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1 Maxwell’s equations
The time evolution of Maxwell’s equations is governed by Ampere’s law ∇ ×H = ∂

∂t (E +

P) + J and Faraday’s Law −∇×E = ∂
∂t (H+M) +K, where E and H are the electric and

magnetic fields, P and M are the electric and magnetic polarization densities, and J and K
are the electric and magnetic current densities, respectively. (Magnetic current is the flow of
magnetic charge, which is experimentally zero, but it is convenient to include the possibility
of K 6= 0 theoretically.) It is nice to write this in the form Ĉψ = ∂

∂t (ψ + φ) + ξ, or:

∂

∂t

(
E
H

)
︸ ︷︷ ︸

ψ

=

(
∇×

−∇×

)
︸ ︷︷ ︸

Ĉ

ψ − ∂

∂t

(
P
M

)
︸ ︷︷ ︸

φ

−
(

J
K

)
︸ ︷︷ ︸

ξ

,

so that ψ is the six-component field state, φ is the six-component polarization, ξ is the six-
component current, and Ĉ is the 6×6 “curl” operator. (For these notes I am using “natural”
units in which ε0 = µ0 = 1.) Our goal in these notes is to analyze some of the key algebraic
properties of these equations, especially as they relate to time evolution and conservation
laws. The basics of electromagnetic energy can be found in standard textbooks [1], but a
more complete treatment of arbitrary dispersive materials can be found in the literature as
recently reviewed and extended by Welters [2].

1.1 The anti-Hermitian curl operator
The 6 × 6 curl operator Ĉ is anti-Hermitian (Ĉ† = −Ĉ) under the usual inner product
〈ψ,ψ′〉 =

´
E∗ ·E′+H∗ ·H′ with most boundary conditions. The key identity to derive this

is, as usual,
∇ · (a× b) = b · (∇× a)− a · (∇ · b).
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Using this, we can integrate by parts over the domain Ω:

〈ψ, Ĉψ′〉 =

ˆ
Ω

[E∗ · (∇×H′)−H∗ · (∇×E′)] dV

=

ˆ
Ω

[(∇×E)∗ ·H′ − (∇×H)∗ ·E′ −∇ · (E∗ ×H′ + E′ ×H∗)] dV

= 〈−Ĉψ, ψ′〉+

‹
∂Ω

(E∗ ×H′ + E′ ×H∗) · dA.

Hence, if we have boundary conditions such that the surface integral (
‚
∂Ω

) vanishes, then
Ĉ† = −Ĉ. This will be the case in an infinite domain for square-integrable fields (which
must decay faster than 1/|x| asymptotically), or in a finite domain for periodic boundary
conditions (where the boundary terms cancel), or in a finite domain with perfect-electric-
conductor (PEC) boundary conditions (where E is normal to the boundary on ∂Ω), or
for perfect-magnetic conductor (PMC) boundary conditions (where H is normal to the
boundary).

One consequence of this, which we use below, is that

2 Re〈ψ, Ĉψ〉 = 〈ψ, Ĉψ〉+ 〈Ĉψ, ψ〉 = 〈ψ, Ĉψ〉+ 〈ψ,−Ĉψ〉 = 0,

i.e. 〈ψ, Ĉψ〉 is purely imaginary.

1.2 The polarizations and susceptibilities in linear media
In linear medium, the polarizations φ arise from the fields ψ in a linear convolution relation

φ(t) = χ ∗ ψ|t =

ˆ +∞

−∞
χ(t− t′)ψ(t′)dt′,

where χ(t) is a 6× 6 susceptibility matrix [1, 2]. That is, the polarization is proportional to
a weighted average of the fields at different times.1 Physically, we require the material to be
causal : polarizations must come after the fields that create them, not before, which leads to
the condition that χ(t) = 0 for t < 0. As we discuss below, however, in a linear medium we
will also require passivity—the material can dissipate energy but not supply energy—and it
turns out that the assumption of passivity alone is enough to guarantee causality [2].

In the frequency domain, the Fourier transform of a convolution is a multiplication. That
is, if we denote the Fourier transforms by φ̂, χ̂, and ψ̂, then

φ̂(ω) = χ̂(ω)ψ̂(ω).

