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ABSTRACT

In this Letter, we present a rigorous method to study the stability of periodic lasing systems. In a linear model, the presence of a continuum of
modes (with arbitrarily close lasing thresholds) gives the impression that stable single-mode lasing cannot be maintained in the limit of an infi-
nite system. However, we show that nonlinear effects of the Maxwell–Bloch equations can lead to stable systems near threshold given a simple
stability condition on the sign of the laser detuning compared to the band curvature. We examine band edge (1D) and bound-in-continuum
(2D) lasing modes and validate our stability results against time-domain simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019353

Many lasers rely on resonances in periodic systems, ranging from
band edge modes of grated distributed-feedback (DFB) waveguides1,2

or photonic-crystal surface-emitting lasers (PCSELs)3–9 to more exotic
bound-in-continuum (BiC) states.10,11 In this Letter, we address a fun-
damental question for periodic lasers: does stable single-mode lasing
exist in an infinite periodic structure or does it inherently require the
boundaries of a finite structure to stabilize? A number of theoretical
works have studied lasing with periodic boundary conditions as in
Fig. 1(left) and found lasing modes,12–17 but neglected a key concern:
even if the structure and the lasing mode are periodic, stable lasing
requires that arbitrary aperiodic electromagnetic perturbations [as in
Fig. 1(right)] must decay rather than grow.18–20 At first glance, such
stability may seem unlikely: any resonance in a periodic system is part
of a continuum of resonances at different Bloch wavevectors with arbi-
trarily close lasing thresholds, and this seems to violate typical assump-
tions for stable lasing.21–23 A finite-size structure discretizes the
resonance spectrum and hence may suppress this problem, but insta-
bilities have been observed in large enough finite periodic lasers where
the resonances become very closely spaced.24 Analogous transverse
instabilities are known to occur in translation-invariant (period! 0)
lasers such as vertical-cavity surface-emitting lasers (VCSELs),25 for
which stability analysis has been performed with various assump-
tions.26,27 In fact, however, we show that single-mode lasing is possible
even in infinite periodic structures for a range of powers above

threshold, by applying a Bloch adaptation of linear-stability analysis to
the full Maxwell–Bloch equations.19,20 (Instabilities can still arise if our
criteria are violated or from effects such as disorder not considered in
this work.) We consider examples for both 1D DFB-like lasers and 2D
BiC-based lasing,10,11,28 and validate our result against brute-force
time-domain simulations.29,30 Using perturbation theory (in the
supplementary material), we also obtain a simple condition for stabil-
ity near threshold of low-loss resonances and confirm it numerically:
the sign of the laser detuning from the gain frequency should match
the sign of the band curvature at threshold.

We consider lasing systems described by the semi-classical
Maxwell–Bloch equations (with the rotating-wave approximation),
which fully include nonlinear mode-competition effects (such as spa-
tial hole-burning),31

!r"r" Eþ ¼ €P
þ þ !c€E

þ þ rc _Eþ

i _Pþ ¼ ðxa ! ic?ÞPþ þ c?E
þD

_D=ck ¼ D0 !Dþ ImðEþ' ( PþÞ;
(1)

where Eþ is the positive-frequency component of the electric field (the
physical field being given by 2Re½Eþ*), Pþ is the positive-frequency
polarization describing the transition between two atomic energy levels
(with frequency xa and linewidth c?), D is the population inversion
(with relaxation rate ck), D0 is the pump strength, !c is the cold-cavity
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real permittivity, and rc is a cold-cavity conductivity loss. Here, we are
assuming that the orientation of the atomic transition is parallel to the
electric field and have written all three fields in their natural units.19

A steady-state solution of these equations can be obtained via
steady-state ab initio lasing theory (SALT), which is exact for single-
mode lasing and approximate for multi-mode lasing with well-
separated modes.21–23 For a periodic system, we consider a Bloch-
mode steady-state solution Eþ ¼ Ekeiðk(x!xtÞ satisfying the stationary
( _D ¼ 0) SALT equation,

HkEk ¼ x2
k !c þ i

rc

xk
þ CðxkÞDk

! "
Ek; (2)

where CðxÞ ¼ c?=ðx! xa þ ic?Þ; Pk ¼ CðxkÞDkEk; Dk ¼ D0=

ð1þ jCðxkÞEkj2Þ, and Hk ¼ e!ik(xr"r" eik(x is a periodic
operator.

