 0.99 − 0.02i, 1.02 − 0.01i), σn = (1, −1, −1),
t = 0; (b) ωn = (0.98, 1, 1.02) − 0.005i, σn = (1, 1, 1), t2 = 0.5;
(c) ωn = (0.94, 0.95, 1.05, 1.06) − 0.02i, σn = (1, 1, −1, −1),
t = 0; (d) ωn = (0.96 − 0.01i, 0.984 − 0.004i, 1.016 −
0.004i, 1.04 − 0.01i), σn = (−1, 1, −1, 1), t2 = 0.96.

some more examples for N = 3, 4 in Fig. 9. The general
rules derived in Sec. III C still apply, so there is an odd or
even number of zeros between modes of respectively the
same or opposite σn sign and all spectra asymptote to |C21|
outside the resonances’ bandwidth.

APPENDIX C: ANGLE DEPENDENCE OF
THIRD-ORDER BANDPASS ELLIPTIC

TRANSMISSION FILTERS

We have shown four distinct physical designs for the
same third-order elliptic transmission filter with −0.25 dB
passband of 6% bandwidth and with −25 dB stopbands:
the red solid line in Fig. 4 and the three red solid lines
in Fig. 8. Although their performance is by design very
similar at normal incidence (matching the SF), they have
different responses for nonzero off-axis angle θ . In Fig. 10,
we show at θ = 15◦ along the �Xx line of the Brillouin
zone the TM-to-TM transmission, which turns out to devi-
ate more from the designed (θ = 0◦) spectrum than the
TE-to-TE transmission. (Note that, for incidence along
�Xx, TE and TM polarizations are still decoupled due to
the ŷ-mirror symmetry.)

We see that the passband is shifted to lower frequen-
cies, and higher-order modes get closer to the passband,
reducing the stopband range. However, it can be observed
that structures with smaller periodicity a, attained by using
higher-ε dielectrics, tend to better maintain their perfor-
mance. This matches common metasurface intuition, based
on the rough principle that the parallel incidence wave
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f/10 (GHz)

Ideal

FIG. 10. TM-to-TM transmission at angle θ = 15◦ for the dif-
ferent optimized structures in Figs. 4 and 8 with (about 6%
bandwidth) elliptic response at normal incidence. The angle
response deviates more as the period increases.

vector ωsinθ/c is a smaller fraction of the Brillouin zone
edge at π/a. As a conclusion, if angle independence is
important, a constrained optimization can be performed,
with our filter-design criteria as constraints and some met-
ric of this independence (e.g., flatness of resonant bands)
as an optimization objective.

APPENDIX D: INDUCTIVE COUPLING
BETWEEN CLOSELY SPACED APERTURES

For two inductors L1, L2 with mutual inductance M ,
the standard T-type coupling network with elements L1 −
M , L2 − M , and M is converted to the �-type net-
work, used in our circuit models, with element val-
ues (L1L2 − M 2)/(L2 − M ), (L1L2 − M 2)/(L1 − M ), and
(L1L2 − M 2)/M . The last element represents the longitu-
dinal inductive coupling Lb in our circuits, which becomes
small for large mutual inductance M <

√
L1L2 (and vice

versa).
When L1, L2 are aperture type, M scales linearly with

their on-axis distance t as M ≈ M0 − ξ t for ξ t  M0 [69],
so Lb ≈ L1L2/M0 − M0 + ξ t. When the two apertures are
not too dissimilar, M0 ≈ √

L1L2, so we finally get Lb ≈ ξ t
for M0(L1L2/M 2

0 − 1)  ξ t  M0. Moreover, treating the
dielectric layer as a very short transmission line, its equiv-
alent circuit model is also just an inductor with L′

b ≈ ξ ′t,
where ξ ′ is the inductance per unit length. Combining the
two sources of inductance we conclude the rough scaling
Lb ∝ t. TA
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QNMT PARAMETERS FOR STRUCTURES

Here, we provide all the QNMs computed via finite-element simulations. The computed QNM-to-CPM ratios are
indicated by σ. The modes used to calculate the background C matrix are marked in bold. Ω and Γ in the tables are
in units of ωc = 2π × 10 GHz.

