18.369 Midterm Exam Solutions (Spring 2016)

Problem 1: Discrete Bloch (34 points)

Suppose you have an infinite sequence of identical masses m, which can move without friction in 1d (x), connected by spring constants k_{n} which are repeating with period $N: k_{n+N}=k_{n}$. Denote the displacement of the n-th mass from equilibrium by x_{n}, where k_{n} is the spring between x_{n} and x_{n+1}. Newton's laws give the following equation:

$$
m \frac{d^{2} x_{n}}{d t^{2}}=k_{n}\left(x_{n+1}-x_{n}\right)+k_{n-1}\left(x_{n-1}-x_{n}\right)
$$

We want to find the time-harmonic modes (normal modes, eigenmodes): solutions of the form $x_{n}=X_{n} e^{-i \omega t}$ where X_{n} is time-independent.
(a) Bloch's theorem tells us that we can choose eigenvectors in the form $X_{n}=X_{n}^{k} e^{i k n}$, where $X_{N+n}^{k}=X_{n}^{k}$ (periodic). This corresponds to the irrep $D_{k}(m)=e^{-i k N m}$ for translation by $m N: X_{n-m N}=D_{k}(m) X_{n}$. Note that k and $k+2 \pi / N$ give the same irrep, so the Brillouin zone is $k \in[-\pi / N, \pi / N]$.

If we plug this $X_{n} e^{-i \omega t}$ into the Newton equation above, and multiply both sides by $e^{-i k n}$, we obtain

$$
-m \omega^{2} X_{n}^{k}=k_{n}\left(X_{n+1}^{k} e^{i k}-X_{n}^{k}\right)+k_{n-1}\left(X_{n-1}^{k} e^{-i k}-X_{n}^{k}\right)
$$

Since the X_{n}^{k} are periodic, there are only N independent equations, which we can write in matrix form (after dividing both sides by $-m$)

$$
\frac{1}{m} \underbrace{\left(\begin{array}{ccccc}
k_{1}+k_{N} & -k_{1} e^{i k} & & & -k_{N} e^{-i k} \\
-k_{1} e^{i k} & k_{2}+k_{1} & -k_{2} e^{-i k} & & \\
& \ddots & \ddots & \ddots & \\
k_{N} e^{i k} & & k_{N-2} e^{-i k} & k_{N-1}+k_{N-2} & k_{N-1} e^{i k} \\
k_{N-1} e^{-i k} & k_{N}+k_{N-1}
\end{array}\right)}_{A_{k}} \underbrace{\left(\begin{array}{c}
X_{1}^{k} \\
X_{2}^{k} \\
\vdots \\
X_{N-1}^{k} \\
X_{N}^{k}
\end{array}\right)}_{\mathbf{x}^{k}}=\omega(k)^{2} \mathbf{X}^{k}
$$

in which we have an $N \times N$ (obviously) Hermitian matrix A_{k}.
Since A_{k} is Hermitian and (less obviously) positive-semidefinite, it follows that ω^{2} is real and ≥ 0, hence $\omega(k)$ is real.
(b) For $N=1$, we have the 1×1 problem

$$
\omega^{2} X_{1}^{k}=\frac{k_{1}}{m}\left[2-e^{i k}-e^{-i k}\right]=\frac{k_{1}}{m}[2-2 \cos (k)]=4 \frac{k_{1}}{m} \sin ^{2}(k / 2),
$$

where we have simplified the result using the half-angle identity, and hence

$$
\omega(k)= \pm 2 \sqrt{\frac{k_{1}}{m}} \sin (k / 2)
$$

In the irreducible Brillouin zone (IBZ) $[0, \pi]$, this just rises in the usual sine fashion from $\omega(0)=0$ (where all the masses move together and there is no oscillation) to a zero-slope "band edge" at $\omega(\pi)=2 \sqrt{k_{1} / m}$ (where the masses are moving in exactly alternating fashion: effectively simple harmonic motion with spring constant $4 k_{1}$).
(c) We should expect that increasing a single spring to $k_{1}^{\prime}>k_{1}$ should localize an oscillating mode: since increasing k_{1} causes the ω^{2} to increase, this k_{1}^{\prime} will push a mode "up into the gap" above the band edge. As in class, frequencies above the band edge are exponentially decaying in the surrounding periodic regions.

Conversely, decreasing a single spring constant tries to pull frequencies down, but there is no gap at lower frequencies to be pulled down into (the bulk bands extend all the way to $\omega=0$). So, we wouldn't expect to create a localized state by a defect $k_{1}^{\prime}<k_{1}$.
(d) The $k_{1}=k_{2}=k_{3}$ case is just a supercell: we will see the $\sin (k / 2)$ dispersion relation above simply "folded" into the new IBZ $k \in[0, \pi / 3]$. Then, if we make the spring constants slightly different, band gaps should open up around the folding points at the edges of the IBZ.