Given this steady-state solution, one can then apply linear-
stability analysis to the full Maxwell–Bloch equations, linearizing arbi-
trary aperiodic perturbations X ¼ Xk þ dX, for X 2 fE;P;Dg, to
determine whether perturbations dX exponentially grow (unstable) or
shrink (stable).18–20 Here, our key point is that, because the linearized
equations for the perturbations dX are periodic (for a Bloch-mode
steady state), we can apply Bloch’s theorem32 to decompose the per-
turbations themselves into Bloch-wave modes dEq, solving a separate
linear-stability eigenproblem for each wavevector q.

The well-known linear-stability analysis19 of the Maxwell–Bloch
equations (1) proceeds as follows. Linearization of (1) in dX gives

0 ¼ HkdEþ d2x !cdEþ dPð Þ þ dxrcdE;

id _P ¼ xa ! x! ic?ð ÞdPþ c? DkdEþ EkdDð Þ

d _D=ck ¼ !dDþ Im Pk ( dE' þ E'k ( dPð Þ;
; (3)

where dx ¼ ð ddt ! ixÞ. Splitting complex variables into real and imagi-
nary parts yields a set of linear equations ðC d2

dt2 þ B d
dt þ AÞ

uðx; tÞ ¼ 0,19 where u ¼ ðReðdEÞ; ImðdEÞ;ReðdPÞ; ImðdPÞ; dDÞ,
and A, B, and C are operator matrices readily obtained from (3).
Stability analysis consists of looking for solutions of the form
u ¼ ReðUertÞ, which leads to a quadratic eigenproblem,

Aþ Brþ Cr2ð ÞU ¼ 0: (4)

The sign of ReðrÞ determines the stability of the single-mode
solution.19

Since the operators A, B, and C are periodic in our case, however,
we can use Bloch’s theorem to further simplify the problem: the eigen-
functions can be chosen in the Bloch form U ¼ Uqeiq(x , where Uq is
periodic. The eigenvalues rðq;D0Þ then determine the stability: if
there exists a wavevector q so that Reðrðq;D0ÞÞ > 0, then the single-
mode solution is unstable at the pump rate D0, with exponential
growth at the wavevector k 6 q. Since (A, B, C) are real, we also have
rðq;D0Þ ¼ rð!q;D0Þ', so we need only consider one side of q within
the Brillouin zone.

We can now use this method to study a simplified model for a
DFB laser formed by a 1D photonic crystal with alternating layers of
equal thickness and dielectric constants equal to 1 and 3 (Fig. 2). We
assume a uniform conductivity loss rc ¼ 0:001xa and a two-level
gain medium with xaa=2pc ¼ 0:31 and c?a=2pc ¼ 0:008. Figure 2
shows part of the band diagram, with xa chosen near the first band
edge. For every wavevector k of the first band, we compute the pump
threshold Dt, defined as the lowest pump rate D0 that compensates the
loss and leads to a real eigenfrequency xk in (2). As expected, the
smallest Dt is obtained at the band edge k ¼ p=a of the first band,
which we, therefore, take to be the first lasing mode. However, as dis-
cussed earlier, Dt varies continuously with k and other modes are
expected to reach threshold for arbitrary close values of the pump in
the linear model.

In order to study the stability of the lasing band edge mode, we
first solve the steady-state nonlinear equation (2) at higher pump val-
ues with a Newton–Raphson solver as described in Ref. 23. We then
use the obtained steady-state solution to solve the stability eigenpro-
blem (4) for different pump values. The results are summarized in
Fig. 3. First, note that the single mode solution is stable close to thresh-
old, unlike a linear model (Fig. 2). This can be attributed to the

FIG. 2. The cold cavity is a 1D photonic crystal with uniform conductivity loss
rc ¼ 0:001xa. The two-level gain medium is characterized by xaa=2pc ¼ 0:31
and c?a=2pc ¼ 0:008. The frequency (dots) and pump (dashed lines) at the las-
ing threshold are computed for modes of the first band. The minimum pump at
threshold is obtained at the band edge ka ¼ p. In the absence of gain, the decay
rate for the band edge mode is equal to j + 5:8" 10!5ð2pc=aÞ.