The frequency dependence of χ̂(ω) is known as material dispersion. Passivity [2], via causal-
ity [1], turns out to guarantee that χ̂(ω) is an analytic function (convergent Taylor series,

1Here, I have omitted the x dependence. Typically, we have a local medium, in which φ(t,x) depends
on only on fields ψ(t′,x) at the same point x in space, but in some cases authors also consider nonlocal
media in which φ can arise from fields at other points. Nonlocal models are only relevant in conductors at
lengthscales of a few nanometers, however, and in practice local models are almost always accurate enough
to ignore nonlocal effects.
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no poles or other singularities) in the upper-half complex-ω plane (i.e. for Imω > 0). Pas-
sivity also turns out to imply that Im[ωχ̂(ω)] = ωχ̂(ω)−ω∗χ̂(ω)†

2i � 0 (a positive-semidefinite
imaginary part) in the upper-half plane (and in practice it is positive-definite for anything
other than vacuum) [2]. Physically, the fields ψ and polarizations φ are real quantities, and
this implies that χ̂(−ω) = χ̂(ω)∗ for real ω [1]. If one adds the physical constraint that the
material must cease to respond at very high frequencies, and in particular that χ̂(ω) goes to
zero faster than 1/|ω| for large |ω|, then one obtains the famous Kramers–Kronig relations
that relate integrals of the real and imaginary parts of χ̂(ω) [1].

1.3 Dispersionless linear media
In many important cases it is possible to neglect material dispersion, in which case matters
are greatly simplified. If we have a field ψ(t) that is bandlimited—its Fourier transform ψ̂(ω)
is nonzero only in a small bandwidth around some frequency ω0 (or around ±ω0)—and in
this bandwidth χ̂ is nearly constant, then we can approximate χ̂(ω) ≈ χ̂(ω0). Furthermore,
in most physical circumstances the matrix χ̂ block-diagonalizes

χ̂(ω) =

(
ε(ω)− 1

µ(ω)− 1

)
where ε and µ are the electric permittivity and the magnetic permeability, respectively.
(Nonzero off-diagonal blocks in χ̂ are known as bi-anisotropic susceptibilities, and are very
rarely encountered—essentially unheard-of at infrared and optical frequencies.) ε and µ can
be 3 × 3 matrices in general (anisotropic materials), but in the common case of isotropic
materials they are scalars. (Furthermore, at infrared and optical frequencies, we almost
always have µ ≈ 1.)

Neglecting dispersion, therefore, and assuming non-bianisotropic media, Maxwell’s equa-
tions simplify to

∂ψ

∂t
=

(
ε−1

µ−1

)[
Ĉψ − ξ

]
= (1 + χ̂)

−1
[
Ĉψ − ξ

]
.

2 Conservation laws in lossless media
Suppose we have the simple case of lossless, dispersionless time-independent media with real
ε > 0 and µ > 0.

2.1 Conservation of energy
In that case, define

〈ψ,ψ′〉χ̂ = 〈ψ, (1 + χ̂)ψ′〉 = 〈(1 + χ̂)ψ,ψ′〉 =

ˆ
[E∗ · εE′ + H∗ · µH′] .
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This turns out to be a conserved “energy” (actually twice the physical energy in the fields,
as shown below):

∂

∂t
〈ψ,ψ〉χ̂ =

〈
(1 + χ̂)

∂ψ

∂t
, ψ

〉
+

〈
ψ, (1 + χ̂)

∂ψ

∂t

〉
=
〈
Ĉψ − ξ, ψ

〉
+
〈
ψ, Ĉψ − ξ

〉
= −2 Re〈ψ, ξ〉,

where we have used the anti-Hermitian property of Ĉ from above. Thus, if there are no
sources (ξ = 0) then 〈ψ,ψ〉χ̂ is conserved (constant in time). More generally, as we shall see
below, we can interpret 2 Re〈ψ, ξ〉 as being (proportional to) the work done on the currents
by the fields, so that if this quantity is positive then the energy 〈ψ,ψ〉χ̂ in the fields is
decreasing.

Another way of expressing this is in terms of the time-evolution operator

Ût = e(1+χ̂)−1Ĉt,

defined such that ψ(t) = Ûtψ(0) solves the source-free (ξ = 0) problem. Under the 〈ψ,ψ′〉χ̂
inner product, this operator is unitary (Û†t = Û−1

t ) because the exponent is anti-Hermitian:

〈ψ, (1 + χ̂)−1Ĉψ′〉χ̂ = 〈ψ, Ĉψ′〉 = 〈−Ĉψ, ψ′〉 = 〈−(1 + χ̂)−1Ĉψ, ψ′〉χ̂.

