
Modified Cooley-Tukey algorithms based on a
generalized DFT framework

Steven G. Johnson

Created October 1, 2003; last updated October 16, 2008

1 Introduction
The purpose of this note is to outline “new” FFT algorithms based on a “generalized”
discrete Fourier transform (GDFT) framework. These algorithms are in some sense
a generalization of Cooley-Tukey but differ in that they can break up a given twiddle
factor from Cooley-Tukey into multiple twiddle factors, subsequently recombined in a
way that changes the twiddle access pattern. In another sense, they are equivalent to
standard Cooley-Tukey, but use DIT-based twiddle factors with a DIF access pattern,
or vice versa (proof left as an exercise for the reader). Although we were originally
inspired by a polynomial-factorization framework similar to that of Bruun’s algorithm,
we present them here in a more traditional algebraic formulation that permits easier
implementation and comparison to standard Cooley-Tukey.

The basic transform that we will decompose is not the ordinary DFT, but the GDFT,
defined by:

yk =
n−1

∑
j=0

ω
(j+a)(k+b)
n x j

for some arbitrary complex numbers a and b, where ωn ≡ e−2πi/n and a = b = 0 gives
the ordinary DFT. Of course, the GDFT can be trivially computed via the DFT by pre-
multiplying the input by the b factors and post-multiplying the output by the a factors,
but we will not do that here.

2 Modified Cooley-Tukey
To compute the GDFT in the case of composite n = n1n2, we use the Cooley-Tukey
re-indexing j = j1 + j2n1 and k = k1n2 + k2. This yields the nested sum:

yk1n2+k2 = ω
(k1n2+k2)a
n

n1−1

∑
j1=0

ω
j1k1

n1
ω

j1k2
n

(
n2−1

∑
j2=0

ω
j2k2

n2
ω

(j1+ j2n1)b
n x j1+ j2n1

)
.

The ordinary Cooley-Tukey algorithm would recurse in more or less the order indicated
by the parenthesization: multiply x j by the b factors (if any) first, then do the size-
n2 DFTs, then multiply by the j1k2 twiddle factors, then do the size-n1 DFTs, then

1

multiply by the a factors (if any). For a small radix r, n1 = r gives a decimation-in-
time (DIT) algorithm and n2 = r gives a decimation-in-frequency (DIF) algorithm.

However, this decomposition can be performed in another way by making the a
and b factors a part of the recursion, splitting and recombining them with the ordinary
twiddle factors. That is, we write the nested sum above as a nested pair of GDFTs:

yk1n2+k2 =
n1−1

∑
j1=0

ω
(j1+a1)(k1+b1)
n1

(
n2−1

∑
j2=0

ω
(j2+a2)(k2+b2)
n2 x j1+ j2n1

)
,

where there are two possible choices of a1, b1, a2, and b2. One possible choice is:

a1 = a,

b1 = (k2 +b)/n2,

a2 = a/n1,

b2 = b.

Note that b1 is a function of k2. Alternatively, one can use the same a1 = a and b2 = b
as above, but choose:

b1 = b/n2,

a2 = (j1 +a)/n1,

where now a2 is a function of j1.
In both cases, a key difference from ordinary Cooley-Tukey algorithm can be achieved

from the fact that, in the nested transforms, the original a and b both appear twice. Since
the j1k2 twiddle factor is absorbed in to the new b1 or a2, this means that it will be split
into two pieces at the next stage of the recursion, instead of being multiplied in one
step as in standard Cooley-Tukey. Of course, this assumes that there is a next stage
of the recursion. That is, to be different from ordinary Cooley-Tukey, the first alter-
native requires that the size-n1 transform (which contains the twiddle via b1) be sub-
divided further, corresponding to a DIF algorithm; conversely, the second alternative
requires that the size-n2 transform (which contains the twiddle via a2) be subdivided
further, corresponding to a DIT algorithm. (Employing the first/second alternative with
DIT/DIF yields the usual DIT/DIF Cooley-Tukey algorithm.)

2.1 Modified DIT Cooley-Tukey
In the modified DIT formulation from above, applied to compute the ordinary DFT, b
is always zero. We get simply

yk1n2+k2 =
n1−1

∑
j1=0

ω
(j1+a1)k1
n1

(
n2−1

∑
j2=0

ω
(j2+a2(j1))k2
n2 x j1+ j2n1

)
,

where a1 = a and a2(j1) = (j1 +a)/n1. If the recursion is done in a depth-first fashion,
this has the same memory access pattern as the usual DIT Cooley-Tukey algorithm, but
with a striking difference in the twiddle factors: the twiddle factor multiplied by the

2

output (instead of the input) of the outer DFT is dependent only on k1 and is indepen-
dent of k2. (This may have cache benefits, since one peforms n2 butterflies with the
same set of n1 twiddle factors.) Moreover, the twiddle factor for the topmost level of
the recursion is trivial (unity), while conversely the leaf nodes of the recursion do have
twiddle factors (since they are GDFTs and not DFTs). In terms of FFTW’s codelets,
this would use nontwiddle codelets for the topmost level and DIF twiddle codelets for
subsequent levels, but with a DIT access pattern.

3 Application to Real-data FFTs
One of the more intriguing possibilities of our modified Cooley-Tukey structure is the
development of new real-data FFT algorithms. Currently, real-data FFT algorithms
based on pruning the redundant computations from the complex-data algorithm, such
as Sorensen’s or FFTW’s, have an important limitation: real-input (hermitian-output)
algorithms must be DIT, and real-output (hermitian-input) algorithms must be DIF.
Thus, for example, an out-of-place real-output FFTW must unfortunately destroy its
input array (without additional buffer space or bit-reversal passes, or in FFTW3 addi-
tional passes to re-express via DHTs). Another consequence is that certain efficient
possibilities for in-place algorithms are precluded; in particular, for complex data with
a size of the form pq2, one can combine a pair of size-q DIT and DIF steps, com-
bined with a q× q transpose, to recursively reduce the problem to a smaller in-place
transform. The modified Cooley-Tukey algorithm should lift these restrictions. For
example, for a real-output transform, one can use the naturally prunable DIF computa-
tions but in a DIT computational pattern that need not destroy the input array. Also, for
a real-input transform, one can develop a DIT-based-pruning algorithm with DIF struc-
ture and DIF-like reordering requirements, combined with the usual DIT algorithm, for
in-place computations.

3