FIG. 1. We study the stability of a single Bloch-periodic lasing mode under aperi-
odic perturbations. The stability eigenproblem can be solved using Bloch theorem
by writing perturbations as a general Bloch wave. The lasing mode is stable when
real parts of the eigenvalues rðqÞ are negative for all wavevectors q.
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nonlinear gain saturation, which prevents arbitrary close modes from
reaching threshold. In general, the stability of the laser depends on the
relationship between the decay rates of the three fields, c? for P, ck for
D, and j for E, the decay rate of the cavity in the absence of gain.33

When two (or more) of these decay rates become similar, we notice a
sharp reduction of D0 for the onset of instability (in this case, ck , j).

Stability can also be studied using a multimode SALT by includ-
ing the first lasing mode in the gain saturation and computing the
pump threshold for a second lasing mode as a function of k [inset of
Fig. 3(a)]. In particular, this coincides with the results from the stabil-
ity eigenproblem in the limit ck ! 0. Solving (3) for ck ! 0 is indeed
equivalent to having dD! 0 and dX being a solution to SALT equa-
tion. As can be seen in the inset of Fig. 3(a), the nonlinear gain satura-
tion pushes the threshold of the arbitrary close modes (q! 0) to a
higher pump value compared to what is expected from a linear model.
However, this multimode SALT predicts a second lasing mode that is
arbitrary close to the first lasing mode, which is outside the domain of
validity of SALT. Furthermore, the instability onset depends rather
strongly on ck, emphasizing the need for a full Maxwell–Bloch stability
analysis.

In order to check the stability of the lasing mode close to threshold
for a general system, we use perturbation theory to compute rðq;D0Þ
near ð0;DtÞ. Analytical details are shown in the supplementary
material, using methods similar to those developed in Ref. 20. In the
case of small loss, we obtain a simple approximate condition for
stability near threshold: the band curvature Reðd2xdk2 Þ and the laser
detuning (xt ! xa) should have the same sign at threshold. When
lasing at the band edge, this is equivalent to requiring xa to lie inside
the bandgap.

We now validate the results of stability analysis against finite-
difference time-domain (FDTD) simulations29,30 with a finite supercell
and periodic boundary conditions. We initialize the simulation fields
with the SALT solution plus additional noise and analyze whether the
system remains in the same steady-state at later times. Note that for a
supercell with Ncells periods, only a finite set of values for q is allowed

(¼ 2p‘=aNcells for ‘ ¼ 0;…;Ncells ! 1). Figure 3(b) shows a perfect
match between the two computations. In particular, the instability
onset for the FDTD simulations corresponds to the value of the pump
D0 for which at least one allowed q reaches the instability region
obtained from the stability eigenproblem (4). Once instability is
reached, a second lasing mode starts. This second lasing mode corre-
sponds to the first q that hits the instability region. However, the new

FIG. 3. (a) Stability region obtained from Maxwell–Bloch stability eigenproblem as a function of ck and pump strength D0. The inset shows the pump threshold of the second
lasing mode using multimode SALT (assuming that one first mode at ka ¼ p is lasing). This represents the limit ck ! 0 of the stability eigenproblem. (b) Detailed stability
map for cka=2pc ¼ 10!4 as a function of q. We compare results to FDTD simulations using a finite supercell with periodic boundary conditions (unstable in shaded regions),
initialized with the SALT solution plus ,1% noise and checking stability after ,105 optical periods. Stars show the allowed q due to the finite supercell (2p‘=aNcells). (c) Modal
intensity of lasing modes with FDTD (Ncells ¼ 50) and multimode SALT (assuming second lasing mode at q ¼ 4p=50a).