Unitary time-evolution is equivalent to conservation of norm (energy): 〈ψ(t), ψ(t)〉χ̂ =

〈Ûtψ(0), Ûtψ(0)〉χ̂ = 〈ψ(0), ψ(0)〉χ̂.

2.2 Conservation of irrep
If we have a symmetry group G (of rotations, reflections, and/or translations g ∈ G),
recall that we can define the projection operator P̂ (α) = dα

|G|
∑
g∈G χ

(α)(g)∗Ôg, where
χ(α)(g) = trD(α)(g) is the character of an irreducible representation (irrep) D(α)(g) of
G with dimension dα and Ôg is the transformation (rotation/reflection/translation) acting
on the Hilbert space ψ corresponding to the operation g on the coordinates. P̂ (α)ψ projects
any function ψ onto a function (possibly zero) that transforms as a partner function (basis
function) of the irrep α. It turns out that the irrep is “conserved” in the following sense: if
your currents are partners of irrep α, and your fields ψ are partners of α at any time, then
the fields are partners at all times.

If the currents ξ are partners (possibly zero) of α, that means P̂ (α)ξ = ξ for all times.
Furthermore, if G is the symmetry group of the problem, then by definition P̂ (α) commutes
with (1 + χ̂)−1Ĉ and hence with the time-evolution operator Ût. Suppose at time t = 0 our
fields ψ(0) are partners of α, i.e P̂ (α)ψ(0) = ψ(0), where the dependence ψ(t,x) on x is
implied. We can write ψ(t) via Ût as:

ψ(t) = Ûtψ(0) +

ˆ t

0

Ût−t′ (1 + χ̂)
−1
ξ(t′)dt′.

(It is easily verified that this satisfies our PDE: just plug it in.) Therefore, since P̂ (α)

commutes with Ût and (1 + χ̂)−1, it immediately follows that P̂ (α)ψ(t) = ψ(t), and ψ(t) is
a partner of irrep α.
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The simplest example is that of a problem with a mirror symmetry σ, in which case
G = {E, σ} where E is the identity. The irreps are χ(1) = (1, 1) and χ(2) = (1,−1), with
the corresponding partners being even and odd functions. If you have even current sources,
and even fields at any time, then fields are even at all times; similarly for odd currents and
fields.

2.3 Poynting’s theorem
To make explicit the connection with the classical notion of energy, we can briefly derive
Poynting’s theorem to relate electromagnetic energy to mechanical energy [1]. The key to
deriving Poynting’s theorem is to compute the rate of mechanical work done by the fields
on the currents. Recall that the electric field E is the force per unit charge, and J is current
(charge/time) per area. If we think of J as a charge density ρ (charge/volume) moving at a
velocity v, then we can write J = ρv. But since Eρ is force per unit volume, and force ·v is
work per time, it follows that E ·J is the work per time per volume done by the field on the
charges. Similar for H ·K for the (apparently fictitious) case of magnetic charges. Hence,
we can interpret

Re〈ψ, ξ〉

as the rate of change of mechanical energy, where the Re and the complex conjugations
inside 〈·, ·〉 are irrelevant for the physical, real-valued fields. From above, we have

∂

∂t

[
1

2
〈ψ,ψ〉χ̂

]
+ Re〈ψ, ξ〉 = 0,

so if we interpret 1
2 〈ψ,ψ〉χ̂ as the electromagnetic energy (in a lossless, dispersionless system),

then total energy is conserved.
The above was if we assumed the surface term from the integration-by-parts of Ĉ van-

ished, which is the case if we are considering a closed system from which no energy escapes
(or enters). More generally, if we imagine that the integration domain Ω is some arbitrary
volume—not necessarily the entire domain of the PDE—put back in the surface terms from
the integration by parts, we obtain:

∂

∂t

[
1

2
〈ψ,ψ〉χ̂

]
+ Re〈ψ, ξ〉 =

1

2

[
〈ψ, Ĉψ〉+ 〈Ĉψ, ψ〉

]
=

‹
∂Ω

Re [E∗ ×H] · dA,

where the Poynting flux Re[E∗ ×H] is interpreted as the electromagnetic energy flux : the
flow of energy (per time, per area) out through the boundary ∂Ω. For physical, real-valued
fields, this is simply E×H.

2.4 A note on complex numbers and time averages
The physical fields and polarizations are always real, so one might be tempted to simply
omit the complex conjugations and Re factors in the expressions above. However, it is very
convenient mathematically to allow complex solutions, and it turns out that these complex
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conjugations have a simple physical interpretation in the case of sinusoidally oscillating
quantities.

