
18.369 Problem Set 4
Due Monday, March 28, 2016.

Problem 1: Perturbation theory
In class, we derived the 1st-order correction in the
eigenvalue for an ordinary Hermitian eigenproblem
Ôψ = λψ for a small perturbation ∆Ô. Now, do the
same thing for a generalized Hermitian eigenprob-
lem Âψ = λ B̂ψ .

(a) That is, assume we have the solution Â(0)ψ(0) =
λ (0)B̂(0)ψ(0) to an unperturbed system (where
Â(0) and B̂(0) are Hermitian, and B̂(0) is positive-
definite) and find the first-order correction λ (1)

when we change both Â and B̂ by small amounts
∆Â and ∆B̂. You may assume that λ (0) is non-
degenerate, for simplicity.

(b) Now, apply this solution to the generalized
eigenproblem ∇×∇×E = ω2

c2 εE for a small
change ∆ε , and show that the first-order correc-
tion ∆ω is the same as the one derived in class
(and given in chapter 2 of the book) using the H
eigenproblem.

(c) In chapter 4 of the book, it is claimed that the ra-
tio of the first gap ∆ω to the mid-gap frequency
ωm of a 1d photonic crystal with materials ε

(thickness a− d) and ε + ∆ε (thickness d) is,
to first order in ∆ε/ε:

∆ω

ωm
≈ ∆ε

ε
· sin(πd/a)

π
.

Reproduce this formula using perturbation the-
ory applied to the k = ±π/a eigenfunctions
sin(πx/a) and cos(πx/a) of a homogeneous
medium ε , as outlined in class.

Problem 2: Bands and supercells
Note: this problem does not require you to do any nu-
merical calculations in MPB etcetera. Just sketches
and thought.

Calvin Q. Luss, a Harvard student, posts to the
MPB mailing list that he has discovered a bug in
MPB. He writes:

I’m getting ready to do a 2d-crystal
calculation, but first I wanted to do a 1d
crystal as a test case since I know the
band diagram analytically for that (from
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Figure 1: (For problem 3.) Two MPB unit cells for
the band structure of a 1d-periodic structure: (i) a 1d
a×no-size unit cell (ii) a 2d a×a unit cell.

Yeh’s book). I used the structure shown
in fig. 1(i), with a 1d computational cell
of a×no-size×no-size, and plotted the
TM band structure ω(kx) (for k = (kx,0,0)
with kx from 0 to 0.5 in MPB units, i.e.
from 0 to π/a)—everything works fine!
Then I do the same calculation but with a
computational cell of a× a×no-size, as
shown in fig. 1(ii), and the result is wrong!
I get all sorts of extra bands at bogus fre-
quencies; why doesn’t the result match the
1d computation, since the structure hasn’t
changed? I think it must be a bug; you MIT
people obviously don’t know what you’re
doing.

Sketch the plots that Calvin got from his two calcu-
lations, and explain why MPB is correctly answering
exactly the question that he posed. Sketch at least 4
bands in the 1d calculation, and at least 6 bands in the
2d calculation (not counting degeneracies), and label
any bands that are doubly (or more?) degenerate.

(You can use the fact that the ε contrast in this case
is only 10%—the structure is nearly homogeneous—
to help you sketch out the bands more quantitatively.
But no need to be too quantitative, however: you
don’t need to use perturbation theory or anything like
that; a reasonable guess is sufficient.)

Problem 3: Defect modes in MPB
In MPB, you will create a (TM polarized) defect
mode by increasing the dielectric constant of a single
layer by ∆ε , pulling a state down into the gap. The
periodic structure will be the same as the one from
problem 4 from pset 3, with the quarter-wave thick-
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ness d1 = 1/(1+
√

12). To help you with this, I’ve
created a sample input file defect1d.ctl that is posted
on the course web page.

(a) When there is no defect (∆ε), plot out the band
diagram ω(k) for the N = 5 supercell, and show
that it corresponds to the band diagram of pset 3
“folded” as expected.

(b) Create a defect mode (a mode that lies in the
band gap of the periodic structure) by increasing
the ε of a single ε1 layer by ∆ε = 1, and plot the
Ez field pattern. Do the same thing by increas-
ing a single ε2 layer. Which mode is even/odd
around the mirror plane of the defect? Why?

(c) Gradually increase the ε of a single ε2 layer, and
plot the defect ωas a function of ∆ε as the fre-
quency sweeps across the gap. At what ∆ε do
you get two defect modes in the gap? Plot the
Ez of the second defect mode. (Be careful to in-
crease the size of the supercell for modes near
the edge of the gap, which are only weakly lo-
calized.)

(d) The mode must decay exponentially far from
the defect (multiplied by an ei π

a x sign oscillation
and the periodic Bloch envelope, of course).
From the Ez field computed by MPB, extract
this asympotic exponential decay rate (i.e. κ if
the field decays ∼ e−κx) and plot this rate as a
function of ω , for the first defect mode, as you
increase ε2 as above (vary ε2 so that ω goes
from the top of the gap to the bottom).
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