
18.369 Midterm Exam (Spring 2016)

You have two hours. The problems have equal weight, so divide your time accordingly.

Problem 1: Discrete Bloch (34 points)
Suppose you have an infinite sequence of identical masses m, which can move without friction in 1d (x), connected
by spring constants kn which are repeating with period N: kn+N = kn. Denote the displacement of the n-th mass from
equilibrium by xn, where kn is the spring between xn and xn+1. Newton’s laws give the following equation:

m
d2xn

dt2 = kn(xn+1− xn)+ kn−1(xn−1− xn).

We want to find the time-harmonic modes (normal modes, eigenmodes): solutions of the form xn = Xne−iωt where Xn
is time-independent.

(a) Apply Bloch’s theorem to this problem: write the eigenvectors Xn as Xn = (something)×eikn for a real wavevec-
tor k (in what Brillouin zone?), and write down an eigenproblem for eigenvalues ω(k)2. (You should get an
N×N Hermitian eigenproblem!)

If you do this correctly, your eigenproblem matrix should be both Hermitian and positive-semidefinite. You
don’t need to prove this. But in consequence, it follows from Hermitian + positive-semidefinite that the frequen-
cies ω(k) are ________________.

(b) For the case of N = 1 (identical springs kn = k1), solve for the dispersion relation ω(k) and sketch it. Label the
irreducible Brillouin zone (IBZ).

(c) If we start with identical springs from (b), and then change one spring constant to k′1 6= k1, explain whether
k′1 > k1 or k′1 < k1 (or both, or neither) should be expected to create a localized vibrational state (one in which xn
near k′ is oscillating, but these oscillations die off for large |n|). No proof required, just a clear argument [based
on your dispersion relation from (b) and how ω2 changes when you increase/decrease k1].

(d) Sketch the dispersion relation for N = 3 (in the IBZ) for both the case of identical springs k1 = k2 = k3 (i.e., a
supercell) and slightly different spring constants.

Problem 2: Degeneracy (33 points)
Suppose you have a 2d-periodic structure ε(x,y). In class, we said that, in the long-wavelength limit (λ � period), the
wave solutions “see” only a “homogenized” average medium: the solutions (averaged over a unit cell) are identical
to those of the solutions in a homogeneous medium εeff. In general, εeff is anisotropic (a 3× 3 matrix). Let’s
consider only the TE polarization (in-plane E), for which we only have a 2× 2 εeff. You can assume that εeff must
real-symmetric and positive-definite if ε(x,y) is real-symmetric and positive-definite (this is easy to prove).

(a) In class, I claimed without proof that, for any ε(x,y) with Cn symmetry (n-fold rotational symmetry) and n > 2,
this 2×2 εeff must be isotropic (a multiple of the identity matrix). Prove this.

Hint: Start with one eigenvector of εeff, and find another linearly independent one with the same eigenvalue.
Use these to construct an orthonormal basis in which it is obvious that εeff is isotropic.
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(b) Consider the 3d time-harmonic Bloch solutions H(x, t) = Hk(x,y)ei(k·x−ωt) for k = (0,0,kz), i.e. out-of-plane
propagation. Suppose that ε has Cnv symmetry for some n > 2 (i.e. n-fold rotations + n mirror planes, the
symmetry group of the regular n-gon). You are given that this symmetry group as at least one 2d irrep which
transforms like the partner functions (x,y), i.e. the 2×2 coordinate-rotation matrices are an irrep. Show that the
lowest band ω1(kz) is doubly degenerate.

Hint: use the fact that the long-wavelength limit “sees” an isotropic effective medium, from the previous part,
and that the eigenfunction Hk,1 for ω1 is a continuous function of kz.

Problem 3: Min–Max (33 points)
Suppose that we have a Hermitian operator Ô on some Hilbert space H (or technically a Sobolev space) with inner
product 〈u,v〉. Recall that the eigenfunctions Ôun = λnun can be chosen orthonormal 〈um,un〉= δm,n. Assume that we
have a complete basis of eigenfunctions un for n = 1,2, . . ., i.e. any u ∈H can be written u = ∑n cnun for cn = 〈un,u〉.
Assume that we have an ascending sequence of eigenvalues λ1 ≤ λ2 ≤ λ3 ≤ ·· · . In class, we proved the min–max
theorem:

λ1 = min
u6=0∈H

R{u}

where R{u}= 〈u, Ôu〉/〈u,u〉 is the Rayleigh quotient. (Technically, I should probably use inf and sup instead of min
and max, but let’s not worry about that formality.) Recall that if u = ∑n cnun then, from class,

R{u}= ∑n |cn|2λn

∑m |cm|2
,

a weighted average of the eigenvalues. We proved the min–max theorem simply by bounding λn≥ λ1 in the numerator,
in which case the sums cancel and we obtain R{u} ≥ λ1 . Equality is achieved when u = u1.

Now, we want to generalize this to a min–max theorem for λ2 . One way, as given in class, is to minimize over
u⊥ u1 for m < n (a technique called “deflation”). Here, you will derive a different approach.

• Show that
λ2 = min or max

�
min or max

♦

R{u}

where you indicate (i) the appropriate “min” or “max” in each box and (ii) the � and ♦ are each one of:
H2 ⊆H and u 6= 0 ∈H2, where H2 indicates any 2-dimensional subspace of H (i.e. the span of any two lin-
early independent functions). That is, you are maximizing or minimizing the Rayleigh quotient over all possible
2-dimensional subspaces.

Hint: any two-dimensional subspace H2 must be spanned by a basis {b1,b2} where b1 and b2 are not or-
thogonal to at least two eigenvectors un. Without loss of generality, you can choose b2 ⊥ u1 (rotate your basis
so that b1 contains any nonzero u1 component).
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