18.369 Midterm Exam Solutions (Spring 2016)

Problem 1: Discrete Bloch (34 points)

Suppose you have an infinite sequence of identical masses *m*, which can move without friction in 1d (*x*), connected by spring constants k_n which are repeating with period *N*: $k_{n+N} = k_n$. Denote the displacement of the *n*-th mass from equilibrium by x_n , where k_n is the spring between x_n and x_{n+1} . Newton's laws give the following equation:

$$m\frac{d^2x_n}{dt^2} = k_n(x_{n+1} - x_n) + k_{n-1}(x_{n-1} - x_n).$$

We want to find the time-harmonic modes (normal modes, eigenmodes): solutions of the form $x_n = X_n e^{-i\omega t}$ where X_n is time-independent.

(a) Bloch's theorem tells us that we can choose eigenvectors in the form $X_n = X_n^k e^{ikn}$, where $X_{N+n}^k = X_n^k$ (periodic). This corresponds to the irrep $D_k(m) = e^{-ikNm}$ for translation by mN: $X_{n-mN} = D_k(m)X_n$. Note that k and $k + 2\pi/N$ give the same irrep, so the Brillouin zone is $k \in [-\pi/N, \pi/N]$.

If we plug this $X_n e^{-i\omega t}$ into the Newton equation above, and multiply both sides by e^{-ikn} , we obtain

$$-m\omega^{2}X_{n}^{k} = k_{n}\left(X_{n+1}^{k}e^{ik} - X_{n}^{k}\right) + k_{n-1}\left(X_{n-1}^{k}e^{-ik} - X_{n}^{k}\right)$$

Since the X_n^k are periodic, there are only N independent equations, which we can write in matrix form (after dividing both sides by -m)

$$\underbrace{\frac{1}{m} \begin{pmatrix} k_1 + k_N & -k_1 e^{ik} & & -k_N e^{-ik} \\ -k_1 e^{ik} & k_2 + k_1 & -k_2 e^{-ik} & & \\ & \ddots & \ddots & & \\ & & k_{N-2} e^{-ik} & k_{N-1} + k_{N-2} & k_{N-1} e^{ik} \\ k_N e^{ik} & & & k_{N-1} e^{-ik} & k_N + k_{N-1} \end{pmatrix}}_{A_k} \begin{pmatrix} X_1^k \\ X_2^k \\ \vdots \\ X_{N-1}^k \\ X_N^k \end{pmatrix}} = \omega(k)^2 \mathbf{X}^k$$

in which we have an $N \times N$ (obviously) Hermitian matrix A_k .

Since A_k is Hermitian and (less obviously) positive-semidefinite, it follows that ω^2 is real and ≥ 0 , hence $\omega(k)$ is real.

(b) For N = 1, we have the 1×1 problem

$$\omega^2 X_1^k = \frac{k_1}{m} \left[2 - e^{ik} - e^{-ik} \right] = \frac{k_1}{m} \left[2 - 2\cos(k) \right] = 4\frac{k_1}{m} \sin^2(k/2),$$

where we have simplified the result using the half-angle identity, and hence

$$\omega(k) = \pm 2\sqrt{\frac{k_1}{m}}\sin(k/2).$$

In the irreducible Brillouin zone (IBZ) $[0, \pi]$, this just rises in the usual sine fashion from $\omega(0) = 0$ (where all the masses move together and there is no oscillation) to a zero-slope "band edge" at $\omega(\pi) = 2\sqrt{k_1/m}$ (where the masses are moving in exactly alternating fashion: effectively simple harmonic motion with spring constant $4k_1$).

(c) We should expect that *increasing* a single spring to $k'_1 > k_1$ should localize an oscillating mode: since increasing k_1 causes the ω^2 to increase, this k'_1 will push a mode "up into the gap" above the band edge. As in class, frequencies above the band edge are exponentially decaying in the surrounding periodic regions.

Conversely, decreasing a single spring constant tries to pull frequencies down, but there is no gap at lower frequencies to be pulled down into (the bulk bands extend all the way to $\omega = 0$). So, we wouldn't expect to create a localized state by a defect $k'_1 < k_1$.

