
18.369 Problem Set 3
Due Friday, 11 March 2016.

Problem 1: Periodic waveguides
In class, we showed by a variational proof that any
ε(y), in two dimensions, gives rise to at least one
guided mode whenever ε(y)−1 = ε

−1
lo − ∆(y) for∫

∆ > 0 and
∫
|∆| < ∞.1 At least, we showed it for

the TE polarization (H in the ẑ direction). Now, you
will show the same thing much more generally, but
using the same basic technique.

(a) Let ε(x,y)−1 = 1−∆(x,y) be a periodic func-
tion ∆(x,y) = ∆(x + a,y), with

∫
|∆| < ∞ and∫ a

0
∫

∞

−∞
∆(x,y)dxdy > 0. Prove that at least one

TE guided mode exists, by choosing an ap-
propriate (simple!) trial function of the form
H(x,y)= u(x,y)eikxẑ . That is, show by the vari-
ational theorem that ω2 < c2k2 for the lowest-
frequency eigenmode. (It is sufficient to show
it for |k| ≤ π/a, by periodicity in k-space; for
|k|> π/a, the light line is not ω = c|k|.)

(b) Prove the same thing as in (a), but for the TM
polarization (E in the ẑ direction). Hint: you
will need to pick a trial function of the form
H(x,y) = [u(x,y)x̂+ v(x,y)ŷ]eikx where u and v
are some (simple!) functions such that ∇ ·H =
0.2

Problem 2: Point sources & periodicity
Suppose we are in 2d (xy plane), working with the
TM polarization (E out of plane), and have a peri-
odic (period a) surface shown in Fig 1(left). Above
the surface is a time-harmonic point source J =
δ (x)δ (y)e−iωt ẑ (choosing the origin to be the loca-
tion of the point source, for convenience). As you
saw in pset 2, you can define a frequency-domain
problem (∇×∇×−ω2ε)E= iωJ (setting µ0 = ε0 =
1 for convenience) for the time-harmonic fields in re-
sponse to this current.

1As in class, the latter condition on ∆ will allow you to swap
limits and integrals for any integrand whose magnitude is bounded
above by some constant times |∆| (by Lebesgue’s dominated con-
vergence theorem).

2You might be tempted, for the TM polarization, to use the
E form of the variational theorem that you derived in problem 1,
since the proof in that case will be somewhat simpler: you can
just choose E(x,y) = u(x,y)eikxẑ and you will have ∇ · εE = 0
automatically. However, this will lead to an inequivalent condition∫
(ε−1)> 0 instead of

∫
∆ =

∫
ε−1

ε
> 0.

a

J

a

J

Figure 1: Schematic for problem 1. Left: a time-
harmonic point source J above a periodic surface.
Right: the problem can be reduced to solving a set
of problems with point sources in a single unit cell,
with periodic boundary conditions on the fields.

In this problem, you will explain how to take ad-
vantage of the fact that the structure (but not the
source or fields!) is periodic, by reducing it to a set
of problems of the form shown in Fig. 1(right): solv-
ing for the fields of the same point source J, but in a
single unit cell of the structure with Bloch-periodic
boundary conditions on the fields.

(a) Show that the total resulting electric field Ecan
be written as a superposition of solutions Ek to
(∇×∇×−ω2ε)Ek = iωJ in a unit-cell domain
with Bloch-periodic boundary conditions. Hint:

δ (x) =
a

2π

∫ 2π/a

0

[
∞

∑
n=−∞

δ (x−na)eikna

]
dk

and recall conservation of irrep.

(b) Suppose that we want to compute the radiated
power P (per unit z) from J by integrating the
Poynting flux through a plane above the current
(y = y0 > 0):

P =
1
2

∫
∞

−∞

ŷ ·ℜ [E∗(x,y0)×H(x,y0)]dx.

Show that P = a
2π

∫ 2π/a
0 Pkdk, a simple integral

of powers Pk computed separately for each pe-
riodic subproblem above. (Hint: orthogonality
of partner functions.)
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Problem 3: Waveguides in MPB
For this problem, you will gain some initial experi-
ence with the MPB numerical eigensolver described
in class, and which is available on Athena. Refer to
the class handouts, and also to the online MPB docu-
mentation at jdj.mit.edu/mpb/doc. For this problem,
you will study the simple 2d dielectric waveguide
(with εhi = 12) that you analyzed analytically above,
along with some variations thereof—start with the
sample MPB input file (2dwaveguide.ctl) that was in-
troduced in class and is available on the course web
page.

(a) Plot the TM (Ez) even modes as a function of
k, from k = 0 to a large enough k that you get
at least four modes. Compare your numerical
calculation to the analytical prediction, quoted
below, for the “cutoff” k values where new
modes should appear. Show what happens to
this “cutoff point” when you change the size of
the computational cell.

Analytically, one can show that you should get
a new even mode for a waveguide of width
h and contrast f = εlo/εhi < 1 when kh/2π

an integer multiple of 1/
√

1/ f −1. Here,
h = a = 1, and f = 1/12, so should get modes
starting at ka/2π of approximately 0.3015,
0.6030, and 0.9045.

(b) Plot the fields of some guided modes on a log
scale, and verify that they are indeed expo-
nentially decaying away from the waveguide.
(What happens at the computational cell bound-
ary?)

(c) Modify the structure so that the waveguide has
ε = 2.25 instead of air on the y < −h/2 side.
Show that there is a low-ω cutoff for the TM
guided bands, and find the cutoff frequency.
(There is a general argument that an asymmet-
ric waveguide “cladding” of this sort leads to
low-frequency cutoffs.)

(d) Create the waveguide with the following profile:

ε(y) =

 2 0≤ y < h/2
0.8 −h/2 < y < 0

1 |y| ≥ h/2
.

Should this waveguide have a guided mode as
k → 0? Show numerical evidence to support
your conclusion (careful: as the mode becomes
less localized you will need to increase the com-
putational cell size).

Problem 4: Band gaps in MPB
Consider the 1d periodic structure consisting of
two alternating layers: ε1 = 12 and ε2 = 1, with
thicknesses d1 and d2 = a− d1, respectively. To
help you with this, I’ve created a sample input file
bandgap1d.ctl that is posted on the course web page.

(a) Using MPB, compute and plot the fractional
TM gap size (of the first gap, i.e lowest ω)
vs. d1 for d1 ranging from 0 to a. What d1
gives the largest gap? Compare to the “quarter-
wave” thicknesses d1,2 = a

√
ε2,1/[

√
ε1 +

√
ε2]

(see section “size of the band gap” in chapter 4
of the book).

(b) Given the optimal parameters above, what
would be the physical thicknesses in order for
the mid-gap vacuum wavelength to be λ =
2πc/ω = 1.55µm? (This is the wavelength
used for most optical telecommunications.)

(c) Plot the 1d TM band diagram for this structure,
with d1 given by the quarter wave thickness,
showing the first five gaps. Also compute it
for d1 = 0.12345 (which I just chose randomly),
and superimpose the two plots (plot the quarter-
wave bands as solid lines and the other bands as
dashed). What special features does the quarter-
wave band diagram have?
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