FIG. 4. The inset shows a 2D array of cylindrical rods with diameter ¼ 0:7a;
!c ¼ 2:58; rc ¼ 0:001xa, and a separation L ¼ 1:078a to a perfect mirror. Gain
inside the rods is characterized by xaa=2pc ¼ 0:625 and c?a=2pc ¼ 0:01. Three
BiCs are shown at ka ¼ 0; 0:4p; 0:8p. The minimum pump at threshold Dt is
obtained at ka ¼ 0:4p, which is the first lasing mode. In the absence of gain, the
decay rate for this mode is equal to j + 8" 10!5ð2pc=aÞ. The top inset shows a
positive band curvature at threshold.
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lasing solution is not accurately described by two-mode SALT
[Fig. 3(c)] because the small frequency difference violates the SALT
assumptions (exact in the limit ck ! 0). In particular, the inset of
Fig. 3(a) shows that the threshold of the multimode SALT (for
q ¼ 4p=50a) does not match the actual threshold for the stability
eigenproblem. As Ncells increases, the second lasing frequency becomes
arbitrary close to the first mode, requiring an ever-smaller ck for the
multimode SALT approach to be viable. On the other hand, for a fixed
Ncells, the multimode SALT approach becomes increasingly accurate
for smaller ck. The two-mode regime here also exhibits a chaotic
behavior, typical in certain classes of lasers.33

We next consider a 2D (Ez-polarized) example to study the stabil-
ity of a BiC lasing mode. The structure is a periodic line of surface
rods placed at a distance L from a perfect-metal boundary (Fig. 4,
inset), which is known to have multiple BiCs.28 BiCs are characterized
by a quality factor Q!1 in the absence of an external pump and
absorption loss, as seen in the inset. As in the previous 1D example,

we compute the pump threshold Dt at different wavevectors k and
find the lasing mode corresponding to the smallestDt. In this example,
the first lasing mode corresponds to the BiC at ka ¼ 0:4p, with Dt

+ 7" 10!3 and a lasing frequency xta=2pc + 0:65. The results of
the stability analysis are shown in Fig. 5(a) for cka=2pc ¼ 5" 10!3.
We first note that the lasing mode is stable near threshold and that
instability occurs at a higher pump value D0 [Fig. 5(b, left)]. This
matches our condition for stability near threshold (positive band cur-
vature and laser detuning). As clear from the corresponding q and
eigenfrequencies, instabilities at higher pump correspond to modes
that become active at ka ¼ 0:8p (BiC) and ka ¼ p (guided mode). A
comparison between our stability results and FDTD simulations is
shown in Fig. 5(a, inset), where we plot the Fourier transform of the
electric field at a given point outside a rod for different pump values.
The number and frequencies of lasing modes match our stability com-
putations. Finally, in order to confirm our simple stability condition,
we study the same system with a larger xa corresponding to a negative
laser detuning. As shown in Fig. 5(b, right), the lasing system is indeed
not stable for any value of pump above threshold. Such instabilities
may arise in very large systems (small q).

The method presented in this Letter gives a rigorous answer to
the fundamental question of stable lasing in infinite periodic systems
and provides practical guidance in the form of theoretical criterion for
stability. If these criteria are satisfied, the main theoretical challenges
for future work are to analyze the effects of boundaries (which we
expect are negligible for sufficiently large systems) and manufacturing
disorder (which must eventually limit single-mode lasing).

See the supplementary material for analytical details of perturba-
tion theory.
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In the main text, we showed how to apply numerical stability analysis to evaluate the stability of any lasing mode
for any given system. In this supplementary material, we obtain general analytical results for the specific question of
stability near lasing threshold.

In particular, we use perturbation theory to compute the stability eigenvalues �(q = q0 + �k, d) for small �k, where
D0 = Dt(1 + d

2) with Dt being the pump at threshold, for points q0 where �(q0, 0) = 0. We validate our semi-
analytical results against brute-force stability eigenvalues computed as in the main text, showing excellent agreement.
The perturbation theory is particularly subtle due to eigenvalue crossings that result in “critical lines” where � changes
form, and these are also reproduced in the numerical validation. The final result is a formula that determines stability
near threshold in terms of simple integrals of the threshold lasing mode. In the limit of low-loss resonances, this result
further simplifies to a criterion relating band curvature to gain detuning as mentioned in the main text.

