
 A beautiful approach: 
“Transformational optics”


[ several precursors, but generalized & popularized by Ward & Pendry (1996) ]


warp a ray of light
 …by warping space(?)


Euclidean x coordinates
 transformed x'(x) coordinates


amazing

fact:


Solutions of ordinary Euclidean Maxwell equations in x'

= transformed solutions from x 


if x' uses transformed materials ε' and μ' 
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Maxwell’s Equations


James Clerk Maxwell

1864
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Faraday:


Gauss:


E = electric field

D = displacement field

H = magnetic field / induction

B = magnetic field / flux density


sources: J = current density

              ρ = charge density


constitutive

relations:


E = D – P

H = B – M


material response to fields:

    P = polarization density

    M = magnetization density


electromagnetic fields:


constants: ε0, μ0 = vacuum permittivity/permeability = 1

                  c = vacuum speed of light = (ε0 μ0 )–1/2 = 1




Constitutive relations for 
macroscopic linear materials


P =  χe E


M = χm H


⇒
 D = (1+χe) E = ε E


B = (1+χm) H = μ H


where ε = 1+χe = electric permittivity


 
    or dielectric constant


                    µ = 1+χm = magnetic permeability


εµ = (refractive index)2




Transformation-mimicking materials


Euclidean x coordinates
 transformed x'(x) coordinates
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ε(x), μ(x)

(linear materials)
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,


J = Jacobian (Jij = ∂xi’/∂xj)


E(x), H(x)
 J–TE(x(x')), J–TH(x(x'))


(isotropic, nonmagnetic [μ=1], homogeneous materials 


 
⇒ anisotropic, magnetic, inhomogeneous materials)


[ Ward & Pendry (1996) ]




an elementary derivation

[ Kottke (2008) ]


consider

Ampére’s Law:


(index notation)


Jacobian
 chain rule
 choice of fields

E', H' in x'


×


ε'




Cloaking transformations


cloaking materials ε', µ'


diameter D


d


ambient εa, μa


ambient εa, μa


x' = x


x' ≠ x


ambient εa, μa


[ Pendry, Schurig, & Smith, Science 312, 1780 (2006) ]


perfect cloaking: d → 0


(= singular transformation J)


real space
virtual space




Example: linear, spherical transform


R2


R1
R1'


cloak materials:


= 0

at r=R1

for R1'=0


r


linear

radial scaling


[ note: no “negative index” ε, μ < 0 ]




Are these materials attainable?

Highly anisotropic, even (effectively) magnetic materials


can be fabricated by a “metamaterials” approach:


λ >> microstructure ⇒ “effective” homogeneous ε, µ = “metamaterial”


[ Soukoulis & Wegener,

Nature Photonics  (2011) ]




Simplest Metamaterial:�
“Average” of two dielectrics


λ >> a


a


effective dielectric is just some average,

subject to Weiner bounds (Aspnes, 1982)

in the large-λ limit:


    (isotropic for sufficient symmetry)
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Simplest anisotropic metamaterial:�
multilayer film in large-λ limit


λ >> a


a


key to anisotropy is differing

continuity conditions on E:


E|| continuous ⇒  ε|| = <ε> 


D⊥=εE⊥ continuous ⇒  ε⊥ = <ε–1>–1 
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 [ Not a metamaterial:�
multilayer film in λ ~ a regime ]


λ ~ a


a


e.g. Bragg reflection regime

(photonic bandgaps) for λ ~ 2a

is not completely reproduced 


by any effective ε, μ


Metamaterials are a special case

of periodic electromagnetic media


(photonic crystals)




“Exotic” metamaterials�
[ = properties very different from constituents ]�

from sub-λ metallic resonances


[ Smith et al, PRE (2005) ]


“split-ring” 

magnetic resonator


resonance

= pole in polarizability χ
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(Γ0 > 0 for causal, passive)


Problem: more exotic often


     = more absorption


Problem: metals quite lossy


    @ optical & infrared