In linear systems, we often write sinusoidally oscillating quantities as the real parts of
complex exponentials, simply because complex exponentials are much easier to work with
than sines and cosines. That is, we might work with complex quantities a(t) = Ae−iωt

and b(t) = Be−iωt, where A and B are complex amplitudes, and then at the end of our
calculation obtain the physical solution from Re[a] and Re[b]. In this case, the following
relationships are extremely useful:

time average of Re[a] · Re[b] =
1

2
Re[a∗b] =

1

2
Re[A∗B],

time average of Re[a]2 =
1

2
|a|2 =

1

2
Re |A|2.

This can be derived by simply performing the time average ω
2π

´ 2π/ω

0
dt and evaluating the

integral; the second identity is merely a special case of the first.
Hence, if 1

2 [εE ·E + µH ·H] is the physical energy density in the field, then 1
4

[
ε|E|2 + µ|H|2

]
is the time-average energy density for time-harmonic fields. Similarly, 1

2 Re[E∗ ×H] is the
time-average Poynting flux for time-harmonic fields, and 1

2 Re〈ψ, ξ〉 is the time-average rate
of work done on the currents. This is extremely useful ! (But remember, only for time-
harmonic fields!) At infrared and optical frequencies, the fields are oscillating at > 1014 Hz,
so any physical detector will typically only measure these time-average quantities.

3 Conservation laws in passive linear media
Let us now return to the case of an arbitrary 6× 6 dispersive medium whose polarization is
a convolution φ = χ ∗ ψ with the susceptibility χ(t,x). In this case, we obtain:

∂

∂t
〈ψ,ψ〉 = 〈ψ, Ĉψ − ∂φ

∂t
− ξ〉+ 〈Ĉψ − ∂φ

∂t
− ξ, ψ〉

and hence

∂

∂t

[
1

2
〈ψ,ψ〉

]
+ Re〈ψ, ∂φ

∂t
〉+ Re〈ψ, ξ〉 =

‹
∂Ω

Re [E∗ ×H] · dA.

On the right-hand side is the Poynting flux out of the domain, from the integration-by-
parts of Ĉ as before. On the left hand side, the first term is the rate of change of the
electromagnetic energy 1

2 〈ψ,ψ〉 in vacuum (ε = µ = 1): this can be thought of as the energy
stored “purely” in the fields. The third term Re〈ψ, ξ〉 is the rate of work done on the currents
ξ as before, i.e. the rate of change of the mechanical energy in these “free” or “external”
charges. The second term Re〈ψ, ∂φ/∂t〉 is similar, where ∂φ/∂t is the “bound” current [1]:
this is a physical current corresponding of the motion of the polarizations (the little charges
“bound” to the material that are polarizing in response to the fields). That is, the second
term is the rate of work done on the material by the fields.
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3.1 Passivity
A “passive” medium is one which does not supply energy. In fact, all linear materials are
necessarily passive, because a linear “active” (or “gain”) medium would lead to runaway
exponential growth of the fields—all physical gain must be nonlinear, because any energy
source has to run out at some point. Mathematically, passivity means that the fields can do
net work on the medium but not vice versa. From above, the net work done on the medium
by the fields is precisely the work done on the polarization currents, and passivity means
that this must be nonnegative:

ˆ t

−∞
Re〈ψ, ∂

∂t
(χ ∗ ψ)〉dt′ ≥ 0

for all times t and all fields ψ (in a suitable function space) [2]. This constrains χ ∗ to be a
“passive convolution operator,” and it follows (from nontrivial math!) that χ is causal, its
Fourier transform χ̂(ω) is analytic for Imω > 0, and Im[ωχ̂(ω)] is positive semidefinite for
Imω > 0 as mentioned above [2].

Note that it is tempting to say that passivity means that Re〈ψ, ∂φ∂t 〉 ≥ 0, i.e. that the
rate of work done on the material is nonnegative, but this is not actually true. Energy can
be temporarily stored in the polarization of matter and then extracted by the fields, as long
as you don’t get out more energy than you put in. (Physically, imagine a photon that is
absorbed by an atom to pump the atom into an excited state, but the atom subsequently
undergoes spontaneous emission to re-emit the photon. Semiclassically, such a resonant
absorption/re-emission is described by a resonance in χ̂: a pole in χ̂ at a complex frequency
ωp in the lower-half plane. The imaginary part Imωp < 0 is due to dissipation losses:
physically, it represents the chance that the atom drops back down to its ground state by
a non-radiative process, e.g. a vibrational collision.) Below, we will see that this Re〈ψ, ∂φ∂t 〉
term actually gives rise to the (ε−1)|E|2+(µ−1)|H|2 term that appears in the energy density
of a lossless, dispersionless medium, and which represents the energy that is temporarily
stored in the medium, only to be re-extracted into the fields.