I. PERTURBATION ANALYSIS

In all systems, we have by definition �(0, 0) = 0. For reciprocal systems, the mode at �k also reaches threshold
at Dt so that �(±2k, 0) = 0 [1]. Note that this last case does not have to considered when k and �k are separated
with lattice vectors, as for example when lasing at a band edge or at the center of the Brillouin zone. We first give a
detailed derivation in the case q0 = 0, and then present the results for q0 = ±2k.

The stability eigenproblem is given by
�
Aq + B� + C�

2
�
Uq = 0, where:

Aq =

0

BBBB@

�r
k,q ��i

k,q !
2 0 0
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k,q 0 !
2 0
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(S1)

with �r
k,q = �e

�iqxRe(⇥k)eiqx + ✏c!
2, �i

k,q = �e
�iqxIm(⇥k)eiqx + �c!, Er = Re(E) and Ei = Im(E). For brevity of

notation, we removed the subscript k from !k, Ek, Pk, Dk, but vectors still refer to the periodic part of Bloch terms.
The SALT mode can be expanded in d, as for example done in Ref. 1. In particular, we have:

! ⇡ !t + !2d
2
, E ⇡ d

aE+

�t
, |a|2 =

GD + !2H

I
, !2 = �Im

✓
GD

I

◆
/Im

✓
H

I

◆
(S2)

where E+ (resp. E�) is a solution to the linear SALT equation at threshold with Bloch vector k (resp. �k). GD, I

and H are given by:

GC =

Z
dx(✏c+i�c!t) E�·E+, GD =

Z
dxDt E�·E+, I =

Z
dxDt|E+|2E�·E+, H =

1

!
2
t �t

@

@!t

⇥
!
2
t (GC + GD�t)

⇤
.

(S3)
Note that there is an arbitrary choice for the phase of a. To simplify some computations, we take a�⇤

t to be real.

Operators Aq, B and C can then be expanded in (�k = q � q0, d):

Aq ⇡ A00 + A01d + A02d
2 + A10�k + A20�k

2
, B ⇡ B0 + B2d

2
, C = C0. (S4)

As a result, eigenvalues and eigenvectors can be expanded in the same way:

Uq ⇡
X

i,j2

Uij�k
i
d
j
, � ⇡

X

i,j2

�ij�k
i
d
j
. (S5)
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A crucial point that we confirm later, is that � is not necessarily analytical at (q0, 0) since there is a degeneracy.
So equation (S5) is not valid inside a ball around (�k, d) = (0, 0). Instead, we have di↵erent expansion coe�cients
depending on the path (�k, d).

We first consider q0 = 0. The zeroth-order stability problem is equivalent to the threshold SALT equation at k.
Because real and imaginary parts of the field are split, we have two degenerate eigenvectors vp corresponding to
�00 = 0, where:

vp =
�
Re

�
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�
, Im

�
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�
, DtRe
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�
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�
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�
, 0

�
, (S6)

for e+1,2 = E+, iE+. We also need solutions wp to the transverse problem w
t
pA00 = 0 given by:
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�
, 0
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where e�1,2 = E�, iE�.
We now have U00 = b1v1 + b2v2, where bp are to be determined by degenerate perturbation theory. As we will

see later, the coe�cients bp depend on the path (�k, d). To simplify notations, we note M̄ =
⇥
w

t
jMvp

⇤
jp

for a given

operator matrix M . The first order perturbation equations are given by:

(�k) (B0�10 + A10)U00 + A00U10 = 0 ! Ā10b = ��10B̄0b

(d) (B0�01 + A01)U00 + A00U01 = 0 ! Ā01b = ��01B̄0b.
(S8)