Problem 2: Degeneracy (33 points)

Suppose you have a 2d-periodic structure $\varepsilon(x, y)$. In class, we said that, in the long-wavelength limit ($\lambda \gg$ period), the wave solutions "see" only a "homogenized" average medium: the solutions (averaged over a unit cell) are identical to those of the solutions in a homogeneous medium $\varepsilon_{\text {eff }}$. In general, $\varepsilon_{\mathrm{eff}}$ is anisotropic (a 3×3 matrix). Let's consider only the TE polarization (in-plane \mathbf{E}), for which we only have a $2 \times 2 \varepsilon_{\text {eff }}$. You can assume that $\varepsilon_{\text {eff }}$ must real-symmetric and positive-definite if $\varepsilon(x, y)$ is real-symmetric and positive-definite (this is easy to prove).
(a) Suppose we have an eigenvector \mathbf{E} of $\varepsilon_{\text {eff }}: \varepsilon_{\text {eff }} \mathbf{E}=\lambda \mathbf{E}$. Because the system has C_{n} symmetry, the vector $C_{n} \mathbf{E}$ should also be an eigenvector with the same eigenvalue λ (C_{n} must commute with $\varepsilon_{\text {eff }}$). If $n>2$, then $C_{n} \mathbf{E}$ is linearly independent from \mathbf{E} (whereas for $n=1$ and $n=2$ it is parallel or antiparallel, respectively). Since this forms a basis for the 2 d plane, and $\varepsilon_{\text {eff }}$ is isotropic is isotropic in that basis, it is isotropic in every basis. If you want an orthonormal basis, then any linear combination of \mathbf{E} and $C_{n} \mathbf{E}$ is also an eigenvector of λ, so we can use Gram-Schmidt to make an orthonormal basis of such eigenvectors, and in this basis we again have $\varepsilon_{\text {eff }}=\lambda I$ where I is the 2×2 identity. This basis spans the 2 d plane, so $\varepsilon_{\text {eff }}$ is isotropic (for the in-plane TE polarization).
(b) In the limit $|\mathbf{k}| \rightarrow 0$ our lowest band always has $\omega \rightarrow 0$: it is the long-wavelength limit. In this limit, we have an effectively homogeneous isotropic material $\varepsilon_{\text {eff }}$ and hence the eigensolution is $\omega_{1}\left(k_{z}\right) \approx c k_{z} / \sqrt{\varepsilon_{\text {eff }}}$ with two polarizations $E_{x} \hat{x}$ and $E_{y} \hat{y}$.

However, all the solutions must also be partners of an irrep of $C_{n \mathrm{v}}$. These solutions clearly transform as (x, y), so they fall into the 2 d irrep given by the coordinate-rotation matrices. Hence they are exactly degenerate.

Furthermore, the solutions for ω_{1} are continous functions of k_{z}. So, if they fall into a 2 d irrep for long wavelengths (small k_{z}) then they must be in the same 2 d irrep at all wavelengths (all k_{z}): there is no way for a functio to continously go from being a partner of one irrep to another without passing through zero (which is not possible for eigenfunctions). Hence $\omega_{1}\left(k_{z}\right)$ is doubly degenerate at all k_{z}.

Problem 3: Min-Max (33 points)

- The correct statement is

$$
\lambda_{2}=\inf _{\mathscr{H}_{2} \subseteq \mathscr{H}}\left[\sup _{u \in \mathscr{H}_{2}} R\{u\}\right] .
$$

This follows from the following two observations:

- First, for any $\mathscr{H}_{2} \subseteq \mathscr{H}$, let us choose a basis $\left\{b_{1}, b_{2}\right\}$, where (as suggested) without loss of generality we can choose $b_{2} \perp u_{1}$. i.e. $b_{2}=\sum_{n>1} c_{n} u_{n}$ for some c_{n}, with $c_{1}=0$. Then $R\left\{b_{2}\right\} \geq \lambda_{2}$ because it is a weighted average of the $\lambda_{n} \geq \lambda_{2}$ for $n>1$. Hence

$$
\sup _{u \in \mathscr{H} 2} R\{u\} \geq R\left\{b_{2}\right\} \geq \lambda_{2} .
$$

- Second, if $\mathscr{H}_{2}=$ span of $\left\{u_{1}, u_{2}\right\}$, the $R\{u\}$ is a weighted average of λ_{1} and λ_{2}, so its supremum is $R\left\{u_{2}\right\}=$ λ_{2} similar to class.