3.2 Dissipation in the frequency domain
The rate of work done by the fields on the material, which is the rate of energy dissipation
in the material, is given above by Re〈ψ, ∂φ∂t 〉. Suppose we Fourier transform to the frequency
domain, so that we are looking at time-harmonic fields with amplitudes ψ̂(ω) and polar-
izations φ̂(ω) = χ̂(ω)ψ̂(ω). The polarization current ∂φ/∂t Fourier transforms to −iωφ̂(ω),
and so we get a dissipation rate (at ω) of:

Re〈ψ̂,−iωχ̂(ω)ψ̂(ω)〉 =

ˆ
Ω

Re[−iωχ̂] |ψ̂|2 =

ˆ
Ω

Im[ωχ̂] |ψ̂|2,

where Im[ωχ̂] = ω χ̂−χ̂
†

2i is a direct measure of how dissipative the material is at ω. Trans-
parent materials are ones for which Im[χ̂] ≈ 0 (i.e., χ̂ is Hermitian) in the desired frequency
bandwidth.

As mentioned above, one of the consequences of passivity is that Im[ωχ̂] ≥ 0 for Imω > 0,
by taking the limit as Imω → 0+ one can obtain the same result on the real-ω axis (albeit
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with some technicalities to account for the possibility of singularities on the real axis [2]),
so that Im[ωχ̂] ≥ 0 for real frequencies ω in a passive medium, and the magnitude of this
imaginary part is a direct measure of how lossy the medium is at that frequency.

3.3 Dynamical and dispersive energy densities
From our Poynting theorem above, if we want to define an “electromagnetic energy density”
such that the sum of electromagnetic + mechanical energy of free charges is conserved in the
absence of incoming/outgoing Poynting flux, we should define the electromagnetic energy
density as

1

2
(ψ∗ · ψ) +

ˆ t

−∞
Re

[
ψ∗ · ∂

∂t
(χ ∗ ψ)

]
dt′.

The first term can be interpreted as the energy stored “purely” in the fields, while the
second term is the energy dumped into the material. This was dubbed the “dynamical”
energy density [3, 2], and seems to be a relatively recent innovation. It is the energy density
that you need to make Poynting’s theorem hold in an arbitrary medium, and turns out to
be a useful device for studying energy velocities.

This energy density simplifies in many cases. Suppose you have time-harmonic fields
∼ e−iωt, at a frequency where your materials have negligible loss (Im χ̂ ≈ 0 from above), it
turns out that the dynamical energy density reduces to the “dispersive” energy density [2]:

1

2
ψ∗ ·

[
1 +

∂(ωχ̂)

∂ω

]
ψ,

where ∂(ωχ̂)
∂ω ≥ 0 is guaranteed from passivity [2]. In the usual case where χ̂ diagonalizes

into isotropic ε(ω)− 1 and µ(ω)− 1, this expression takes on the well-known form

1

2

[
∂(ωε)

∂ω
|E|2 +

∂(ωµ)

∂ω
|H|2

]
,

which is derived in many textbooks [1]. (Note that this includes dispersion, but neglects
loss! It is not valid in a lossy medium.)

Finally, if we take the “dispersive” energy density for negligible loss, and additionally we
neglect dispersion (i.e. we approximate ε and µ as frequency-independent), then we obtain
the formula

1

2
ψ∗ · (1 + χ̂)ψ =

1

2

[
ε|E|2 + µ|H|2

]
from above for the energy density in a dispersionless, lossless, isotropic medium.

3.4 Conservation of irrep
The time-evolution operator Ût is more complicated to write down explicitly in a general
dispersive medium, so I omit it here. However, it is still the case that it commutes with a
projection operator P̂ (α), because the time evolution must be invariant under the symmetry
operations Ôg (this is essentially the definition of the symmetry group of the problem).
Hence it will still be the case (proof as in the lossless case) that if your currents are partners
of irrep α, and the fields at some time t are partners of α, that the fields ψ will be partners
of α at all times: the “irrep is conserved.”
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