(d) The k₁ = k₂ = k₃ case is just a supercell: we will see the sin(k/2) dispersion relation above simply "folded" into the new IBZ k ∈ [0, π/3]. Then, if we make the spring constants slightly different, band gaps should open up around the folding points at the edges of the IBZ.

Problem 2: Degeneracy (33 points)

Suppose you have a 2d-periodic structure $\varepsilon(x, y)$. In class, we said that, in the *long-wavelength limit* ($\lambda \gg$ period), the wave solutions "see" only a "homogenized" *average* medium: the solutions (averaged over a unit cell) are identical to those of the solutions in a *homogeneous* medium ε_{eff} . In general, ε_{eff} is anisotropic (a 3 × 3 matrix). Let's consider only the TE polarization (in-plane **E**), for which we only have a 2 × 2 ε_{eff} . You can assume that ε_{eff} must real-symmetric and positive-definite if $\varepsilon(x, y)$ is real-symmetric and positive-definite (this is easy to prove).

- (a) Suppose we have an eigenvector \mathbf{E} of ε_{eff} : $\varepsilon_{\text{eff}}\mathbf{E} = \lambda \mathbf{E}$. Because the system has C_n symmetry, the vector $C_n \mathbf{E}$ should also be an eigenvector with the same eigenvalue λ (C_n must commute with ε_{eff}). If n > 2, then $C_n \mathbf{E}$ is linearly independent from \mathbf{E} (whereas for n = 1 and n = 2 it is parallel or antiparallel, respectively). Since this forms a basis for the 2d plane, and ε_{eff} is isotropic is isotropic in that basis, it is isotropic in every basis. If you want an orthonormal basis, then any linear combination of \mathbf{E} and $C_n \mathbf{E}$ is also an eigenvector of λ , so we can use Gram–Schmidt to make an orthonormal basis of such eigenvectors, and in this basis we again have $\varepsilon_{\text{eff}} = \lambda I$ where I is the 2×2 identity. This basis spans the 2d plane, so ε_{eff} is isotropic (for the in-plane TE polarization).
- (b) In the limit $|\mathbf{k}| \to 0$ our lowest band always has $\omega \to 0$: it is the long-wavelength limit. In this limit, we have an effectively homogeneous isotropic material ε_{eff} and hence the eigensolution is $\omega_1(k_z) \approx ck_z/\sqrt{\varepsilon_{\text{eff}}}$ with two polarizations $E_x \hat{x}$ and $E_y \hat{y}$.

However, all the solutions must also be partners of an irrep of C_{nV} . These solutions clearly transform as (x, y), so they fall into the 2d irrep given by the coordinate-rotation matrices. Hence they are exactly degenerate.

Furthermore, the solutions for ω_1 are continous functions of k_z . So, if they fall into a 2d irrep for long wavelengths (small k_z) then they must be in the same 2d irrep at all wavelengths (all k_z): there is no way for a functio to continously go from being a partner of one irrep to another without passing through zero (which is not possible for eigenfunctions). Hence $\omega_1(k_z)$ is doubly degenerate at all k_z .

Problem 3: Min–Max (33 points)

• The correct statement is

$$\lambda_2 = \inf_{\mathscr{H}_2 \subseteq \mathscr{H}} \left[\sup_{u \in \mathscr{H}_2} R\{u\} \right].$$

This follows from the following two observations:

First, for any ℋ₂ ⊆ ℋ, let us choose a basis {b₁,b₂}, where (as suggested) without loss of generality we can choose b₂ ⊥ u₁. i.e. b₂ = ∑_{n>1} c_nu_n for some c_n, with c₁ = 0. Then R{b₂} ≥ λ₂ because it is a weighted average of the λ_n ≥ λ₂ for n > 1. Hence

$$\sup_{u\in\mathscr{H}_2} R\{u\} \ge R\{b_2\} \ge \lambda_2.$$

- Second, if $\mathscr{H}_2 = \text{span of } \{u_1, u_2\}$, the $R\{u\}$ is a weighted average of λ_1 and λ_2 , so its supremum is $R\{u_2\} = \lambda_2$ similar to class.