It is straightforward to show that Ā01 = 0, B̄0 = �Im
�
!
2
t �tHM

�
and Ā10 = iIm (LM), where M =

✓
1 i

i �1

◆
and

L = �
R

dx E� · @q⇥k+qE+ (in particular, �@q⇥k+q = 2i e
�ikxre

ikx for E = Ezz waves). We then have:
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2
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2
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◆⇤
. (S9)

Since 0 is a maximum of Re[�(�k, 0)], �01 is purely imaginary and the two eigenvalues are identical. So Ā10+�10B̄0 = 0
and b is not determined by first order equations. Note that i�10 is simply the slope of !(k) at the lasing k. We can
also see that:

U01 = �
X

bpgp +
X

clvl, U10 = �
X

bpA
�1
00 (�10B0 + A10)vp +

X
c̃lvl, (S10)

where g
5
p = 2DtRe

�
�ta

⇤e+p · E⇤
+

�
and the first fourth components of gp are zero. cl and c̃l are arbitrary complex

coe�cients that will not a↵ect our results. Note also that the fifth component of U10 is equal to zero.

The second order perturbation equations are now given by:

(�kd) �11B0U00 + (A10 + �10B0) U01 + A01U10 + A00U11 = 0

(�k2)
�
A20 + �20B0 + �

2
10C

�
U00 + (A10 + �10B0) U10 + A00U20 = 0

(d2) (A02 + �02B0) U00 + A01U01 + A00U02 = 0.

(S11)

We start by solving the three equations independently. From results of first-order perturbation we can see that
w

t
j(A10 + �10B0)U01 = 0 and w

t
jA01U10 = 0. The equation of order �kd then gives �11 = 0.

Multiplying the equation of order �k
2 by w

t
j we get:

� �20B̄0b =
�
Ā20 + �

2
10C̄ + P̄

�
b = Re (XM) b, where P = (�10B0 + A10)A

�1
00 (�10B0 + A10), (S12)

where eigenvalues are simply related to the curvature of !(k) at the lasing k (= i�20):

�20 = i
X

!
2
t �tH

or �20 = �i

✓
X

!
2
t �tH

◆⇤
, b = (1, ⌥i). (S13)
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The degeneracy is artificially due to the separation of the real and imaginary parts of the field, so X can be easily
recovered from the non-degenerate perturbation theory of !(k) in k. We obtain:

X =

Z
dx E� · ⇤E+, ⇤ = @

2
q⇥k+q � �

2
10

2
@
2
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+ Dt�(!t)

�
and @

2
q⇥k+q = �I for E = Ezz waves.

(S14)

Finally, multiplying the equation of order d
2 by w

t
j we get (using a�⇤

t = a
⇤�t):

� �02B̄0b =
�
Ā02 � Q̄

�
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w

t
jA01gp

⇤
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= Re
⇥
!
2
t �t|a|2I (M 0 + M)

⇤
and Ā02 = 0, (S15)

where M
0 =

✓
1 �i

i 1

◆
. The eigenvalues are then given by:

�02 = 0, b = (0, 1) or �02 = 2|a|2Im
✓

I

H

◆
, b = (�Im[I/H], Re[I/H]). (S16)

We see that we obtain di↵erent eigenvectors in (S13) and (S16). This means that the expansion in (S5) depends on
the path (�k, d). If d = o(�k), the expansion is determined by (S13); while it is determined by (S16) if �k = o(d). A
critical behaviour is obtained along the linse �k = ↵d for which the second order term is given by �2d

2 and the three
equations in (S11) have to be combined. In this case, the second order perturbation eigenproblem becomes:

� �2B̄0b =
⇥
↵
2Re (XM) � Q̄

⇤
b, (S17)

and the eigenvalues are given by:

�2 = Im
�
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2
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�
±
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|⌘I |2 � [Re (↵2✓ + ⌘I)]
2
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!
2
t �tH

, ⌘I = |a|2 I

H
. (S18)

Note that ✓ is simply the band curvature at threshold (!(k) ⇡ !t + i�10�k + ✓�k
2).

