18.369 Midterm Exam (Spring 2016)

You have two hours. The problems have equal weight, so divide your time accordingly.

Problem 1: Discrete Bloch (34 points)

Suppose you have an infinite sequence of identical masses m, which can move without friction in $1 \mathrm{~d}(x)$, connected by spring constants k_{n} which are repeating with period $N: k_{n+N}=k_{n}$. Denote the displacement of the n-th mass from equilibrium by x_{n}, where k_{n} is the spring between x_{n} and x_{n+1}. Newton's laws give the following equation:

$$
m \frac{d^{2} x_{n}}{d t^{2}}=k_{n}\left(x_{n+1}-x_{n}\right)+k_{n-1}\left(x_{n-1}-x_{n}\right)
$$

We want to find the time-harmonic modes (normal modes, eigenmodes): solutions of the form $x_{n}=X_{n} e^{-i \omega t}$ where X_{n} is time-independent.
(a) Apply Bloch's theorem to this problem: write the eigenvectors X_{n} as $X_{n}=($ something $) \times e^{i k n}$ for a real wavevector k (in what Brillouin zone?), and write down an eigenproblem for eigenvalues $\omega(k)^{2}$. (You should get an $N \times N$ Hermitian eigenproblem!)

If you do this correctly, your eigenproblem matrix should be both Hermitian and positive-semidefinite. You don't need to prove this. But in consequence, it follows from Hermitian + positive-semidefinite that the frequencies $\omega(k)$ are \qquad —.
(b) For the case of $N=1$ (identical springs $k_{n}=k_{1}$), solve for the dispersion relation $\omega(k)$ and sketch it. Label the irreducible Brillouin zone (IBZ).
(c) If we start with identical springs from (b), and then change one spring constant to $k_{1}^{\prime} \neq k_{1}$, explain whether $k_{1}^{\prime}>k_{1}$ or $k_{1}^{\prime}<k_{1}$ (or both, or neither) should be expected to create a localized vibrational state (one in which x_{n} near k^{\prime} is oscillating, but these oscillations die off for large $|n|$). No proof required, just a clear argument [based on your dispersion relation from (b) and how ω^{2} changes when you increase/decrease k_{1}].
(d) Sketch the dispersion relation for $N=3$ (in the IBZ) for both the case of identical springs $k_{1}=k_{2}=k_{3}$ (i.e., a supercell) and slightly different spring constants.

Problem 2: Degeneracy (33 points)

Suppose you have a 2d-periodic structure $\varepsilon(x, y)$. In class, we said that, in the long-wavelength limit ($\lambda \gg$ period), the wave solutions "see" only a "homogenized" average medium: the solutions (averaged over a unit cell) are identical to those of the solutions in a homogeneous medium $\varepsilon_{\text {eff }}$. In general, $\varepsilon_{\text {eff }}$ is anisotropic (a 3×3 matrix). Let's consider only the TE polarization (in-plane \mathbf{E}), for which we only have a $2 \times 2 \varepsilon_{\text {eff. }}$. You can assume that $\varepsilon_{\text {eff }}$ must real-symmetric and positive-definite if $\varepsilon(x, y)$ is real-symmetric and positive-definite (this is easy to prove).
(a) In class, I claimed without proof that, for any $\varepsilon(x, y)$ with C_{n} symmetry (n-fold rotational symmetry) and $n>2$, this $2 \times 2 \varepsilon_{\text {eff }}$ must be isotropic (a multiple of the identity matrix). Prove this.

Hint: Start with one eigenvector of $\varepsilon_{\text {eff }}$, and find another linearly independent one with the same eigenvalue. Use these to construct an orthonormal basis in which it is obvious that $\varepsilon_{\text {eff }}$ is isotropic.
(b) Consider the 3d time-harmonic Bloch solutions $\mathbf{H}(\mathbf{x}, t)=\mathbf{H}_{\mathbf{k}}(x, y) e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}$ for $\mathbf{k}=\left(0,0, k_{z}\right)$, i.e. out-of-plane propagation. Suppose that ε has $C_{n \mathrm{v}}$ symmetry for some $n>2$ (i.e. n-fold rotations $+n$ mirror planes, the symmetry group of the regular n-gon). You are given that this symmetry group as at least one 2 d irrep which transforms like the partner functions (x, y), i.e. the 2×2 coordinate-rotation matrices are an irrep. Show that the lowest band $\omega_{1}\left(k_{z}\right)$ is doubly degenerate.

Hint: use the fact that the long-wavelength limit "sees" an isotropic effective medium, from the previous part, and that the eigenfunction $\mathbf{H}_{\mathbf{k}, 1}$ for ω_{1} is a continuous function of k_{z}.

Problem 3: Min-Max (33 points)

Suppose that we have a Hermitian operator \hat{O} on some Hilbert space \mathscr{H} (or technically a Sobolev space) with inner product $\langle u, v\rangle$. Recall that the eigenfunctions $\hat{O} u_{n}=\lambda_{n} u_{n}$ can be chosen orthonormal $\left\langle u_{m}, u_{n}\right\rangle=\delta_{m, n}$. Assume that we have a complete basis of eigenfunctions u_{n} for $n=1,2, \ldots$, i.e. any $u \in \mathscr{H}$ can be written $u=\sum_{n} c_{n} u_{n}$ for $c_{n}=\left\langle u_{n}, u\right\rangle$. Assume that we have an ascending sequence of eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots$. In class, we proved the min-max theorem:

$$
\lambda_{1}=\min _{u \neq 0 \in \mathscr{H}} R\{u\}
$$

where $R\{u\}=\langle u, \hat{O} u\rangle /\langle u, u\rangle$ is the Rayleigh quotient. (Technically, I should probably use inf and sup instead of min and max, but let's not worry about that formality.) Recall that if $u=\sum_{n} c_{n} u_{n}$ then, from class,

$$
R\{u\}=\frac{\sum_{n}\left|c_{n}\right|^{2} \lambda_{n}}{\sum_{m}\left|c_{m}\right|^{2}}
$$

a weighted average of the eigenvalues. We proved the min-max theorem simply by bounding $\lambda_{n} \geq \lambda_{1}$ in the numerator, in which case the sums cancel and we obtain $R\{u\} \geq \lambda_{1}$. Equality is achieved when $u=u_{1}$.

Now, we want to generalize this to a min-max theorem for λ_{2}. One way, as given in class, is to minimize over $u \perp u_{1}$ for $m<n$ (a technique called "deflation"). Here, you will derive a different approach.

- Show that

$$
\lambda_{2}=\begin{array}{|c|c}
\hline \text { min or } \max & \min \text { or } \max \\
\hline \square & \diamond
\end{array}
$$

where you indicate (i) the appropriate "min" or "max" in each box and (ii) theand \diamond are each one of: $\mathscr{H}_{2} \subseteq \mathscr{H}$ and $u \neq 0 \in \mathscr{H}_{2}$, where \mathscr{H}_{2} indicates any 2-dimensional subspace of \mathscr{H} (i.e. the span of any two linearly independent functions). That is, you are maximizing or minimizing the Rayleigh quotient over all possible 2-dimensional subspaces.

Hint: any two-dimensional subspace \mathscr{H}_{2} must be spanned by a basis $\left\{b_{1}, b_{2}\right\}$ where b_{1} and b_{2} are not orthogonal to at least two eigenvectors u_{n}. Without loss of generality, you can choose $b_{2} \perp u_{1}$ (rotate your basis so that b_{1} contains any nonzero u_{1} component).