We remind that good approximate solutions with complex γ = eiϕ can be found, so we allow a common phase
√
γ

for the ratios σ during optimization. Deviations of the final computed σ/
√
γ from the ideal ±1 or ±i shown below

lead to only small errors in the SF designs. For symmetric structures, all computed σ are equal to ±1 anyway. (Note
that, after the design optimization process is completed, we do not care to fine-tune σ for QNMT modeling, since in
Figs. 3-7 we only show the exact transmission spectra from direct frequency-domain simulations anyway.)

• Second-order bandpass symmetric filters of Fig. 3
Note that the zero is always on the side of the smallest Γ.

Type Zero on Left Zero on Right
Ω 0.973 1.013 0.981 1.024
Γ 0.0105 0.0234 0.0224 0.0110
σ -1 1 1 -1

• Third-order bandpass filters of Fig. 4

Type Butterworth (ϕ = 0) Chebyshev (ϕ = 0) Inverse Chebyshev (ϕ = −0.07π)
Ω 0.9774 1.0010 1.0210 0.9788 1.0009 1.0223 0.9728 0.9975 1.0254
Γ 0.0127 0.0251 0.0123 0.0079 0.0154 0.0075 0.0119 0.0341 0.0128

σ/
√
γ 1 -1 1 1 -1 1 -0.94+0.00i 1.05+0.02i -0.98+0.03i

Type Elliptic 2% (ϕ = −0.066π) Elliptic 6% (ϕ = −0.059π) Elliptic 10% (ϕ = −0.075π)
Ω 0.9885 0.9995 1.0101 0.9718 0.9987 1.0274 0.9516 0.9972 1.0504
Γ 0.0032 0.0086 0.0028 0.0076 0.0218 0.0078 0.0124 0.0392 0.0145

σ/
√
γ -1.04-0.14i 1.16+0.03i -1.10+0.17i -1.04+0.03i 0.91-0.01i -1.01-0.04i -1.04-0.15i 1.19+0.00i -1.03+0.15i

• Third-order elliptic bandstop filter of Fig. 5(a) (ϕ = −0.08π)

Ω 0.944 0.999 1.061
Γ 0.0155 0.0808 0.0159

σ/
√
γ 1.05+0.04i -1.03+0.00i 1.02-0.05i

• Second-order elliptic bandpass symmetric filter of Fig. 5(b)
The modes marked in bold lead to |C21(ωc)| = −24.9 dB and β = C11C

∗
21/|C11C21| = −i.

Ω 0.738 0.751 0.996 1.004 1.186 1.191 1.289 1.362
Γ 0.297 0.301 0.0031 0.0031 0.0012 0.011 0.0084 0.0007
σ 1 -1 -1 1 -1 1 -1 1
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https://orcid.org/0000-0002-4719-0222
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• Second-order elliptic bandstop symmetric filter of Fig. 5(c)
Note that the “Fabry-Perot” modes here have such a large Γ that higher-order such modes will still have an effect
at frequencies around ω ∼ ωc. However, they lie deep inside the diffraction zone, so they are hard to identify from
spurious modes. Therefore, as explained in the main text, we calculated more accurately C(ωc) = S̄−1(ωc)S(ωc),
with S̄(ωc) obtained from QNMT on the two high-Q (non-bold) modes and S(ωc) from a direct computation. The
optimized result is then indeed |C21(ωc)| = −0.25 dB and β = i.

Ω 0 0.956 1.044 1.111 1.462 1.483 1.896
Γ 0.853 0.0313 0.0343 0.995 0.0146 0.0011 0.956
σ 1 -1 1 -1 1 -1 1

• Third-order Chebyshev bandpass symmetric filter of Fig. 6

Ω 0.9727 0.9999 1.0272
Γ 0.00948 0.0192 0.00970
σ 1 -1 1

• Second-order elliptic bandpass symmetric filter of Fig. 7
For this diffractive structure, there are several other high- and low-Q QNMs nearby (not listed in the table), plus
branch points of the -1 and higher orders. Therefore, instead of attempting a direct QNMT computation of C, we
resort again to C = S̄−1S. Due to approximation errors, C exhibits small oscillations very close to ωc, so, instead,
we calculate it at frequencies (0.959, 0.977, 1.023, 1.041)ωc and interpolate to find |C21(ωc)| = −25.1 dB. During
optimization, we used this interpolation to also minimize d|C21(ωc)|/dω and d2|C21(ωc)|/dω2 to achieve a very slow
variation of C.

Ω 0.9941 1.0059
Γ 0.00437 0.00442
σ -1 1
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