The presence of the square root function clearly shows the non-analyticity of �. In particular, the there is an
eigenvalue crossing for ↵

2
c = (�Re (⌘I) ± |⌘I |) /Re (✓). The stability condition (�2  0) can also be immediately

retrieved:

↵
2
s = �2Re (⌘I/✓)  0. (S19)

We can simplify the stability condition in the limit of small loss. In this case, H ⇡ 2!t

R
✏cE� · E+/�t, E� ⇡ E⇤

+
and Im (✓) ⇡ 0. The stability condition Re (⌘I) Re (✓) + Im (⌘I) Im (✓) � 0 becomes equivalent to:

Re (✓) (!t � !a) & 0. (S20)

This means that the sign of the detuning (!t � !a) should be the same as the sign of the band curvature (Re[✓]). For
example, when lasing at a bandedge, this means that !a should be inside the bandgap.

As mentioned in the beginning of the section, in the case of degenerate lasing, the previous analysis should also be
carried out at q0 = �2k (or eqivalently at 2k). (Note that we are not considering the special case of a degeneracy
that comes for a wavevector other than �k. However, this situation can be studied in a similar way by computing
a perturbation expansion of � around multiple adequate q0s.) It is easy to see that the solutions of the zeroth order
problem A�2kU00 = 0 are related to solutions of SALT at k ± 2k. Two separate cases should then be considered.

a. ka = ⇡/2 : In this case, the problems at �k and 3k are equivalent (separated by a lattice vector) and the
zeroth order problem is degenerate. The eigenvectors are given by:
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, (S21)

while solutions of the transverse problem become:
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We now have g
5
p = 2Dte

i⇡x/aRe
�
�ta

⇤
e
�i⇡x/ae�p · E⇤

+

�
and Q̄ = Re
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2
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⇤
, where:
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Z
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⇤
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Z
dx e

2i⇡x/a
Dt(E

⇤
� · E+)(E+ · E+). (S23)

We can then obtain the eigenvalues of the problem (S17) for �k = q + 2k = ↵d:

�2 = Im
�
↵
2
✓ + ⌘J

�
±
q

|⌘K |2 � [Re (↵2✓ + ⌘J)]2, ⌘J = |a|2 J

H
, ⌘K = |a|2K

H
. (S24)

The stability condition is now equivalent to:

↵
2
s = �Re
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⌘2
non-real or real negative. (S25)

b. ka 6= ⇡/2 : In this case, the problems at �k and 3k are di↵erent, and only �k has a solution. The zeroth
order problem for q0 = �2k is now not degenerate and eigenvectors are given by:

v = (1, �i, Dt�t, �iDt�t, 0)E�, w =

✓
1, i,

!
2
t �t

�?
, i

!
2
t �t

�?
, 0

◆
E+. (S26)

The dimension of our problem is now one and we have g
5 = 2Dt�ta

⇤E⇤
+ · E�, B̄0 = 2i!

2
t �tH, A20 = 2X and

Q̄ = 2!
2
t �t|a|2J . The unique eigenvalue of (S17) is now equal to:

�2 = �i(✓↵2 + ⌘J). (S27)

This simply means that there is no eigenvalue crossing and that the expansion of � does not depend on the path
(�k, d). Note that �

⇤
2 is also an eigenvalue around q0 = 2k (which is is simply due to the facts that our operators A, B

and C are real as indicated in the main text). The stability condition is immediately given by:

Im (⌘J)  0, (S28)

since we already have Im (✓)  0 (Im[!(k)] has a maximum at k). Note that this stability condition is equivalent to
having a stable lasing close to threshold for the single unit-cell problem.

Finally, some useful points to mention:

• We have ⌘I = GD/H + !2. It is also straightforward to use perturbation theory to show that !
l
2 = �GD/H

where !
l
2 is the slope (in D0/Dt � 1) of the eigenfrequency of the linear problem at the threshold without gain

saturation (!l ⇡ !t + !
l
2(D0/Dt � 1)). By definition, threshold should be reached from below the real axis, so

Im
�
!
l
2

�
� 0. Since !2 is real, we conclude that Im (⌘I) = �Im

�
!
l
2

�
 0. This means that �02  0 and that the

single unit-cell lasing problem is always stable near threshold in absence of degeneracy.

• For TM waves (E = Ezz), we have I = J . This means that Im (⌘J)  0 and that the single unit-cell lasing
problem is also stable in the degenerate case when k 6= ⇡/2. This is an analytical proof for part of the stability
result conjectured in Ref. 1. Note that k = ⇡/2 is equivalent to the condition n = 4` in Ref. 1.

• For TM waves and k 6= ⇡/2, we conclude that �2  0 when expanding around �2k. So the stability is only
determined by the expansion around 0 (�Re (⌘I/✓)  0.)

II. NUMERICAL VALIDATION

Here, we present a numerical validation of the analytical perturbation-theory results discussed in the previous
section.

Figure S1 shows results for the 1d structure studied in the main text. Figs. S2–S3 are for the same structure, but
with !a lying below the lasing band edge, outside the bandgap, leading to instability near threshold as predicted
above. In both cases, the numerical simulations show near-perfect agreement with the analytical results.

Figures S5–S4 show results for the 2d structures presented in the main text with a positive and negative laser
detuning, respectively. Again, numerical simulations are in agreement with the analytical results.
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FIG. S1. Same 1d structure in the main text. Numerical simulation (stars and dashed contour lines) are in agreement with

analytical results (solid lines). Since the lasing mode is at a bandedge, we have �10 = 0. Black line corresponds to �ka = ↵cd
and represents the line of eigenvalue crossing (transition from two real to two complex conjugate eigenvalues). ↵c ⇡ 0.018 and

↵2
s ⇡ �4.2⇥ 10

�4
.
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FIG. S2. Same 1d structure in the main text but with !aa/2⇡c = 0.306 and �?/2⇡c = 0.08. The lasing mode is still at the

band edge but the laser detuning (!t � !a) is now positive.
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FIG. S3. Same 1d structure studied in the main text but with !aa/2⇡c = 0.306 and �?/2⇡c = 0.08. Numerical simulation

(stars and dashed contour lines) are in agreement with analytical results (solid lines). Black line corresponds to �ka = ↵cd and

represents the line of eigenvalue crossing (transition from two real to two complex conjugate eigenvalues). Magenta solid line

corresponds to �k = ↵sd from analytical perturbation results and matches Re (�) = 0 from numerical simulation. ↵c ⇡ 0.022
and ↵s ⇡ 3⇥ 10

�3
.
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FIG. S4. Same 2d structure in the main text with !aa/2⇡c = 0.625 and !ta/2⇡c ⇡ 0.65. Left: q0 = 0. Right: q0 = �2k.
Contour lines (dashed) are from numerical simulation. Black solid line corresponds to �k = ↵cd from analytical perturbation

results and represents the line of eigenvalue crossing (transition of ���10�k from two real to two complex conjugate eigenvalues)

when expanding around q0 = 0. The analytical line matches results of numerical simulation. Expansion around �2k does not

show a critical line in agreement with perturbation theory (case ka 6= ⇡/2). We have ↵c ⇡ 0.05, ↵2
s ⇡ �0.018 and �10 ⇡ 0.59i

when expanding around q0 = 0 (opposite sign for i�10 when expanding around q0 = �2k).
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FIG. S5. Same 2d structure in the main text with !aa/2⇡c = 0.675. Left: q0 = 0. Right: q0 = �2k. The lasing mode is

slightly shifted to ka/2⇡ ⇡ 0.1944 but still with !ta/2⇡c ⇡ 0.65. Contour lines (dashed) are from numerical simulation. Black

solid line corresponds to �k = ↵cd and magenta solid line corresponds to �k = ↵sd from analytical perturbation results when

expanding around q0 = 0. Majenta line (analytical) matches Re (�) = 0 from numerical simulation. Expansion around �2k
does not show a critical line in agreement with perturbation theory (case ka 6= ⇡/2). We have ↵c ⇡ 0.21, ↵s ⇡ 0.088 and

�10 ⇡ 0.59i when expanding around q0 = 0 (opposite sign for i�10 when expanding around q0 = �2k).
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